| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
 |  * All rights reserved. | 
 |  * | 
 |  * This package is an SSL implementation written | 
 |  * by Eric Young (eay@cryptsoft.com). | 
 |  * The implementation was written so as to conform with Netscapes SSL. | 
 |  * | 
 |  * This library is free for commercial and non-commercial use as long as | 
 |  * the following conditions are aheared to.  The following conditions | 
 |  * apply to all code found in this distribution, be it the RC4, RSA, | 
 |  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
 |  * included with this distribution is covered by the same copyright terms | 
 |  * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  * Copyright remains Eric Young's, and as such any Copyright notices in | 
 |  * the code are not to be removed. | 
 |  * If this package is used in a product, Eric Young should be given attribution | 
 |  * as the author of the parts of the library used. | 
 |  * This can be in the form of a textual message at program startup or | 
 |  * in documentation (online or textual) provided with the package. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. All advertising materials mentioning features or use of this software | 
 |  *    must display the following acknowledgement: | 
 |  *    "This product includes cryptographic software written by | 
 |  *     Eric Young (eay@cryptsoft.com)" | 
 |  *    The word 'cryptographic' can be left out if the rouines from the library | 
 |  *    being used are not cryptographic related :-). | 
 |  * 4. If you include any Windows specific code (or a derivative thereof) from | 
 |  *    the apps directory (application code) you must include an acknowledgement: | 
 |  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
 |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
 |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
 |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
 |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  * | 
 |  * The licence and distribution terms for any publically available version or | 
 |  * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
 |  * copied and put under another distribution licence | 
 |  * [including the GNU Public Licence.] | 
 |  */ | 
 | /* ==================================================================== | 
 |  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    openssl-core@openssl.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== | 
 |  * | 
 |  * This product includes cryptographic software written by Eric Young | 
 |  * (eay@cryptsoft.com).  This product includes software written by Tim | 
 |  * Hudson (tjh@cryptsoft.com). */ | 
 |  | 
 | #include <openssl/bn.h> | 
 |  | 
 | #include <assert.h> | 
 |  | 
 | #include <openssl/err.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) { | 
 |   BIGNUM *t; | 
 |   int shifts = 0; | 
 |  | 
 |   /* 0 <= b <= a */ | 
 |   while (!BN_is_zero(b)) { | 
 |     /* 0 < b <= a */ | 
 |  | 
 |     if (BN_is_odd(a)) { | 
 |       if (BN_is_odd(b)) { | 
 |         if (!BN_sub(a, a, b)) { | 
 |           goto err; | 
 |         } | 
 |         if (!BN_rshift1(a, a)) { | 
 |           goto err; | 
 |         } | 
 |         if (BN_cmp(a, b) < 0) { | 
 |           t = a; | 
 |           a = b; | 
 |           b = t; | 
 |         } | 
 |       } else { | 
 |         /* a odd - b even */ | 
 |         if (!BN_rshift1(b, b)) { | 
 |           goto err; | 
 |         } | 
 |         if (BN_cmp(a, b) < 0) { | 
 |           t = a; | 
 |           a = b; | 
 |           b = t; | 
 |         } | 
 |       } | 
 |     } else { | 
 |       /* a is even */ | 
 |       if (BN_is_odd(b)) { | 
 |         if (!BN_rshift1(a, a)) { | 
 |           goto err; | 
 |         } | 
 |         if (BN_cmp(a, b) < 0) { | 
 |           t = a; | 
 |           a = b; | 
 |           b = t; | 
 |         } | 
 |       } else { | 
 |         /* a even - b even */ | 
 |         if (!BN_rshift1(a, a)) { | 
 |           goto err; | 
 |         } | 
 |         if (!BN_rshift1(b, b)) { | 
 |           goto err; | 
 |         } | 
 |         shifts++; | 
 |       } | 
 |     } | 
 |     /* 0 <= b <= a */ | 
 |   } | 
 |  | 
 |   if (shifts) { | 
 |     if (!BN_lshift(a, a, shifts)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   return a; | 
 |  | 
 | err: | 
 |   return NULL; | 
 | } | 
 |  | 
 | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) { | 
 |   BIGNUM *a, *b, *t; | 
 |   int ret = 0; | 
 |  | 
 |   BN_CTX_start(ctx); | 
 |   a = BN_CTX_get(ctx); | 
 |   b = BN_CTX_get(ctx); | 
 |  | 
 |   if (a == NULL || b == NULL) { | 
 |     goto err; | 
 |   } | 
 |   if (BN_copy(a, in_a) == NULL) { | 
 |     goto err; | 
 |   } | 
 |   if (BN_copy(b, in_b) == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   a->neg = 0; | 
 |   b->neg = 0; | 
 |  | 
 |   if (BN_cmp(a, b) < 0) { | 
 |     t = a; | 
 |     a = b; | 
 |     b = t; | 
 |   } | 
 |   t = euclid(a, b); | 
 |   if (t == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   if (BN_copy(r, t) == NULL) { | 
 |     goto err; | 
 |   } | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   BN_CTX_end(ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | /* solves ax == 1 (mod n) */ | 
 | static int bn_mod_inverse_general(BIGNUM *out, int *out_no_inverse, | 
 |                                   const BIGNUM *a, const BIGNUM *n, | 
 |                                   BN_CTX *ctx); | 
 |  | 
 | int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, | 
 |                        const BIGNUM *n, BN_CTX *ctx) { | 
 |   *out_no_inverse = 0; | 
 |  | 
 |   if (!BN_is_odd(n)) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (BN_is_negative(a) || BN_cmp(a, n) >= 0) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   BIGNUM *A, *B, *X, *Y; | 
 |   int ret = 0; | 
 |   int sign; | 
 |  | 
 |   BN_CTX_start(ctx); | 
 |   A = BN_CTX_get(ctx); | 
 |   B = BN_CTX_get(ctx); | 
 |   X = BN_CTX_get(ctx); | 
 |   Y = BN_CTX_get(ctx); | 
 |   if (Y == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   BIGNUM *R = out; | 
 |  | 
 |   BN_zero(Y); | 
 |   if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) { | 
 |     goto err; | 
 |   } | 
 |   A->neg = 0; | 
 |   sign = -1; | 
 |   /* From  B = a mod |n|,  A = |n|  it follows that | 
 |    * | 
 |    *      0 <= B < A, | 
 |    *     -sign*X*a  ==  B   (mod |n|), | 
 |    *      sign*Y*a  ==  A   (mod |n|). | 
 |    */ | 
 |  | 
 |   /* Binary inversion algorithm; requires odd modulus. This is faster than the | 
 |    * general algorithm if the modulus is sufficiently small (about 400 .. 500 | 
 |    * bits on 32-bit systems, but much more on 64-bit systems) */ | 
 |   int shift; | 
 |  | 
 |   while (!BN_is_zero(B)) { | 
 |     /*      0 < B < |n|, | 
 |      *      0 < A <= |n|, | 
 |      * (1) -sign*X*a  ==  B   (mod |n|), | 
 |      * (2)  sign*Y*a  ==  A   (mod |n|) */ | 
 |  | 
 |     /* Now divide  B  by the maximum possible power of two in the integers, | 
 |      * and divide  X  by the same value mod |n|. | 
 |      * When we're done, (1) still holds. */ | 
 |     shift = 0; | 
 |     while (!BN_is_bit_set(B, shift)) { | 
 |       /* note that 0 < B */ | 
 |       shift++; | 
 |  | 
 |       if (BN_is_odd(X)) { | 
 |         if (!BN_uadd(X, X, n)) { | 
 |           goto err; | 
 |         } | 
 |       } | 
 |       /* now X is even, so we can easily divide it by two */ | 
 |       if (!BN_rshift1(X, X)) { | 
 |         goto err; | 
 |       } | 
 |     } | 
 |     if (shift > 0) { | 
 |       if (!BN_rshift(B, B, shift)) { | 
 |         goto err; | 
 |       } | 
 |     } | 
 |  | 
 |     /* Same for A and Y. Afterwards, (2) still holds. */ | 
 |     shift = 0; | 
 |     while (!BN_is_bit_set(A, shift)) { | 
 |       /* note that 0 < A */ | 
 |       shift++; | 
 |  | 
 |       if (BN_is_odd(Y)) { | 
 |         if (!BN_uadd(Y, Y, n)) { | 
 |           goto err; | 
 |         } | 
 |       } | 
 |       /* now Y is even */ | 
 |       if (!BN_rshift1(Y, Y)) { | 
 |         goto err; | 
 |       } | 
 |     } | 
 |     if (shift > 0) { | 
 |       if (!BN_rshift(A, A, shift)) { | 
 |         goto err; | 
 |       } | 
 |     } | 
 |  | 
 |     /* We still have (1) and (2). | 
 |      * Both  A  and  B  are odd. | 
 |      * The following computations ensure that | 
 |      * | 
 |      *     0 <= B < |n|, | 
 |      *      0 < A < |n|, | 
 |      * (1) -sign*X*a  ==  B   (mod |n|), | 
 |      * (2)  sign*Y*a  ==  A   (mod |n|), | 
 |      * | 
 |      * and that either  A  or  B  is even in the next iteration. */ | 
 |     if (BN_ucmp(B, A) >= 0) { | 
 |       /* -sign*(X + Y)*a == B - A  (mod |n|) */ | 
 |       if (!BN_uadd(X, X, Y)) { | 
 |         goto err; | 
 |       } | 
 |       /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that | 
 |        * actually makes the algorithm slower */ | 
 |       if (!BN_usub(B, B, A)) { | 
 |         goto err; | 
 |       } | 
 |     } else { | 
 |       /*  sign*(X + Y)*a == A - B  (mod |n|) */ | 
 |       if (!BN_uadd(Y, Y, X)) { | 
 |         goto err; | 
 |       } | 
 |       /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ | 
 |       if (!BN_usub(A, A, B)) { | 
 |         goto err; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (!BN_is_one(A)) { | 
 |     *out_no_inverse = 1; | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   /* The while loop (Euclid's algorithm) ends when | 
 |    *      A == gcd(a,n); | 
 |    * we have | 
 |    *       sign*Y*a  ==  A  (mod |n|), | 
 |    * where  Y  is non-negative. */ | 
 |  | 
 |   if (sign < 0) { | 
 |     if (!BN_sub(Y, n, Y)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |   /* Now  Y*a  ==  A  (mod |n|).  */ | 
 |  | 
 |   /* Y*a == 1  (mod |n|) */ | 
 |   if (!Y->neg && BN_ucmp(Y, n) < 0) { | 
 |     if (!BN_copy(R, Y)) { | 
 |       goto err; | 
 |     } | 
 |   } else { | 
 |     if (!BN_nnmod(R, Y, n, ctx)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   BN_CTX_end(ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n, | 
 |                        BN_CTX *ctx) { | 
 |   BIGNUM *new_out = NULL; | 
 |   if (out == NULL) { | 
 |     new_out = BN_new(); | 
 |     if (new_out == NULL) { | 
 |       OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); | 
 |       return NULL; | 
 |     } | 
 |     out = new_out; | 
 |   } | 
 |  | 
 |   int ok = 0; | 
 |   BIGNUM *a_reduced = NULL; | 
 |   if (a->neg || BN_ucmp(a, n) >= 0) { | 
 |     a_reduced = BN_dup(a); | 
 |     if (a_reduced == NULL) { | 
 |       goto err; | 
 |     } | 
 |     if (!BN_nnmod(a_reduced, a_reduced, n, ctx)) { | 
 |       goto err; | 
 |     } | 
 |     a = a_reduced; | 
 |   } | 
 |  | 
 |   int no_inverse; | 
 |   if (!BN_is_odd(n)) { | 
 |     if (!bn_mod_inverse_general(out, &no_inverse, a, n, ctx)) { | 
 |       goto err; | 
 |     } | 
 |   } else if (!BN_mod_inverse_odd(out, &no_inverse, a, n, ctx)) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ok = 1; | 
 |  | 
 | err: | 
 |   if (!ok) { | 
 |     BN_free(new_out); | 
 |     out = NULL; | 
 |   } | 
 |   BN_free(a_reduced); | 
 |   return out; | 
 | } | 
 |  | 
 | int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, | 
 |                            const BN_MONT_CTX *mont, BN_CTX *ctx) { | 
 |   *out_no_inverse = 0; | 
 |  | 
 |   if (BN_is_negative(a) || BN_cmp(a, &mont->N) >= 0) { | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   int ret = 0; | 
 |   BIGNUM blinding_factor; | 
 |   BN_init(&blinding_factor); | 
 |  | 
 |   if (!BN_rand_range_ex(&blinding_factor, 1, &mont->N) || | 
 |       !BN_mod_mul_montgomery(out, &blinding_factor, a, mont, ctx) || | 
 |       !BN_mod_inverse_odd(out, out_no_inverse, out, &mont->N, ctx) || | 
 |       !BN_mod_mul_montgomery(out, &blinding_factor, out, mont, ctx)) { | 
 |     OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   BN_free(&blinding_factor); | 
 |   return ret; | 
 | } | 
 |  | 
 | /* bn_mod_inverse_general is the general inversion algorithm that works for | 
 |  * both even and odd |n|. It was specifically designed to contain fewer | 
 |  * branches that may leak sensitive information; see "New Branch Prediction | 
 |  * Vulnerabilities in OpenSSL and Necessary Software Countermeasures" by | 
 |  * Onur Acıçmez, Shay Gueron, and Jean-Pierre Seifert. */ | 
 | static int bn_mod_inverse_general(BIGNUM *out, int *out_no_inverse, | 
 |                                   const BIGNUM *a, const BIGNUM *n, | 
 |                                   BN_CTX *ctx) { | 
 |   BIGNUM *A, *B, *X, *Y, *M, *D, *T; | 
 |   int ret = 0; | 
 |   int sign; | 
 |  | 
 |   *out_no_inverse = 0; | 
 |  | 
 |   BN_CTX_start(ctx); | 
 |   A = BN_CTX_get(ctx); | 
 |   B = BN_CTX_get(ctx); | 
 |   X = BN_CTX_get(ctx); | 
 |   D = BN_CTX_get(ctx); | 
 |   M = BN_CTX_get(ctx); | 
 |   Y = BN_CTX_get(ctx); | 
 |   T = BN_CTX_get(ctx); | 
 |   if (T == NULL) { | 
 |     goto err; | 
 |   } | 
 |  | 
 |   BIGNUM *R = out; | 
 |  | 
 |   BN_zero(Y); | 
 |   if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) { | 
 |     goto err; | 
 |   } | 
 |   A->neg = 0; | 
 |  | 
 |   sign = -1; | 
 |   /* From  B = a mod |n|,  A = |n|  it follows that | 
 |    * | 
 |    *      0 <= B < A, | 
 |    *     -sign*X*a  ==  B   (mod |n|), | 
 |    *      sign*Y*a  ==  A   (mod |n|). | 
 |    */ | 
 |  | 
 |   while (!BN_is_zero(B)) { | 
 |     BIGNUM *tmp; | 
 |  | 
 |     /* | 
 |      *      0 < B < A, | 
 |      * (*) -sign*X*a  ==  B   (mod |n|), | 
 |      *      sign*Y*a  ==  A   (mod |n|) | 
 |      */ | 
 |  | 
 |     /* (D, M) := (A/B, A%B) ... */ | 
 |     if (!BN_div(D, M, A, B, ctx)) { | 
 |       goto err; | 
 |     } | 
 |  | 
 |     /* Now | 
 |      *      A = D*B + M; | 
 |      * thus we have | 
 |      * (**)  sign*Y*a  ==  D*B + M   (mod |n|). | 
 |      */ | 
 |  | 
 |     tmp = A; /* keep the BIGNUM object, the value does not matter */ | 
 |  | 
 |     /* (A, B) := (B, A mod B) ... */ | 
 |     A = B; | 
 |     B = M; | 
 |     /* ... so we have  0 <= B < A  again */ | 
 |  | 
 |     /* Since the former  M  is now  B  and the former  B  is now  A, | 
 |      * (**) translates into | 
 |      *       sign*Y*a  ==  D*A + B    (mod |n|), | 
 |      * i.e. | 
 |      *       sign*Y*a - D*A  ==  B    (mod |n|). | 
 |      * Similarly, (*) translates into | 
 |      *      -sign*X*a  ==  A          (mod |n|). | 
 |      * | 
 |      * Thus, | 
 |      *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|), | 
 |      * i.e. | 
 |      *        sign*(Y + D*X)*a  ==  B  (mod |n|). | 
 |      * | 
 |      * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at | 
 |      *      -sign*X*a  ==  B   (mod |n|), | 
 |      *       sign*Y*a  ==  A   (mod |n|). | 
 |      * Note that  X  and  Y  stay non-negative all the time. | 
 |      */ | 
 |  | 
 |     if (!BN_mul(tmp, D, X, ctx)) { | 
 |       goto err; | 
 |     } | 
 |     if (!BN_add(tmp, tmp, Y)) { | 
 |       goto err; | 
 |     } | 
 |  | 
 |     M = Y; /* keep the BIGNUM object, the value does not matter */ | 
 |     Y = X; | 
 |     X = tmp; | 
 |     sign = -sign; | 
 |   } | 
 |  | 
 |   if (!BN_is_one(A)) { | 
 |     *out_no_inverse = 1; | 
 |     OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); | 
 |     goto err; | 
 |   } | 
 |  | 
 |   /* | 
 |    * The while loop (Euclid's algorithm) ends when | 
 |    *      A == gcd(a,n); | 
 |    * we have | 
 |    *       sign*Y*a  ==  A  (mod |n|), | 
 |    * where  Y  is non-negative. | 
 |    */ | 
 |  | 
 |   if (sign < 0) { | 
 |     if (!BN_sub(Y, n, Y)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |   /* Now  Y*a  ==  A  (mod |n|).  */ | 
 |  | 
 |   /* Y*a == 1  (mod |n|) */ | 
 |   if (!Y->neg && BN_ucmp(Y, n) < 0) { | 
 |     if (!BN_copy(R, Y)) { | 
 |       goto err; | 
 |     } | 
 |   } else { | 
 |     if (!BN_nnmod(R, Y, n, ctx)) { | 
 |       goto err; | 
 |     } | 
 |   } | 
 |  | 
 |   ret = 1; | 
 |  | 
 | err: | 
 |   BN_CTX_end(ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, | 
 |                          BN_CTX *ctx, const BN_MONT_CTX *mont_p) { | 
 |   BN_CTX_start(ctx); | 
 |   BIGNUM *p_minus_2 = BN_CTX_get(ctx); | 
 |   int ok = p_minus_2 != NULL && | 
 |            BN_copy(p_minus_2, p) && | 
 |            BN_sub_word(p_minus_2, 2) && | 
 |            BN_mod_exp_mont(out, a, p_minus_2, p, ctx, mont_p); | 
 |   BN_CTX_end(ctx); | 
 |   return ok; | 
 | } | 
 |  | 
 | int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, | 
 |                                 BN_CTX *ctx, const BN_MONT_CTX *mont_p) { | 
 |   BN_CTX_start(ctx); | 
 |   BIGNUM *p_minus_2 = BN_CTX_get(ctx); | 
 |   int ok = p_minus_2 != NULL && | 
 |            BN_copy(p_minus_2, p) && | 
 |            BN_sub_word(p_minus_2, 2) && | 
 |            BN_mod_exp_mont_consttime(out, a, p_minus_2, p, ctx, mont_p); | 
 |   BN_CTX_end(ctx); | 
 |   return ok; | 
 | } |