| /* crypto/asn1/x_x509.c */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| |
| #include <openssl/asn1t.h> |
| #include <openssl/evp.h> |
| #include <openssl/mem.h> |
| #include <openssl/obj.h> |
| #include <openssl/pool.h> |
| #include <openssl/thread.h> |
| #include <openssl/x509.h> |
| #include <openssl/x509v3.h> |
| |
| #include "../internal.h" |
| |
| static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT; |
| |
| ASN1_SEQUENCE_enc(X509_CINF, enc, 0) = { |
| ASN1_EXP_OPT(X509_CINF, version, ASN1_INTEGER, 0), |
| ASN1_SIMPLE(X509_CINF, serialNumber, ASN1_INTEGER), |
| ASN1_SIMPLE(X509_CINF, signature, X509_ALGOR), |
| ASN1_SIMPLE(X509_CINF, issuer, X509_NAME), |
| ASN1_SIMPLE(X509_CINF, validity, X509_VAL), |
| ASN1_SIMPLE(X509_CINF, subject, X509_NAME), |
| ASN1_SIMPLE(X509_CINF, key, X509_PUBKEY), |
| ASN1_IMP_OPT(X509_CINF, issuerUID, ASN1_BIT_STRING, 1), |
| ASN1_IMP_OPT(X509_CINF, subjectUID, ASN1_BIT_STRING, 2), |
| ASN1_EXP_SEQUENCE_OF_OPT(X509_CINF, extensions, X509_EXTENSION, 3) |
| } ASN1_SEQUENCE_END_enc(X509_CINF, X509_CINF) |
| |
| IMPLEMENT_ASN1_FUNCTIONS(X509_CINF) |
| /* X509 top level structure needs a bit of customisation */ |
| |
| extern void policy_cache_free(X509_POLICY_CACHE *cache); |
| |
| static int x509_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, |
| void *exarg) |
| { |
| X509 *ret = (X509 *)*pval; |
| |
| switch (operation) { |
| |
| case ASN1_OP_NEW_POST: |
| ret->name = NULL; |
| ret->ex_flags = 0; |
| ret->ex_pathlen = -1; |
| ret->skid = NULL; |
| ret->akid = NULL; |
| ret->aux = NULL; |
| ret->crldp = NULL; |
| ret->buf = NULL; |
| CRYPTO_new_ex_data(&ret->ex_data); |
| break; |
| |
| case ASN1_OP_D2I_PRE: |
| CRYPTO_BUFFER_free(ret->buf); |
| ret->buf = NULL; |
| break; |
| |
| case ASN1_OP_D2I_POST: |
| if (ret->name != NULL) |
| OPENSSL_free(ret->name); |
| ret->name = X509_NAME_oneline(ret->cert_info->subject, NULL, 0); |
| break; |
| |
| case ASN1_OP_FREE_POST: |
| CRYPTO_free_ex_data(&g_ex_data_class, ret, &ret->ex_data); |
| X509_CERT_AUX_free(ret->aux); |
| ASN1_OCTET_STRING_free(ret->skid); |
| AUTHORITY_KEYID_free(ret->akid); |
| CRL_DIST_POINTS_free(ret->crldp); |
| policy_cache_free(ret->policy_cache); |
| GENERAL_NAMES_free(ret->altname); |
| NAME_CONSTRAINTS_free(ret->nc); |
| CRYPTO_BUFFER_free(ret->buf); |
| |
| if (ret->name != NULL) |
| OPENSSL_free(ret->name); |
| break; |
| |
| } |
| |
| return 1; |
| |
| } |
| |
| ASN1_SEQUENCE_ref(X509, x509_cb) = { |
| ASN1_SIMPLE(X509, cert_info, X509_CINF), |
| ASN1_SIMPLE(X509, sig_alg, X509_ALGOR), |
| ASN1_SIMPLE(X509, signature, ASN1_BIT_STRING) |
| } ASN1_SEQUENCE_END_ref(X509, X509) |
| |
| IMPLEMENT_ASN1_FUNCTIONS(X509) |
| |
| IMPLEMENT_ASN1_DUP_FUNCTION(X509) |
| |
| X509 *X509_parse_from_buffer(CRYPTO_BUFFER *buf) { |
| X509 *x509 = X509_new(); |
| if (x509 == NULL) { |
| return NULL; |
| } |
| |
| x509->cert_info->enc.alias_only_on_next_parse = 1; |
| |
| const uint8_t *inp = CRYPTO_BUFFER_data(buf); |
| X509 *x509p = x509; |
| X509 *ret = d2i_X509(&x509p, &inp, CRYPTO_BUFFER_len(buf)); |
| if (ret == NULL || |
| (inp - CRYPTO_BUFFER_data(buf)) != (ptrdiff_t) CRYPTO_BUFFER_len(buf)) { |
| X509_free(x509); |
| return NULL; |
| } |
| assert(x509p == x509); |
| assert(ret == x509); |
| |
| CRYPTO_BUFFER_up_ref(buf); |
| ret->buf = buf; |
| |
| return ret; |
| } |
| |
| int X509_up_ref(X509 *x) |
| { |
| CRYPTO_refcount_inc(&x->references); |
| return 1; |
| } |
| |
| int X509_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused * unused, |
| CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) |
| { |
| int index; |
| if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, |
| dup_func, free_func)) { |
| return -1; |
| } |
| return index; |
| } |
| |
| int X509_set_ex_data(X509 *r, int idx, void *arg) |
| { |
| return (CRYPTO_set_ex_data(&r->ex_data, idx, arg)); |
| } |
| |
| void *X509_get_ex_data(X509 *r, int idx) |
| { |
| return (CRYPTO_get_ex_data(&r->ex_data, idx)); |
| } |
| |
| /* |
| * X509_AUX ASN1 routines. X509_AUX is the name given to a certificate with |
| * extra info tagged on the end. Since these functions set how a certificate |
| * is trusted they should only be used when the certificate comes from a |
| * reliable source such as local storage. |
| */ |
| |
| X509 *d2i_X509_AUX(X509 **a, const unsigned char **pp, long length) |
| { |
| const unsigned char *q = *pp; |
| X509 *ret; |
| int freeret = 0; |
| |
| if (!a || *a == NULL) |
| freeret = 1; |
| ret = d2i_X509(a, &q, length); |
| /* If certificate unreadable then forget it */ |
| if (!ret) |
| return NULL; |
| /* update length */ |
| length -= q - *pp; |
| /* Parse auxiliary information if there is any. */ |
| if (length > 0 && !d2i_X509_CERT_AUX(&ret->aux, &q, length)) |
| goto err; |
| *pp = q; |
| return ret; |
| err: |
| if (freeret) { |
| X509_free(ret); |
| if (a) |
| *a = NULL; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Serialize trusted certificate to *pp or just return the required buffer |
| * length if pp == NULL. We ultimately want to avoid modifying *pp in the |
| * error path, but that depends on similar hygiene in lower-level functions. |
| * Here we avoid compounding the problem. |
| */ |
| static int i2d_x509_aux_internal(X509 *a, unsigned char **pp) |
| { |
| int length, tmplen; |
| unsigned char *start = pp != NULL ? *pp : NULL; |
| |
| assert(pp == NULL || *pp != NULL); |
| |
| /* |
| * This might perturb *pp on error, but fixing that belongs in i2d_X509() |
| * not here. It should be that if a == NULL length is zero, but we check |
| * both just in case. |
| */ |
| length = i2d_X509(a, pp); |
| if (length <= 0 || a == NULL) { |
| return length; |
| } |
| |
| tmplen = i2d_X509_CERT_AUX(a->aux, pp); |
| if (tmplen < 0) { |
| if (start != NULL) |
| *pp = start; |
| return tmplen; |
| } |
| length += tmplen; |
| |
| return length; |
| } |
| |
| /* |
| * Serialize trusted certificate to *pp, or just return the required buffer |
| * length if pp == NULL. |
| * |
| * When pp is not NULL, but *pp == NULL, we allocate the buffer, but since |
| * we're writing two ASN.1 objects back to back, we can't have i2d_X509() do |
| * the allocation, nor can we allow i2d_X509_CERT_AUX() to increment the |
| * allocated buffer. |
| */ |
| int i2d_X509_AUX(X509 *a, unsigned char **pp) |
| { |
| int length; |
| unsigned char *tmp; |
| |
| /* Buffer provided by caller */ |
| if (pp == NULL || *pp != NULL) |
| return i2d_x509_aux_internal(a, pp); |
| |
| /* Obtain the combined length */ |
| if ((length = i2d_x509_aux_internal(a, NULL)) <= 0) |
| return length; |
| |
| /* Allocate requisite combined storage */ |
| *pp = tmp = OPENSSL_malloc(length); |
| if (tmp == NULL) |
| return -1; /* Push error onto error stack? */ |
| |
| /* Encode, but keep *pp at the originally malloced pointer */ |
| length = i2d_x509_aux_internal(a, &tmp); |
| if (length <= 0) { |
| OPENSSL_free(*pp); |
| *pp = NULL; |
| } |
| return length; |
| } |
| |
| void X509_get0_signature(ASN1_BIT_STRING **psig, X509_ALGOR **palg, |
| const X509 *x) |
| { |
| if (psig) |
| *psig = x->signature; |
| if (palg) |
| *palg = x->sig_alg; |
| } |
| |
| int X509_get_signature_nid(const X509 *x) |
| { |
| return OBJ_obj2nid(x->sig_alg->algorithm); |
| } |