| /* ==================================================================== |
| * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== */ |
| |
| #include <string.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/aes.h> |
| #include <openssl/cipher.h> |
| #include <openssl/cpu.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| #include <openssl/sha.h> |
| |
| #include "internal.h" |
| #include "../internal.h" |
| #include "../modes/internal.h" |
| |
| #if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
| #include <openssl/arm_arch.h> |
| #endif |
| |
| |
| OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) /* Unreachable code. */ |
| |
| typedef struct { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; |
| block128_f block; |
| union { |
| cbc128_f cbc; |
| ctr128_f ctr; |
| } stream; |
| } EVP_AES_KEY; |
| |
| typedef struct { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; /* AES key schedule to use */ |
| int key_set; /* Set if key initialised */ |
| int iv_set; /* Set if an iv is set */ |
| GCM128_CONTEXT gcm; |
| uint8_t *iv; /* Temporary IV store */ |
| int ivlen; /* IV length */ |
| int taglen; |
| int iv_gen; /* It is OK to generate IVs */ |
| ctr128_f ctr; |
| } EVP_AES_GCM_CTX; |
| |
| #if !defined(OPENSSL_NO_ASM) && \ |
| (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) |
| #define VPAES |
| static char vpaes_capable(void) { |
| return (OPENSSL_ia32cap_P[1] & (1 << (41 - 32))) != 0; |
| } |
| |
| #if defined(OPENSSL_X86_64) |
| #define BSAES |
| static char bsaes_capable(void) { |
| return vpaes_capable(); |
| } |
| #endif |
| |
| #elif !defined(OPENSSL_NO_ASM) && \ |
| (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) |
| |
| #if defined(OPENSSL_ARM) && __ARM_MAX_ARCH__ >= 7 |
| #define BSAES |
| static char bsaes_capable(void) { |
| return CRYPTO_is_NEON_capable(); |
| } |
| #endif |
| |
| #define HWAES |
| static int hwaes_capable(void) { |
| return CRYPTO_is_ARMv8_AES_capable(); |
| } |
| |
| #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_PPC64LE) |
| |
| #define HWAES |
| static int hwaes_capable(void) { |
| return CRYPTO_is_PPC64LE_vcrypto_capable(); |
| } |
| |
| #endif /* OPENSSL_PPC64LE */ |
| |
| |
| #if defined(BSAES) |
| /* On platforms where BSAES gets defined (just above), then these functions are |
| * provided by asm. */ |
| void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t ivec[16], int enc); |
| void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, const uint8_t ivec[16]); |
| #else |
| static char bsaes_capable(void) { |
| return 0; |
| } |
| |
| /* On other platforms, bsaes_capable() will always return false and so the |
| * following will never be called. */ |
| static void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t ivec[16], int enc) { |
| abort(); |
| } |
| |
| static void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, |
| size_t len, const AES_KEY *key, |
| const uint8_t ivec[16]) { |
| abort(); |
| } |
| #endif |
| |
| #if defined(VPAES) |
| /* On platforms where VPAES gets defined (just above), then these functions are |
| * provided by asm. */ |
| int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); |
| int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); |
| |
| void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| |
| void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t *ivec, int enc); |
| #else |
| static char vpaes_capable(void) { |
| return 0; |
| } |
| |
| /* On other platforms, vpaes_capable() will always return false and so the |
| * following will never be called. */ |
| static int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, |
| AES_KEY *key) { |
| abort(); |
| } |
| static int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, |
| AES_KEY *key) { |
| abort(); |
| } |
| static void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { |
| abort(); |
| } |
| static void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { |
| abort(); |
| } |
| static void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t *ivec, int enc) { |
| abort(); |
| } |
| #endif |
| |
| #if defined(HWAES) |
| int aes_hw_set_encrypt_key(const uint8_t *user_key, const int bits, |
| AES_KEY *key); |
| int aes_hw_set_decrypt_key(const uint8_t *user_key, const int bits, |
| AES_KEY *key); |
| void aes_hw_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| void aes_hw_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| void aes_hw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t *ivec, const int enc); |
| void aes_hw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, const uint8_t ivec[16]); |
| #else |
| /* If HWAES isn't defined then we provide dummy functions for each of the hwaes |
| * functions. */ |
| static int hwaes_capable(void) { |
| return 0; |
| } |
| |
| static int aes_hw_set_encrypt_key(const uint8_t *user_key, int bits, |
| AES_KEY *key) { |
| abort(); |
| } |
| |
| static int aes_hw_set_decrypt_key(const uint8_t *user_key, int bits, |
| AES_KEY *key) { |
| abort(); |
| } |
| |
| static void aes_hw_encrypt(const uint8_t *in, uint8_t *out, |
| const AES_KEY *key) { |
| abort(); |
| } |
| |
| static void aes_hw_decrypt(const uint8_t *in, uint8_t *out, |
| const AES_KEY *key) { |
| abort(); |
| } |
| |
| static void aes_hw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t *ivec, int enc) { |
| abort(); |
| } |
| |
| static void aes_hw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, |
| size_t len, const AES_KEY *key, |
| const uint8_t ivec[16]) { |
| abort(); |
| } |
| #endif |
| |
| #if !defined(OPENSSL_NO_ASM) && \ |
| (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) |
| int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); |
| int aesni_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key); |
| |
| void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| void aesni_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key); |
| |
| void aesni_ecb_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, int enc); |
| void aesni_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const AES_KEY *key, uint8_t *ivec, int enc); |
| |
| #else |
| |
| /* On other platforms, aesni_capable() will always return false and so the |
| * following will never be called. */ |
| static void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) { |
| abort(); |
| } |
| static int aesni_set_encrypt_key(const uint8_t *userKey, int bits, |
| AES_KEY *key) { |
| abort(); |
| } |
| static void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, |
| size_t blocks, const void *key, |
| const uint8_t *ivec) { |
| abort(); |
| } |
| |
| #endif |
| |
| static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| const uint8_t *iv, int enc) { |
| int ret, mode; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; |
| if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { |
| if (hwaes_capable()) { |
| ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f)aes_hw_decrypt; |
| dat->stream.cbc = NULL; |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt; |
| } |
| } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) { |
| ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f)AES_decrypt; |
| dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt; |
| } else if (vpaes_capable()) { |
| ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f)vpaes_decrypt; |
| dat->stream.cbc = |
| mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; |
| } else { |
| ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f)AES_decrypt; |
| dat->stream.cbc = |
| mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; |
| } |
| } else if (hwaes_capable()) { |
| ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f)aes_hw_encrypt; |
| dat->stream.cbc = NULL; |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = (cbc128_f)aes_hw_cbc_encrypt; |
| } else if (mode == EVP_CIPH_CTR_MODE) { |
| dat->stream.ctr = (ctr128_f)aes_hw_ctr32_encrypt_blocks; |
| } |
| } else if (bsaes_capable() && mode == EVP_CIPH_CTR_MODE) { |
| ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f)AES_encrypt; |
| dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks; |
| } else if (vpaes_capable()) { |
| ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f)vpaes_encrypt; |
| dat->stream.cbc = |
| mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL; |
| } else { |
| ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); |
| dat->block = (block128_f)AES_encrypt; |
| dat->stream.cbc = |
| mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL; |
| } |
| |
| if (ret < 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| if (dat->stream.cbc) { |
| (*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, ctx->encrypt); |
| } else if (ctx->encrypt) { |
| CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block); |
| } else { |
| CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block); |
| } |
| |
| return 1; |
| } |
| |
| static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| size_t bl = ctx->cipher->block_size; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| if (len < bl) { |
| return 1; |
| } |
| |
| len -= bl; |
| for (size_t i = 0; i <= len; i += bl) { |
| (*dat->block)(in + i, out + i, &dat->ks); |
| } |
| |
| return 1; |
| } |
| |
| static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| if (dat->stream.ctr) { |
| CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf, |
| &ctx->num, dat->stream.ctr); |
| } else { |
| CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &ctx->num, |
| dat->block); |
| } |
| return 1; |
| } |
| |
| static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num, dat->block); |
| return 1; |
| } |
| |
| static char aesni_capable(void); |
| |
| static ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx, |
| block128_f *out_block, const uint8_t *key, |
| size_t key_len) { |
| if (aesni_capable()) { |
| aesni_set_encrypt_key(key, key_len * 8, aes_key); |
| if (gcm_ctx != NULL) { |
| CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aesni_encrypt); |
| } |
| if (out_block) { |
| *out_block = (block128_f) aesni_encrypt; |
| } |
| return (ctr128_f)aesni_ctr32_encrypt_blocks; |
| } |
| |
| if (hwaes_capable()) { |
| aes_hw_set_encrypt_key(key, key_len * 8, aes_key); |
| if (gcm_ctx != NULL) { |
| CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aes_hw_encrypt); |
| } |
| if (out_block) { |
| *out_block = (block128_f) aes_hw_encrypt; |
| } |
| return (ctr128_f)aes_hw_ctr32_encrypt_blocks; |
| } |
| |
| if (bsaes_capable()) { |
| AES_set_encrypt_key(key, key_len * 8, aes_key); |
| if (gcm_ctx != NULL) { |
| CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); |
| } |
| if (out_block) { |
| *out_block = (block128_f) AES_encrypt; |
| } |
| return (ctr128_f)bsaes_ctr32_encrypt_blocks; |
| } |
| |
| if (vpaes_capable()) { |
| vpaes_set_encrypt_key(key, key_len * 8, aes_key); |
| if (out_block) { |
| *out_block = (block128_f) vpaes_encrypt; |
| } |
| if (gcm_ctx != NULL) { |
| CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt); |
| } |
| return NULL; |
| } |
| |
| AES_set_encrypt_key(key, key_len * 8, aes_key); |
| if (gcm_ctx != NULL) { |
| CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt); |
| } |
| if (out_block) { |
| *out_block = (block128_f) AES_encrypt; |
| } |
| return NULL; |
| } |
| |
| static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| const uint8_t *iv, int enc) { |
| EVP_AES_GCM_CTX *gctx = ctx->cipher_data; |
| if (!iv && !key) { |
| return 1; |
| } |
| if (key) { |
| gctx->ctr = |
| aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm, NULL, key, ctx->key_len); |
| /* If we have an iv can set it directly, otherwise use saved IV. */ |
| if (iv == NULL && gctx->iv_set) { |
| iv = gctx->iv; |
| } |
| if (iv) { |
| CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| } |
| gctx->key_set = 1; |
| } else { |
| /* If key set use IV, otherwise copy */ |
| if (gctx->key_set) { |
| CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); |
| } else { |
| OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen); |
| } |
| gctx->iv_set = 1; |
| gctx->iv_gen = 0; |
| } |
| return 1; |
| } |
| |
| static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) { |
| EVP_AES_GCM_CTX *gctx = c->cipher_data; |
| OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); |
| if (gctx->iv != c->iv) { |
| OPENSSL_free(gctx->iv); |
| } |
| } |
| |
| /* increment counter (64-bit int) by 1 */ |
| static void ctr64_inc(uint8_t *counter) { |
| int n = 8; |
| uint8_t c; |
| |
| do { |
| --n; |
| c = counter[n]; |
| ++c; |
| counter[n] = c; |
| if (c) { |
| return; |
| } |
| } while (n); |
| } |
| |
| static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { |
| EVP_AES_GCM_CTX *gctx = c->cipher_data; |
| switch (type) { |
| case EVP_CTRL_INIT: |
| gctx->key_set = 0; |
| gctx->iv_set = 0; |
| gctx->ivlen = c->cipher->iv_len; |
| gctx->iv = c->iv; |
| gctx->taglen = -1; |
| gctx->iv_gen = 0; |
| return 1; |
| |
| case EVP_CTRL_GCM_SET_IVLEN: |
| if (arg <= 0) { |
| return 0; |
| } |
| |
| /* Allocate memory for IV if needed */ |
| if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) { |
| if (gctx->iv != c->iv) { |
| OPENSSL_free(gctx->iv); |
| } |
| gctx->iv = OPENSSL_malloc(arg); |
| if (!gctx->iv) { |
| return 0; |
| } |
| } |
| gctx->ivlen = arg; |
| return 1; |
| |
| case EVP_CTRL_GCM_SET_TAG: |
| if (arg <= 0 || arg > 16 || c->encrypt) { |
| return 0; |
| } |
| OPENSSL_memcpy(c->buf, ptr, arg); |
| gctx->taglen = arg; |
| return 1; |
| |
| case EVP_CTRL_GCM_GET_TAG: |
| if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) { |
| return 0; |
| } |
| OPENSSL_memcpy(ptr, c->buf, arg); |
| return 1; |
| |
| case EVP_CTRL_GCM_SET_IV_FIXED: |
| /* Special case: -1 length restores whole IV */ |
| if (arg == -1) { |
| OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen); |
| gctx->iv_gen = 1; |
| return 1; |
| } |
| /* Fixed field must be at least 4 bytes and invocation field |
| * at least 8. */ |
| if (arg < 4 || (gctx->ivlen - arg) < 8) { |
| return 0; |
| } |
| if (arg) { |
| OPENSSL_memcpy(gctx->iv, ptr, arg); |
| } |
| if (c->encrypt && !RAND_bytes(gctx->iv + arg, gctx->ivlen - arg)) { |
| return 0; |
| } |
| gctx->iv_gen = 1; |
| return 1; |
| |
| case EVP_CTRL_GCM_IV_GEN: |
| if (gctx->iv_gen == 0 || gctx->key_set == 0) { |
| return 0; |
| } |
| CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); |
| if (arg <= 0 || arg > gctx->ivlen) { |
| arg = gctx->ivlen; |
| } |
| OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); |
| /* Invocation field will be at least 8 bytes in size and |
| * so no need to check wrap around or increment more than |
| * last 8 bytes. */ |
| ctr64_inc(gctx->iv + gctx->ivlen - 8); |
| gctx->iv_set = 1; |
| return 1; |
| |
| case EVP_CTRL_GCM_SET_IV_INV: |
| if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) { |
| return 0; |
| } |
| OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); |
| CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| return 1; |
| |
| case EVP_CTRL_COPY: { |
| EVP_CIPHER_CTX *out = ptr; |
| EVP_AES_GCM_CTX *gctx_out = out->cipher_data; |
| if (gctx->iv == c->iv) { |
| gctx_out->iv = out->iv; |
| } else { |
| gctx_out->iv = OPENSSL_malloc(gctx->ivlen); |
| if (!gctx_out->iv) { |
| return 0; |
| } |
| OPENSSL_memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); |
| } |
| return 1; |
| } |
| |
| default: |
| return -1; |
| } |
| } |
| |
| static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| EVP_AES_GCM_CTX *gctx = ctx->cipher_data; |
| |
| /* If not set up, return error */ |
| if (!gctx->key_set) { |
| return -1; |
| } |
| if (!gctx->iv_set) { |
| return -1; |
| } |
| |
| if (in) { |
| if (out == NULL) { |
| if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) { |
| return -1; |
| } |
| } else if (ctx->encrypt) { |
| if (gctx->ctr) { |
| if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, |
| gctx->ctr)) { |
| return -1; |
| } |
| } else { |
| if (!CRYPTO_gcm128_encrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { |
| return -1; |
| } |
| } |
| } else { |
| if (gctx->ctr) { |
| if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len, |
| gctx->ctr)) { |
| return -1; |
| } |
| } else { |
| if (!CRYPTO_gcm128_decrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) { |
| return -1; |
| } |
| } |
| } |
| return len; |
| } else { |
| if (!ctx->encrypt) { |
| if (gctx->taglen < 0 || |
| !CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen)) { |
| return -1; |
| } |
| gctx->iv_set = 0; |
| return 0; |
| } |
| CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); |
| gctx->taglen = 16; |
| /* Don't reuse the IV */ |
| gctx->iv_set = 0; |
| return 0; |
| } |
| } |
| |
| static const EVP_CIPHER aes_128_cbc = { |
| NID_aes_128_cbc, 16 /* block_size */, 16 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, |
| NULL /* app_data */, aes_init_key, aes_cbc_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aes_128_ctr = { |
| NID_aes_128_ctr, 1 /* block_size */, 16 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, |
| NULL /* app_data */, aes_init_key, aes_ctr_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aes_128_ecb = { |
| NID_aes_128_ecb, 16 /* block_size */, 16 /* key_size */, |
| 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, |
| NULL /* app_data */, aes_init_key, aes_ecb_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aes_128_ofb = { |
| NID_aes_128_ofb128, 1 /* block_size */, 16 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, |
| NULL /* app_data */, aes_init_key, aes_ofb_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aes_128_gcm = { |
| NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */, |
| sizeof(EVP_AES_GCM_CTX), |
| EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | |
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | |
| EVP_CIPH_FLAG_AEAD_CIPHER, |
| NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, |
| aes_gcm_ctrl}; |
| |
| |
| static const EVP_CIPHER aes_192_cbc = { |
| NID_aes_192_cbc, 16 /* block_size */, 24 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, |
| NULL /* app_data */, aes_init_key, aes_cbc_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aes_192_ctr = { |
| NID_aes_192_ctr, 1 /* block_size */, 24 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, |
| NULL /* app_data */, aes_init_key, aes_ctr_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aes_192_ecb = { |
| NID_aes_192_ecb, 16 /* block_size */, 24 /* key_size */, |
| 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, |
| NULL /* app_data */, aes_init_key, aes_ecb_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aes_192_gcm = { |
| NID_aes_192_gcm, 1 /* block_size */, 24 /* key_size */, 12 /* iv_len */, |
| sizeof(EVP_AES_GCM_CTX), |
| EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | |
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | |
| EVP_CIPH_FLAG_AEAD_CIPHER, |
| NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, |
| aes_gcm_ctrl}; |
| |
| |
| static const EVP_CIPHER aes_256_cbc = { |
| NID_aes_256_cbc, 16 /* block_size */, 32 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, |
| NULL /* app_data */, aes_init_key, aes_cbc_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aes_256_ctr = { |
| NID_aes_256_ctr, 1 /* block_size */, 32 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, |
| NULL /* app_data */, aes_init_key, aes_ctr_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aes_256_ecb = { |
| NID_aes_256_ecb, 16 /* block_size */, 32 /* key_size */, |
| 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, |
| NULL /* app_data */, aes_init_key, aes_ecb_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aes_256_ofb = { |
| NID_aes_256_ofb128, 1 /* block_size */, 32 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, |
| NULL /* app_data */, aes_init_key, aes_ofb_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aes_256_gcm = { |
| NID_aes_256_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */, |
| sizeof(EVP_AES_GCM_CTX), |
| EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | |
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | |
| EVP_CIPH_FLAG_AEAD_CIPHER, |
| NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, |
| aes_gcm_ctrl}; |
| |
| #if !defined(OPENSSL_NO_ASM) && \ |
| (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) |
| |
| /* AES-NI section. */ |
| |
| static char aesni_capable(void) { |
| return (OPENSSL_ia32cap_P[1] & (1 << (57 - 32))) != 0; |
| } |
| |
| static int aesni_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| const uint8_t *iv, int enc) { |
| int ret, mode; |
| EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; |
| |
| mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; |
| if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { |
| ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data); |
| dat->block = (block128_f)aesni_decrypt; |
| dat->stream.cbc = |
| mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL; |
| } else { |
| ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data); |
| dat->block = (block128_f)aesni_encrypt; |
| if (mode == EVP_CIPH_CBC_MODE) { |
| dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt; |
| } else if (mode == EVP_CIPH_CTR_MODE) { |
| dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; |
| } else { |
| dat->stream.cbc = NULL; |
| } |
| } |
| |
| if (ret < 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, |
| const uint8_t *in, size_t len) { |
| aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt); |
| |
| return 1; |
| } |
| |
| static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, |
| const uint8_t *in, size_t len) { |
| size_t bl = ctx->cipher->block_size; |
| |
| if (len < bl) { |
| return 1; |
| } |
| |
| aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt); |
| |
| return 1; |
| } |
| |
| static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| const uint8_t *iv, int enc) { |
| EVP_AES_GCM_CTX *gctx = ctx->cipher_data; |
| if (!iv && !key) { |
| return 1; |
| } |
| if (key) { |
| aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt); |
| gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks; |
| /* If we have an iv can set it directly, otherwise use |
| * saved IV. */ |
| if (iv == NULL && gctx->iv_set) { |
| iv = gctx->iv; |
| } |
| if (iv) { |
| CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); |
| gctx->iv_set = 1; |
| } |
| gctx->key_set = 1; |
| } else { |
| /* If key set use IV, otherwise copy */ |
| if (gctx->key_set) { |
| CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen); |
| } else { |
| OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen); |
| } |
| gctx->iv_set = 1; |
| gctx->iv_gen = 0; |
| } |
| return 1; |
| } |
| |
| static const EVP_CIPHER aesni_128_cbc = { |
| NID_aes_128_cbc, 16 /* block_size */, 16 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, |
| NULL /* app_data */, aesni_init_key, aesni_cbc_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aesni_128_ctr = { |
| NID_aes_128_ctr, 1 /* block_size */, 16 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, |
| NULL /* app_data */, aesni_init_key, aes_ctr_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aesni_128_ecb = { |
| NID_aes_128_ecb, 16 /* block_size */, 16 /* key_size */, |
| 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, |
| NULL /* app_data */, aesni_init_key, aesni_ecb_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aesni_128_ofb = { |
| NID_aes_128_ofb128, 1 /* block_size */, 16 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, |
| NULL /* app_data */, aesni_init_key, aes_ofb_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aesni_128_gcm = { |
| NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */, |
| sizeof(EVP_AES_GCM_CTX), |
| EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | |
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | |
| EVP_CIPH_FLAG_AEAD_CIPHER, |
| NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, |
| aes_gcm_ctrl}; |
| |
| |
| static const EVP_CIPHER aesni_192_cbc = { |
| NID_aes_192_cbc, 16 /* block_size */, 24 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, |
| NULL /* app_data */, aesni_init_key, aesni_cbc_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aesni_192_ctr = { |
| NID_aes_192_ctr, 1 /* block_size */, 24 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, |
| NULL /* app_data */, aesni_init_key, aes_ctr_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aesni_192_ecb = { |
| NID_aes_192_ecb, 16 /* block_size */, 24 /* key_size */, |
| 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, |
| NULL /* app_data */, aesni_init_key, aesni_ecb_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aesni_192_gcm = { |
| NID_aes_192_gcm, 1 /* block_size */, 24 /* key_size */, 12 /* iv_len */, |
| sizeof(EVP_AES_GCM_CTX), |
| EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | |
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | |
| EVP_CIPH_FLAG_AEAD_CIPHER, |
| NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, |
| aes_gcm_ctrl}; |
| |
| |
| static const EVP_CIPHER aesni_256_cbc = { |
| NID_aes_256_cbc, 16 /* block_size */, 32 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE, |
| NULL /* app_data */, aesni_init_key, aesni_cbc_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aesni_256_ctr = { |
| NID_aes_256_ctr, 1 /* block_size */, 32 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE, |
| NULL /* app_data */, aesni_init_key, aes_ctr_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aesni_256_ecb = { |
| NID_aes_256_ecb, 16 /* block_size */, 32 /* key_size */, |
| 0 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE, |
| NULL /* app_data */, aesni_init_key, aesni_ecb_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aesni_256_ofb = { |
| NID_aes_256_ofb128, 1 /* block_size */, 32 /* key_size */, |
| 16 /* iv_len */, sizeof(EVP_AES_KEY), EVP_CIPH_OFB_MODE, |
| NULL /* app_data */, aesni_init_key, aes_ofb_cipher, |
| NULL /* cleanup */, NULL /* ctrl */}; |
| |
| static const EVP_CIPHER aesni_256_gcm = { |
| NID_aes_256_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */, |
| sizeof(EVP_AES_GCM_CTX), |
| EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | |
| EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY | |
| EVP_CIPH_FLAG_AEAD_CIPHER, |
| NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup, |
| aes_gcm_ctrl}; |
| |
| #define EVP_CIPHER_FUNCTION(keybits, mode) \ |
| const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \ |
| if (aesni_capable()) { \ |
| return &aesni_##keybits##_##mode; \ |
| } else { \ |
| return &aes_##keybits##_##mode; \ |
| } \ |
| } |
| |
| #else /* ^^^ OPENSSL_X86_64 || OPENSSL_X86 */ |
| |
| static char aesni_capable(void) { |
| return 0; |
| } |
| |
| #define EVP_CIPHER_FUNCTION(keybits, mode) \ |
| const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \ |
| return &aes_##keybits##_##mode; \ |
| } |
| |
| #endif |
| |
| EVP_CIPHER_FUNCTION(128, cbc) |
| EVP_CIPHER_FUNCTION(128, ctr) |
| EVP_CIPHER_FUNCTION(128, ecb) |
| EVP_CIPHER_FUNCTION(128, ofb) |
| EVP_CIPHER_FUNCTION(128, gcm) |
| |
| EVP_CIPHER_FUNCTION(192, cbc) |
| EVP_CIPHER_FUNCTION(192, ctr) |
| EVP_CIPHER_FUNCTION(192, ecb) |
| EVP_CIPHER_FUNCTION(192, gcm) |
| |
| EVP_CIPHER_FUNCTION(256, cbc) |
| EVP_CIPHER_FUNCTION(256, ctr) |
| EVP_CIPHER_FUNCTION(256, ecb) |
| EVP_CIPHER_FUNCTION(256, ofb) |
| EVP_CIPHER_FUNCTION(256, gcm) |
| |
| |
| #define EVP_AEAD_AES_GCM_TAG_LEN 16 |
| |
| struct aead_aes_gcm_ctx { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; |
| GCM128_CONTEXT gcm; |
| ctr128_f ctr; |
| uint8_t tag_len; |
| }; |
| |
| static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| struct aead_aes_gcm_ctx *gcm_ctx; |
| const size_t key_bits = key_len * 8; |
| |
| if (key_bits != 128 && key_bits != 256) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; /* EVP_AEAD_CTX_init should catch this. */ |
| } |
| |
| if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| tag_len = EVP_AEAD_AES_GCM_TAG_LEN; |
| } |
| |
| if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
| return 0; |
| } |
| |
| gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_ctx)); |
| if (gcm_ctx == NULL) { |
| return 0; |
| } |
| |
| gcm_ctx->ctr = |
| aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, NULL, key, key_len); |
| gcm_ctx->tag_len = tag_len; |
| ctx->aead_state = gcm_ctx; |
| |
| return 1; |
| } |
| |
| static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) { |
| struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; |
| OPENSSL_cleanse(gcm_ctx, sizeof(struct aead_aes_gcm_ctx)); |
| OPENSSL_free(gcm_ctx); |
| } |
| |
| static int aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| size_t *out_len, size_t max_out_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; |
| GCM128_CONTEXT gcm; |
| |
| if (in_len + gcm_ctx->tag_len < in_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| if (max_out_len < in_len + gcm_ctx->tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| const AES_KEY *key = &gcm_ctx->ks.ks; |
| |
| OPENSSL_memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); |
| CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); |
| |
| if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { |
| return 0; |
| } |
| |
| if (gcm_ctx->ctr) { |
| if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, in, out, in_len, |
| gcm_ctx->ctr)) { |
| return 0; |
| } |
| } else { |
| if (!CRYPTO_gcm128_encrypt(&gcm, key, in, out, in_len)) { |
| return 0; |
| } |
| } |
| |
| CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len); |
| *out_len = in_len + gcm_ctx->tag_len; |
| return 1; |
| } |
| |
| static int aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| size_t *out_len, size_t max_out_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state; |
| uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN]; |
| size_t plaintext_len; |
| GCM128_CONTEXT gcm; |
| |
| if (in_len < gcm_ctx->tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| plaintext_len = in_len - gcm_ctx->tag_len; |
| |
| if (max_out_len < plaintext_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| const AES_KEY *key = &gcm_ctx->ks.ks; |
| |
| OPENSSL_memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm)); |
| CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len); |
| |
| if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) { |
| return 0; |
| } |
| |
| if (gcm_ctx->ctr) { |
| if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, key, in, out, |
| in_len - gcm_ctx->tag_len, gcm_ctx->ctr)) { |
| return 0; |
| } |
| } else { |
| if (!CRYPTO_gcm128_decrypt(&gcm, key, in, out, in_len - gcm_ctx->tag_len)) { |
| return 0; |
| } |
| } |
| |
| CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len); |
| if (CRYPTO_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| *out_len = plaintext_len; |
| return 1; |
| } |
| |
| static const EVP_AEAD aead_aes_128_gcm = { |
| 16, /* key len */ |
| 12, /* nonce len */ |
| EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */ |
| EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */ |
| aead_aes_gcm_init, |
| NULL, /* init_with_direction */ |
| aead_aes_gcm_cleanup, |
| aead_aes_gcm_seal, |
| aead_aes_gcm_open, |
| NULL, /* get_iv */ |
| }; |
| |
| static const EVP_AEAD aead_aes_256_gcm = { |
| 32, /* key len */ |
| 12, /* nonce len */ |
| EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */ |
| EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */ |
| aead_aes_gcm_init, |
| NULL, /* init_with_direction */ |
| aead_aes_gcm_cleanup, |
| aead_aes_gcm_seal, |
| aead_aes_gcm_open, |
| NULL, /* get_iv */ |
| }; |
| |
| const EVP_AEAD *EVP_aead_aes_128_gcm(void) { return &aead_aes_128_gcm; } |
| |
| const EVP_AEAD *EVP_aead_aes_256_gcm(void) { return &aead_aes_256_gcm; } |
| |
| |
| #define EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN SHA256_DIGEST_LENGTH |
| #define EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN 12 |
| |
| struct aead_aes_ctr_hmac_sha256_ctx { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; |
| ctr128_f ctr; |
| block128_f block; |
| SHA256_CTX inner_init_state; |
| SHA256_CTX outer_init_state; |
| uint8_t tag_len; |
| }; |
| |
| static void hmac_init(SHA256_CTX *out_inner, SHA256_CTX *out_outer, |
| const uint8_t hmac_key[32]) { |
| static const size_t hmac_key_len = 32; |
| uint8_t block[SHA256_CBLOCK]; |
| OPENSSL_memcpy(block, hmac_key, hmac_key_len); |
| OPENSSL_memset(block + hmac_key_len, 0x36, sizeof(block) - hmac_key_len); |
| |
| unsigned i; |
| for (i = 0; i < hmac_key_len; i++) { |
| block[i] ^= 0x36; |
| } |
| |
| SHA256_Init(out_inner); |
| SHA256_Update(out_inner, block, sizeof(block)); |
| |
| OPENSSL_memset(block + hmac_key_len, 0x5c, sizeof(block) - hmac_key_len); |
| for (i = 0; i < hmac_key_len; i++) { |
| block[i] ^= (0x36 ^ 0x5c); |
| } |
| |
| SHA256_Init(out_outer); |
| SHA256_Update(out_outer, block, sizeof(block)); |
| } |
| |
| static int aead_aes_ctr_hmac_sha256_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx; |
| static const size_t hmac_key_len = 32; |
| |
| if (key_len < hmac_key_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; /* EVP_AEAD_CTX_init should catch this. */ |
| } |
| |
| const size_t aes_key_len = key_len - hmac_key_len; |
| if (aes_key_len != 16 && aes_key_len != 32) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; /* EVP_AEAD_CTX_init should catch this. */ |
| } |
| |
| if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| tag_len = EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN; |
| } |
| |
| if (tag_len > EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
| return 0; |
| } |
| |
| aes_ctx = OPENSSL_malloc(sizeof(struct aead_aes_ctr_hmac_sha256_ctx)); |
| if (aes_ctx == NULL) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| aes_ctx->ctr = |
| aes_ctr_set_key(&aes_ctx->ks.ks, NULL, &aes_ctx->block, key, aes_key_len); |
| aes_ctx->tag_len = tag_len; |
| hmac_init(&aes_ctx->inner_init_state, &aes_ctx->outer_init_state, |
| key + aes_key_len); |
| |
| ctx->aead_state = aes_ctx; |
| |
| return 1; |
| } |
| |
| static void aead_aes_ctr_hmac_sha256_cleanup(EVP_AEAD_CTX *ctx) { |
| struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state; |
| OPENSSL_cleanse(aes_ctx, sizeof(struct aead_aes_ctr_hmac_sha256_ctx)); |
| OPENSSL_free(aes_ctx); |
| } |
| |
| static void hmac_update_uint64(SHA256_CTX *sha256, uint64_t value) { |
| unsigned i; |
| uint8_t bytes[8]; |
| |
| for (i = 0; i < sizeof(bytes); i++) { |
| bytes[i] = value & 0xff; |
| value >>= 8; |
| } |
| SHA256_Update(sha256, bytes, sizeof(bytes)); |
| } |
| |
| static void hmac_calculate(uint8_t out[SHA256_DIGEST_LENGTH], |
| const SHA256_CTX *inner_init_state, |
| const SHA256_CTX *outer_init_state, |
| const uint8_t *ad, size_t ad_len, |
| const uint8_t *nonce, const uint8_t *ciphertext, |
| size_t ciphertext_len) { |
| SHA256_CTX sha256; |
| OPENSSL_memcpy(&sha256, inner_init_state, sizeof(sha256)); |
| hmac_update_uint64(&sha256, ad_len); |
| hmac_update_uint64(&sha256, ciphertext_len); |
| SHA256_Update(&sha256, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN); |
| SHA256_Update(&sha256, ad, ad_len); |
| |
| /* Pad with zeros to the end of the SHA-256 block. */ |
| const unsigned num_padding = |
| (SHA256_CBLOCK - ((sizeof(uint64_t)*2 + |
| EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN + ad_len) % |
| SHA256_CBLOCK)) % |
| SHA256_CBLOCK; |
| uint8_t padding[SHA256_CBLOCK]; |
| OPENSSL_memset(padding, 0, num_padding); |
| SHA256_Update(&sha256, padding, num_padding); |
| |
| SHA256_Update(&sha256, ciphertext, ciphertext_len); |
| |
| uint8_t inner_digest[SHA256_DIGEST_LENGTH]; |
| SHA256_Final(inner_digest, &sha256); |
| |
| OPENSSL_memcpy(&sha256, outer_init_state, sizeof(sha256)); |
| SHA256_Update(&sha256, inner_digest, sizeof(inner_digest)); |
| SHA256_Final(out, &sha256); |
| } |
| |
| static void aead_aes_ctr_hmac_sha256_crypt( |
| const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx, uint8_t *out, |
| const uint8_t *in, size_t len, const uint8_t *nonce) { |
| /* Since the AEAD operation is one-shot, keeping a buffer of unused keystream |
| * bytes is pointless. However, |CRYPTO_ctr128_encrypt| requires it. */ |
| uint8_t partial_block_buffer[AES_BLOCK_SIZE]; |
| unsigned partial_block_offset = 0; |
| OPENSSL_memset(partial_block_buffer, 0, sizeof(partial_block_buffer)); |
| |
| uint8_t counter[AES_BLOCK_SIZE]; |
| OPENSSL_memcpy(counter, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN); |
| OPENSSL_memset(counter + EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN, 0, 4); |
| |
| if (aes_ctx->ctr) { |
| CRYPTO_ctr128_encrypt_ctr32(in, out, len, &aes_ctx->ks.ks, counter, |
| partial_block_buffer, &partial_block_offset, |
| aes_ctx->ctr); |
| } else { |
| CRYPTO_ctr128_encrypt(in, out, len, &aes_ctx->ks.ks, counter, |
| partial_block_buffer, &partial_block_offset, |
| aes_ctx->block); |
| } |
| } |
| |
| static int aead_aes_ctr_hmac_sha256_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| size_t *out_len, size_t max_out_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state; |
| const uint64_t in_len_64 = in_len; |
| |
| if (in_len + aes_ctx->tag_len < in_len || |
| /* This input is so large it would overflow the 32-bit block counter. */ |
| in_len_64 >= (UINT64_C(1) << 32) * AES_BLOCK_SIZE) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| if (max_out_len < in_len + aes_ctx->tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (nonce_len != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| return 0; |
| } |
| |
| aead_aes_ctr_hmac_sha256_crypt(aes_ctx, out, in, in_len, nonce); |
| |
| uint8_t hmac_result[SHA256_DIGEST_LENGTH]; |
| hmac_calculate(hmac_result, &aes_ctx->inner_init_state, |
| &aes_ctx->outer_init_state, ad, ad_len, nonce, out, in_len); |
| OPENSSL_memcpy(out + in_len, hmac_result, aes_ctx->tag_len); |
| *out_len = in_len + aes_ctx->tag_len; |
| |
| return 1; |
| } |
| |
| static int aead_aes_ctr_hmac_sha256_open(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| size_t *out_len, size_t max_out_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = ctx->aead_state; |
| size_t plaintext_len; |
| |
| if (in_len < aes_ctx->tag_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| plaintext_len = in_len - aes_ctx->tag_len; |
| |
| if (max_out_len < plaintext_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (nonce_len != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| return 0; |
| } |
| |
| uint8_t hmac_result[SHA256_DIGEST_LENGTH]; |
| hmac_calculate(hmac_result, &aes_ctx->inner_init_state, |
| &aes_ctx->outer_init_state, ad, ad_len, nonce, in, |
| plaintext_len); |
| if (CRYPTO_memcmp(hmac_result, in + plaintext_len, aes_ctx->tag_len) != 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| aead_aes_ctr_hmac_sha256_crypt(aes_ctx, out, in, plaintext_len, nonce); |
| |
| *out_len = plaintext_len; |
| return 1; |
| } |
| |
| static const EVP_AEAD aead_aes_128_ctr_hmac_sha256 = { |
| 16 /* AES key */ + 32 /* HMAC key */, |
| 12, /* nonce length */ |
| EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* overhead */ |
| EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* max tag length */ |
| |
| aead_aes_ctr_hmac_sha256_init, |
| NULL /* init_with_direction */, |
| aead_aes_ctr_hmac_sha256_cleanup, |
| aead_aes_ctr_hmac_sha256_seal, |
| aead_aes_ctr_hmac_sha256_open, |
| NULL /* get_iv */, |
| }; |
| |
| static const EVP_AEAD aead_aes_256_ctr_hmac_sha256 = { |
| 32 /* AES key */ + 32 /* HMAC key */, |
| 12, /* nonce length */ |
| EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* overhead */ |
| EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, /* max tag length */ |
| |
| aead_aes_ctr_hmac_sha256_init, |
| NULL /* init_with_direction */, |
| aead_aes_ctr_hmac_sha256_cleanup, |
| aead_aes_ctr_hmac_sha256_seal, |
| aead_aes_ctr_hmac_sha256_open, |
| NULL /* get_iv */, |
| }; |
| |
| const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void) { |
| return &aead_aes_128_ctr_hmac_sha256; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void) { |
| return &aead_aes_256_ctr_hmac_sha256; |
| } |
| |
| #if !defined(OPENSSL_SMALL) |
| |
| #define EVP_AEAD_AES_GCM_SIV_NONCE_LEN 12 |
| #define EVP_AEAD_AES_GCM_SIV_TAG_LEN 16 |
| |
| struct aead_aes_gcm_siv_ctx { |
| union { |
| double align; |
| AES_KEY ks; |
| } ks; |
| block128_f kgk_block; |
| unsigned is_256:1; |
| }; |
| |
| static int aead_aes_gcm_siv_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| const size_t key_bits = key_len * 8; |
| |
| if (key_bits != 128 && key_bits != 256) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; /* EVP_AEAD_CTX_init should catch this. */ |
| } |
| |
| if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { |
| tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
| } |
| |
| if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); |
| return 0; |
| } |
| |
| struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = |
| OPENSSL_malloc(sizeof(struct aead_aes_gcm_siv_ctx)); |
| if (gcm_siv_ctx == NULL) { |
| return 0; |
| } |
| OPENSSL_memset(gcm_siv_ctx, 0, sizeof(struct aead_aes_gcm_siv_ctx)); |
| |
| if (aesni_capable()) { |
| aesni_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); |
| gcm_siv_ctx->kgk_block = (block128_f)aesni_encrypt; |
| } else if (hwaes_capable()) { |
| aes_hw_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); |
| gcm_siv_ctx->kgk_block = (block128_f)aes_hw_encrypt; |
| } else if (vpaes_capable()) { |
| vpaes_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); |
| gcm_siv_ctx->kgk_block = (block128_f)vpaes_encrypt; |
| } else { |
| AES_set_encrypt_key(key, key_len * 8, &gcm_siv_ctx->ks.ks); |
| gcm_siv_ctx->kgk_block = (block128_f)AES_encrypt; |
| } |
| |
| gcm_siv_ctx->is_256 = (key_len == 32); |
| ctx->aead_state = gcm_siv_ctx; |
| |
| return 1; |
| } |
| |
| static void aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX *ctx) { |
| struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state; |
| OPENSSL_cleanse(gcm_siv_ctx, sizeof(struct aead_aes_gcm_siv_ctx)); |
| OPENSSL_free(gcm_siv_ctx); |
| } |
| |
| /* gcm_siv_crypt encrypts (or decrypts—it's the same thing) |in_len| bytes from |
| * |in| to |out|, using the block function |enc_block| with |key| in counter |
| * mode, starting at |initial_counter|. This differs from the traditional |
| * counter mode code in that the counter is handled little-endian, only the |
| * first four bytes are used and the GCM-SIV tweak to the final byte is |
| * applied. The |in| and |out| pointers may be equal but otherwise must not |
| * alias. */ |
| static void gcm_siv_crypt(uint8_t *out, const uint8_t *in, size_t in_len, |
| const uint8_t initial_counter[AES_BLOCK_SIZE], |
| block128_f enc_block, const AES_KEY *key) { |
| union { |
| uint32_t w[4]; |
| uint8_t c[16]; |
| } counter; |
| |
| OPENSSL_memcpy(counter.c, initial_counter, AES_BLOCK_SIZE); |
| counter.c[15] |= 0x80; |
| |
| for (size_t done = 0; done < in_len;) { |
| uint8_t keystream[AES_BLOCK_SIZE]; |
| enc_block(counter.c, keystream, key); |
| counter.w[0]++; |
| |
| size_t todo = AES_BLOCK_SIZE; |
| if (in_len - done < todo) { |
| todo = in_len - done; |
| } |
| |
| for (size_t i = 0; i < todo; i++) { |
| out[done + i] = keystream[i] ^ in[done + i]; |
| } |
| |
| done += todo; |
| } |
| } |
| |
| /* gcm_siv_polyval evaluates POLYVAL at |auth_key| on the given plaintext and |
| * AD. The result is written to |out_tag|. */ |
| static void gcm_siv_polyval( |
| uint8_t out_tag[16], const uint8_t *in, size_t in_len, const uint8_t *ad, |
| size_t ad_len, const uint8_t auth_key[16], |
| const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) { |
| struct polyval_ctx polyval_ctx; |
| CRYPTO_POLYVAL_init(&polyval_ctx, auth_key); |
| |
| CRYPTO_POLYVAL_update_blocks(&polyval_ctx, ad, ad_len & ~15); |
| |
| uint8_t scratch[16]; |
| if (ad_len & 15) { |
| OPENSSL_memset(scratch, 0, sizeof(scratch)); |
| OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); |
| CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); |
| } |
| |
| CRYPTO_POLYVAL_update_blocks(&polyval_ctx, in, in_len & ~15); |
| if (in_len & 15) { |
| OPENSSL_memset(scratch, 0, sizeof(scratch)); |
| OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15); |
| CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); |
| } |
| |
| union { |
| uint8_t c[16]; |
| struct { |
| uint64_t ad; |
| uint64_t in; |
| } bitlens; |
| } length_block; |
| |
| length_block.bitlens.ad = ad_len * 8; |
| length_block.bitlens.in = in_len * 8; |
| CRYPTO_POLYVAL_update_blocks(&polyval_ctx, length_block.c, |
| sizeof(length_block)); |
| |
| CRYPTO_POLYVAL_finish(&polyval_ctx, out_tag); |
| for (size_t i = 0; i < EVP_AEAD_AES_GCM_SIV_NONCE_LEN; i++) { |
| out_tag[i] ^= nonce[i]; |
| } |
| out_tag[15] &= 0x7f; |
| } |
| |
| /* gcm_siv_record_keys contains the keys used for a specific GCM-SIV record. */ |
| struct gcm_siv_record_keys { |
| uint8_t auth_key[16]; |
| union { |
| double align; |
| AES_KEY ks; |
| } enc_key; |
| block128_f enc_block; |
| }; |
| |
| /* gcm_siv_keys calculates the keys for a specific GCM-SIV record with the |
| * given nonce and writes them to |*out_keys|. */ |
| static void gcm_siv_keys( |
| const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx, |
| struct gcm_siv_record_keys *out_keys, |
| const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) { |
| const AES_KEY *const key = &gcm_siv_ctx->ks.ks; |
| uint8_t key_material[(128 /* POLYVAL key */ + 256 /* max AES key */) / 8]; |
| const size_t blocks_needed = gcm_siv_ctx->is_256 ? 6 : 4; |
| |
| uint8_t counter[AES_BLOCK_SIZE]; |
| OPENSSL_memset(counter, 0, AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN); |
| OPENSSL_memcpy(counter + AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN, |
| nonce, EVP_AEAD_AES_GCM_SIV_NONCE_LEN); |
| for (size_t i = 0; i < blocks_needed; i++) { |
| counter[0] = i; |
| |
| uint8_t ciphertext[AES_BLOCK_SIZE]; |
| gcm_siv_ctx->kgk_block(counter, ciphertext, key); |
| OPENSSL_memcpy(&key_material[i * 8], ciphertext, 8); |
| } |
| |
| OPENSSL_memcpy(out_keys->auth_key, key_material, 16); |
| aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block, |
| key_material + 16, gcm_siv_ctx->is_256 ? 32 : 16); |
| } |
| |
| static int aead_aes_gcm_siv_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| size_t *out_len, size_t max_out_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state; |
| const uint64_t in_len_64 = in_len; |
| const uint64_t ad_len_64 = ad_len; |
| |
| if (in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN < in_len || |
| in_len_64 > (UINT64_C(1) << 36) || |
| ad_len_64 >= (UINT64_C(1) << 61)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| if (max_out_len < in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| return 0; |
| } |
| |
| struct gcm_siv_record_keys keys; |
| gcm_siv_keys(gcm_siv_ctx, &keys, nonce); |
| |
| uint8_t tag[16]; |
| gcm_siv_polyval(tag, in, in_len, ad, ad_len, keys.auth_key, nonce); |
| keys.enc_block(tag, tag, &keys.enc_key.ks); |
| |
| gcm_siv_crypt(out, in, in_len, tag, keys.enc_block, &keys.enc_key.ks); |
| |
| OPENSSL_memcpy(&out[in_len], tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN); |
| *out_len = in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
| |
| return 1; |
| } |
| |
| static int aead_aes_gcm_siv_open(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| size_t *out_len, size_t max_out_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| const uint64_t ad_len_64 = ad_len; |
| if (ad_len_64 >= (UINT64_C(1) << 61)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| const uint64_t in_len_64 = in_len; |
| if (in_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN || |
| in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); |
| return 0; |
| } |
| |
| const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = ctx->aead_state; |
| const size_t plaintext_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN; |
| |
| if (max_out_len < plaintext_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| struct gcm_siv_record_keys keys; |
| gcm_siv_keys(gcm_siv_ctx, &keys, nonce); |
| |
| gcm_siv_crypt(out, in, plaintext_len, &in[plaintext_len], keys.enc_block, |
| &keys.enc_key.ks); |
| |
| uint8_t expected_tag[EVP_AEAD_AES_GCM_SIV_TAG_LEN]; |
| gcm_siv_polyval(expected_tag, out, plaintext_len, ad, ad_len, keys.auth_key, |
| nonce); |
| keys.enc_block(expected_tag, expected_tag, &keys.enc_key.ks); |
| |
| if (CRYPTO_memcmp(expected_tag, &in[plaintext_len], sizeof(expected_tag)) != |
| 0) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| *out_len = plaintext_len; |
| return 1; |
| } |
| |
| static const EVP_AEAD aead_aes_128_gcm_siv = { |
| 16, /* key length */ |
| EVP_AEAD_AES_GCM_SIV_NONCE_LEN, /* nonce length */ |
| EVP_AEAD_AES_GCM_SIV_TAG_LEN, /* overhead */ |
| EVP_AEAD_AES_GCM_SIV_TAG_LEN, /* max tag length */ |
| |
| aead_aes_gcm_siv_init, |
| NULL /* init_with_direction */, |
| aead_aes_gcm_siv_cleanup, |
| aead_aes_gcm_siv_seal, |
| aead_aes_gcm_siv_open, |
| NULL /* get_iv */, |
| }; |
| |
| static const EVP_AEAD aead_aes_256_gcm_siv = { |
| 32, /* key length */ |
| EVP_AEAD_AES_GCM_SIV_NONCE_LEN, /* nonce length */ |
| EVP_AEAD_AES_GCM_SIV_TAG_LEN, /* overhead */ |
| EVP_AEAD_AES_GCM_SIV_TAG_LEN, /* max tag length */ |
| |
| aead_aes_gcm_siv_init, |
| NULL /* init_with_direction */, |
| aead_aes_gcm_siv_cleanup, |
| aead_aes_gcm_siv_seal, |
| aead_aes_gcm_siv_open, |
| NULL /* get_iv */, |
| }; |
| |
| const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) { |
| return &aead_aes_128_gcm_siv; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) { |
| return &aead_aes_256_gcm_siv; |
| } |
| |
| #endif /* !OPENSSL_SMALL */ |
| |
| int EVP_has_aes_hardware(void) { |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| return aesni_capable() && crypto_gcm_clmul_enabled(); |
| #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
| return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable(); |
| #else |
| return 0; |
| #endif |
| } |