| #!/usr/bin/env perl | 
 |  | 
 | # ==================================================================== | 
 | # [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL | 
 | # project. The module is, however, dual licensed under OpenSSL and | 
 | # CRYPTOGAMS licenses depending on where you obtain it. For further | 
 | # details see http://www.openssl.org/~appro/cryptogams/. | 
 | # ==================================================================== | 
 |  | 
 | # "[Re]written" was achieved in two major overhauls. In 2004 BODY_* | 
 | # functions were re-implemented to address P4 performance issue [see | 
 | # commentary below], and in 2006 the rest was rewritten in order to | 
 | # gain freedom to liberate licensing terms. | 
 |  | 
 | # January, September 2004. | 
 | # | 
 | # It was noted that Intel IA-32 C compiler generates code which | 
 | # performs ~30% *faster* on P4 CPU than original *hand-coded* | 
 | # SHA1 assembler implementation. To address this problem (and | 
 | # prove that humans are still better than machines:-), the | 
 | # original code was overhauled, which resulted in following | 
 | # performance changes: | 
 | # | 
 | #		compared with original	compared with Intel cc | 
 | #		assembler impl.		generated code | 
 | # Pentium	-16%			+48% | 
 | # PIII/AMD	+8%			+16% | 
 | # P4		+85%(!)			+45% | 
 | # | 
 | # As you can see Pentium came out as looser:-( Yet I reckoned that | 
 | # improvement on P4 outweights the loss and incorporate this | 
 | # re-tuned code to 0.9.7 and later. | 
 | # ---------------------------------------------------------------- | 
 | #					<appro@fy.chalmers.se> | 
 |  | 
 | # August 2009. | 
 | # | 
 | # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as | 
 | # '(c&d) + (b&(c^d))', which allows to accumulate partial results | 
 | # and lighten "pressure" on scratch registers. This resulted in | 
 | # >12% performance improvement on contemporary AMD cores (with no | 
 | # degradation on other CPUs:-). Also, the code was revised to maximize | 
 | # "distance" between instructions producing input to 'lea' instruction | 
 | # and the 'lea' instruction itself, which is essential for Intel Atom | 
 | # core and resulted in ~15% improvement. | 
 |  | 
 | # October 2010. | 
 | # | 
 | # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it | 
 | # is to offload message schedule denoted by Wt in NIST specification, | 
 | # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel, | 
 | # and in SSE2 context was first explored by Dean Gaudet in 2004, see | 
 | # http://arctic.org/~dean/crypto/sha1.html. Since then several things | 
 | # have changed that made it interesting again: | 
 | # | 
 | # a) XMM units became faster and wider; | 
 | # b) instruction set became more versatile; | 
 | # c) an important observation was made by Max Locktykhin, which made | 
 | #    it possible to reduce amount of instructions required to perform | 
 | #    the operation in question, for further details see | 
 | #    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/. | 
 |  | 
 | # April 2011. | 
 | # | 
 | # Add AVX code path, probably most controversial... The thing is that | 
 | # switch to AVX alone improves performance by as little as 4% in | 
 | # comparison to SSSE3 code path. But below result doesn't look like | 
 | # 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as | 
 | # pair of µ-ops, and it's the additional µ-ops, two per round, that | 
 | # make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded | 
 | # as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with | 
 | # equivalent 'sh[rl]d' that is responsible for the impressive 5.1 | 
 | # cycles per processed byte. But 'sh[rl]d' is not something that used | 
 | # to be fast, nor does it appear to be fast in upcoming Bulldozer | 
 | # [according to its optimization manual]. Which is why AVX code path | 
 | # is guarded by *both* AVX and synthetic bit denoting Intel CPUs. | 
 | # One can argue that it's unfair to AMD, but without 'sh[rl]d' it | 
 | # makes no sense to keep the AVX code path. If somebody feels that | 
 | # strongly, it's probably more appropriate to discuss possibility of | 
 | # using vector rotate XOP on AMD... | 
 |  | 
 | # March 2014. | 
 | # | 
 | # Add support for Intel SHA Extensions. | 
 |  | 
 | ###################################################################### | 
 | # Current performance is summarized in following table. Numbers are | 
 | # CPU clock cycles spent to process single byte (less is better). | 
 | # | 
 | #		x86		SSSE3		AVX | 
 | # Pentium	15.7		- | 
 | # PIII		11.5		- | 
 | # P4		10.6		- | 
 | # AMD K8	7.1		- | 
 | # Core2		7.3		6.0/+22%	- | 
 | # Westmere	7.3		5.5/+33%	- | 
 | # Sandy Bridge	8.8		6.2/+40%	5.1(**)/+73% | 
 | # Ivy Bridge	7.2		4.8/+51%	4.7(**)/+53% | 
 | # Haswell	6.5		4.3/+51%	4.1(**)/+58% | 
 | # Bulldozer	11.6		6.0/+92% | 
 | # VIA Nano	10.6		7.5/+41% | 
 | # Atom		12.5		9.3(*)/+35% | 
 | # Silvermont	14.5		9.9(*)/+46% | 
 | # | 
 | # (*)	Loop is 1056 instructions long and expected result is ~8.25. | 
 | #	The discrepancy is because of front-end limitations, so | 
 | #	called MS-ROM penalties, and on Silvermont even rotate's | 
 | #	limited parallelism. | 
 | # | 
 | # (**)	As per above comment, the result is for AVX *plus* sh[rl]d. | 
 |  | 
 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | 
 | push(@INC,"${dir}","${dir}../../perlasm"); | 
 | require "x86asm.pl"; | 
 |  | 
 | &asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386"); | 
 |  | 
 | $xmm=$ymm=0; | 
 | for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); } | 
 |  | 
 | # In upstream, this is controlled by shelling out to the compiler to check | 
 | # versions, but BoringSSL is intended to be used with pre-generated perlasm | 
 | # output, so this isn't useful anyway. | 
 | $ymm = 1; | 
 |  | 
 | $ymm = 0 unless ($xmm); | 
 |  | 
 | $shaext=$xmm;	### set to zero if compiling for 1.0.1 | 
 |  | 
 | # TODO(davidben): Consider enabling the Intel SHA Extensions code once it's | 
 | # been tested. | 
 | $shaext = 0; | 
 |  | 
 | &external_label("OPENSSL_ia32cap_P") if ($xmm); | 
 |  | 
 |  | 
 | $A="eax"; | 
 | $B="ebx"; | 
 | $C="ecx"; | 
 | $D="edx"; | 
 | $E="edi"; | 
 | $T="esi"; | 
 | $tmp1="ebp"; | 
 |  | 
 | @V=($A,$B,$C,$D,$E,$T); | 
 |  | 
 | $alt=0;	# 1 denotes alternative IALU implementation, which performs | 
 | 	# 8% *worse* on P4, same on Westmere and Atom, 2% better on | 
 | 	# Sandy Bridge... | 
 |  | 
 | sub BODY_00_15 | 
 | 	{ | 
 | 	local($n,$a,$b,$c,$d,$e,$f)=@_; | 
 |  | 
 | 	&comment("00_15 $n"); | 
 |  | 
 | 	&mov($f,$c);			# f to hold F_00_19(b,c,d) | 
 | 	 if ($n==0)  { &mov($tmp1,$a); } | 
 | 	 else        { &mov($a,$tmp1); } | 
 | 	&rotl($tmp1,5);			# tmp1=ROTATE(a,5) | 
 | 	 &xor($f,$d); | 
 | 	&add($tmp1,$e);			# tmp1+=e; | 
 | 	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded | 
 | 	 				# with xi, also note that e becomes | 
 | 					# f in next round... | 
 | 	&and($f,$b); | 
 | 	&rotr($b,2);			# b=ROTATE(b,30) | 
 | 	 &xor($f,$d);			# f holds F_00_19(b,c,d) | 
 | 	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi | 
 |  | 
 | 	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round | 
 | 		      &add($f,$tmp1); }	# f+=tmp1 | 
 | 	else        { &add($tmp1,$f); }	# f becomes a in next round | 
 | 	&mov($tmp1,$a)			if ($alt && $n==15); | 
 | 	} | 
 |  | 
 | sub BODY_16_19 | 
 | 	{ | 
 | 	local($n,$a,$b,$c,$d,$e,$f)=@_; | 
 |  | 
 | 	&comment("16_19 $n"); | 
 |  | 
 | if ($alt) { | 
 | 	&xor($c,$d); | 
 | 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd) | 
 | 	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d | 
 | 	 &xor($f,&swtmp(($n+8)%16)); | 
 | 	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d) | 
 | 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd | 
 | 	&rotl($f,1);			# f=ROTATE(f,1) | 
 | 	 &add($e,$tmp1);		# e+=F_00_19(b,c,d) | 
 | 	&xor($c,$d);			# restore $c | 
 | 	 &mov($tmp1,$a);		# b in next round | 
 | 	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30) | 
 | 	 &mov(&swtmp($n%16),$f);	# xi=f | 
 | 	&rotl($a,5);			# ROTATE(a,5) | 
 | 	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e | 
 | 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round | 
 | 	 &add($f,$a);			# f+=ROTATE(a,5) | 
 | } else { | 
 | 	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d) | 
 | 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd) | 
 | 	&xor($tmp1,$d); | 
 | 	 &xor($f,&swtmp(($n+8)%16)); | 
 | 	&and($tmp1,$b); | 
 | 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd | 
 | 	&rotl($f,1);			# f=ROTATE(f,1) | 
 | 	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d) | 
 | 	&add($e,$tmp1);			# e+=F_00_19(b,c,d) | 
 | 	 &mov($tmp1,$a); | 
 | 	&rotr($b,2);			# b=ROTATE(b,30) | 
 | 	 &mov(&swtmp($n%16),$f);	# xi=f | 
 | 	&rotl($tmp1,5);			# ROTATE(a,5) | 
 | 	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e | 
 | 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round | 
 | 	 &add($f,$tmp1);		# f+=ROTATE(a,5) | 
 | } | 
 | 	} | 
 |  | 
 | sub BODY_20_39 | 
 | 	{ | 
 | 	local($n,$a,$b,$c,$d,$e,$f)=@_; | 
 | 	local $K=($n<40)?0x6ed9eba1:0xca62c1d6; | 
 |  | 
 | 	&comment("20_39 $n"); | 
 |  | 
 | if ($alt) { | 
 | 	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c | 
 | 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd) | 
 | 	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d) | 
 | 	 &xor($f,&swtmp(($n+8)%16)); | 
 | 	&add($e,$tmp1);			# e+=F_20_39(b,c,d) | 
 | 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd | 
 | 	&rotl($f,1);			# f=ROTATE(f,1) | 
 | 	 &mov($tmp1,$a);		# b in next round | 
 | 	&rotr($b,7);			# b=ROTATE(b,30) | 
 | 	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f | 
 | 	&rotl($a,5);			# ROTATE(a,5) | 
 | 	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59 | 
 | 	&and($tmp1,$b)			if($n==39); | 
 | 	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY | 
 | 	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round | 
 | 	 &add($f,$a);			# f+=ROTATE(a,5) | 
 | 	&rotr($a,5)			if ($n==79); | 
 | } else { | 
 | 	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d) | 
 | 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd) | 
 | 	&xor($tmp1,$c); | 
 | 	 &xor($f,&swtmp(($n+8)%16)); | 
 | 	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d) | 
 | 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd | 
 | 	&rotl($f,1);			# f=ROTATE(f,1) | 
 | 	 &add($e,$tmp1);		# e+=F_20_39(b,c,d) | 
 | 	&rotr($b,2);			# b=ROTATE(b,30) | 
 | 	 &mov($tmp1,$a); | 
 | 	&rotl($tmp1,5);			# ROTATE(a,5) | 
 | 	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f | 
 | 	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY | 
 | 	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round | 
 | 	&add($f,$tmp1);			# f+=ROTATE(a,5) | 
 | } | 
 | 	} | 
 |  | 
 | sub BODY_40_59 | 
 | 	{ | 
 | 	local($n,$a,$b,$c,$d,$e,$f)=@_; | 
 |  | 
 | 	&comment("40_59 $n"); | 
 |  | 
 | if ($alt) { | 
 | 	&add($e,$tmp1);			# e+=b&(c^d) | 
 | 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd) | 
 | 	&mov($tmp1,$d); | 
 | 	 &xor($f,&swtmp(($n+8)%16)); | 
 | 	&xor($c,$d);			# restore $c | 
 | 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd | 
 | 	&rotl($f,1);			# f=ROTATE(f,1) | 
 | 	 &and($tmp1,$c); | 
 | 	&rotr($b,7);			# b=ROTATE(b,30) | 
 | 	 &add($e,$tmp1);		# e+=c&d | 
 | 	&mov($tmp1,$a);			# b in next round | 
 | 	 &mov(&swtmp($n%16),$f);	# xi=f | 
 | 	&rotl($a,5);			# ROTATE(a,5) | 
 | 	 &xor($b,$c)			if ($n<59); | 
 | 	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d) | 
 | 	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d)) | 
 | 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round | 
 | 	 &add($f,$a);			# f+=ROTATE(a,5) | 
 | } else { | 
 | 	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d) | 
 | 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd) | 
 | 	&xor($tmp1,$d); | 
 | 	 &xor($f,&swtmp(($n+8)%16)); | 
 | 	&and($tmp1,$b); | 
 | 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd | 
 | 	&rotl($f,1);			# f=ROTATE(f,1) | 
 | 	 &add($tmp1,$e);		# b&(c^d)+=e | 
 | 	&rotr($b,2);			# b=ROTATE(b,30) | 
 | 	 &mov($e,$a);			# e becomes volatile | 
 | 	&rotl($e,5);			# ROTATE(a,5) | 
 | 	 &mov(&swtmp($n%16),$f);	# xi=f | 
 | 	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d)) | 
 | 	 &mov($tmp1,$c); | 
 | 	&add($f,$e);			# f+=ROTATE(a,5) | 
 | 	 &and($tmp1,$d); | 
 | 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round | 
 | 	 &add($f,$tmp1);		# f+=c&d | 
 | } | 
 | 	} | 
 |  | 
 | &function_begin("sha1_block_data_order"); | 
 | if ($xmm) { | 
 |   &static_label("shaext_shortcut")	if ($shaext); | 
 |   &static_label("ssse3_shortcut"); | 
 |   &static_label("avx_shortcut")		if ($ymm); | 
 |   &static_label("K_XX_XX"); | 
 |  | 
 | 	&call	(&label("pic_point"));	# make it PIC! | 
 |   &set_label("pic_point"); | 
 | 	&blindpop($tmp1); | 
 | 	&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point")); | 
 | 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); | 
 |  | 
 | 	&mov	($A,&DWP(0,$T)); | 
 | 	&mov	($D,&DWP(4,$T)); | 
 | 	&test	($D,1<<9);		# check SSSE3 bit | 
 | 	&jz	(&label("x86")); | 
 | 	&mov	($C,&DWP(8,$T)); | 
 | 	&test	($A,1<<24);		# check FXSR bit | 
 | 	&jz	(&label("x86")); | 
 | 	if ($shaext) { | 
 | 		&test	($C,1<<29);		# check SHA bit | 
 | 		&jnz	(&label("shaext_shortcut")); | 
 | 	} | 
 | 	if ($ymm) { | 
 | 		&and	($D,1<<28);		# mask AVX bit | 
 | 		&and	($A,1<<30);		# mask "Intel CPU" bit | 
 | 		&or	($A,$D); | 
 | 		&cmp	($A,1<<28|1<<30); | 
 | 		&je	(&label("avx_shortcut")); | 
 | 	} | 
 | 	&jmp	(&label("ssse3_shortcut")); | 
 |   &set_label("x86",16); | 
 | } | 
 | 	&mov($tmp1,&wparam(0));	# SHA_CTX *c | 
 | 	&mov($T,&wparam(1));	# const void *input | 
 | 	&mov($A,&wparam(2));	# size_t num | 
 | 	&stack_push(16+3);	# allocate X[16] | 
 | 	&shl($A,6); | 
 | 	&add($A,$T); | 
 | 	&mov(&wparam(2),$A);	# pointer beyond the end of input | 
 | 	&mov($E,&DWP(16,$tmp1));# pre-load E | 
 | 	&jmp(&label("loop")); | 
 |  | 
 | &set_label("loop",16); | 
 |  | 
 | 	# copy input chunk to X, but reversing byte order! | 
 | 	for ($i=0; $i<16; $i+=4) | 
 | 		{ | 
 | 		&mov($A,&DWP(4*($i+0),$T)); | 
 | 		&mov($B,&DWP(4*($i+1),$T)); | 
 | 		&mov($C,&DWP(4*($i+2),$T)); | 
 | 		&mov($D,&DWP(4*($i+3),$T)); | 
 | 		&bswap($A); | 
 | 		&bswap($B); | 
 | 		&bswap($C); | 
 | 		&bswap($D); | 
 | 		&mov(&swtmp($i+0),$A); | 
 | 		&mov(&swtmp($i+1),$B); | 
 | 		&mov(&swtmp($i+2),$C); | 
 | 		&mov(&swtmp($i+3),$D); | 
 | 		} | 
 | 	&mov(&wparam(1),$T);	# redundant in 1st spin | 
 |  | 
 | 	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX | 
 | 	&mov($B,&DWP(4,$tmp1)); | 
 | 	&mov($C,&DWP(8,$tmp1)); | 
 | 	&mov($D,&DWP(12,$tmp1)); | 
 | 	# E is pre-loaded | 
 |  | 
 | 	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); } | 
 | 	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); } | 
 | 	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); } | 
 | 	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); } | 
 | 	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); } | 
 |  | 
 | 	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check | 
 |  | 
 | 	&mov($tmp1,&wparam(0));	# re-load SHA_CTX* | 
 | 	&mov($D,&wparam(1));	# D is last "T" and is discarded | 
 |  | 
 | 	&add($E,&DWP(0,$tmp1));	# E is last "A"... | 
 | 	&add($T,&DWP(4,$tmp1)); | 
 | 	&add($A,&DWP(8,$tmp1)); | 
 | 	&add($B,&DWP(12,$tmp1)); | 
 | 	&add($C,&DWP(16,$tmp1)); | 
 |  | 
 | 	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX | 
 | 	 &add($D,64);		# advance input pointer | 
 | 	&mov(&DWP(4,$tmp1),$T); | 
 | 	 &cmp($D,&wparam(2));	# have we reached the end yet? | 
 | 	&mov(&DWP(8,$tmp1),$A); | 
 | 	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded" | 
 | 	&mov(&DWP(12,$tmp1),$B); | 
 | 	 &mov($T,$D);		# input pointer | 
 | 	&mov(&DWP(16,$tmp1),$C); | 
 | 	&jb(&label("loop")); | 
 |  | 
 | 	&stack_pop(16+3); | 
 | &function_end("sha1_block_data_order"); | 
 |  | 
 | if ($xmm) { | 
 | if ($shaext) { | 
 | ###################################################################### | 
 | # Intel SHA Extensions implementation of SHA1 update function. | 
 | # | 
 | my ($ctx,$inp,$num)=("edi","esi","ecx"); | 
 | my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3)); | 
 | my @MSG=map("xmm$_",(4..7)); | 
 |  | 
 | sub sha1rnds4 { | 
 |  my ($dst,$src,$imm)=@_; | 
 |     if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) | 
 |     {	&data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm);	} | 
 | } | 
 | sub sha1op38 { | 
 |  my ($opcodelet,$dst,$src)=@_; | 
 |     if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/) | 
 |     {	&data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2);	} | 
 | } | 
 | sub sha1nexte	{ sha1op38(0xc8,@_); } | 
 | sub sha1msg1	{ sha1op38(0xc9,@_); } | 
 | sub sha1msg2	{ sha1op38(0xca,@_); } | 
 |  | 
 | &function_begin("_sha1_block_data_order_shaext"); | 
 | 	&call	(&label("pic_point"));	# make it PIC! | 
 | 	&set_label("pic_point"); | 
 | 	&blindpop($tmp1); | 
 | 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); | 
 | &set_label("shaext_shortcut"); | 
 | 	&mov	($ctx,&wparam(0)); | 
 | 	&mov	("ebx","esp"); | 
 | 	&mov	($inp,&wparam(1)); | 
 | 	&mov	($num,&wparam(2)); | 
 | 	&sub	("esp",32); | 
 |  | 
 | 	&movdqu	($ABCD,&QWP(0,$ctx)); | 
 | 	&movd	($E,&DWP(16,$ctx)); | 
 | 	&and	("esp",-32); | 
 | 	&movdqa	($BSWAP,&QWP(0x50,$tmp1));	# byte-n-word swap | 
 |  | 
 | 	&movdqu	(@MSG[0],&QWP(0,$inp)); | 
 | 	&pshufd	($ABCD,$ABCD,0b00011011);	# flip word order | 
 | 	&movdqu	(@MSG[1],&QWP(0x10,$inp)); | 
 | 	&pshufd	($E,$E,0b00011011);		# flip word order | 
 | 	&movdqu	(@MSG[2],&QWP(0x20,$inp)); | 
 | 	&pshufb	(@MSG[0],$BSWAP); | 
 | 	&movdqu	(@MSG[3],&QWP(0x30,$inp)); | 
 | 	&pshufb	(@MSG[1],$BSWAP); | 
 | 	&pshufb	(@MSG[2],$BSWAP); | 
 | 	&pshufb	(@MSG[3],$BSWAP); | 
 | 	&jmp	(&label("loop_shaext")); | 
 |  | 
 | &set_label("loop_shaext",16); | 
 | 	&dec		($num); | 
 | 	&lea		("eax",&DWP(0x40,$inp)); | 
 | 	&movdqa		(&QWP(0,"esp"),$E);	# offload $E | 
 | 	&paddd		($E,@MSG[0]); | 
 | 	&cmovne		($inp,"eax"); | 
 | 	&movdqa		(&QWP(16,"esp"),$ABCD);	# offload $ABCD | 
 |  | 
 | for($i=0;$i<20-4;$i+=2) { | 
 | 	&sha1msg1	(@MSG[0],@MSG[1]); | 
 | 	&movdqa		($E_,$ABCD); | 
 | 	&sha1rnds4	($ABCD,$E,int($i/5));	# 0-3... | 
 | 	&sha1nexte	($E_,@MSG[1]); | 
 | 	&pxor		(@MSG[0],@MSG[2]); | 
 | 	&sha1msg1	(@MSG[1],@MSG[2]); | 
 | 	&sha1msg2	(@MSG[0],@MSG[3]); | 
 |  | 
 | 	&movdqa		($E,$ABCD); | 
 | 	&sha1rnds4	($ABCD,$E_,int(($i+1)/5)); | 
 | 	&sha1nexte	($E,@MSG[2]); | 
 | 	&pxor		(@MSG[1],@MSG[3]); | 
 | 	&sha1msg2	(@MSG[1],@MSG[0]); | 
 |  | 
 | 	push(@MSG,shift(@MSG));	push(@MSG,shift(@MSG)); | 
 | } | 
 | 	&movdqu		(@MSG[0],&QWP(0,$inp)); | 
 | 	&movdqa		($E_,$ABCD); | 
 | 	&sha1rnds4	($ABCD,$E,3);		# 64-67 | 
 | 	&sha1nexte	($E_,@MSG[1]); | 
 | 	&movdqu		(@MSG[1],&QWP(0x10,$inp)); | 
 | 	&pshufb		(@MSG[0],$BSWAP); | 
 |  | 
 | 	&movdqa		($E,$ABCD); | 
 | 	&sha1rnds4	($ABCD,$E_,3);		# 68-71 | 
 | 	&sha1nexte	($E,@MSG[2]); | 
 | 	&movdqu		(@MSG[2],&QWP(0x20,$inp)); | 
 | 	&pshufb		(@MSG[1],$BSWAP); | 
 |  | 
 | 	&movdqa		($E_,$ABCD); | 
 | 	&sha1rnds4	($ABCD,$E,3);		# 72-75 | 
 | 	&sha1nexte	($E_,@MSG[3]); | 
 | 	&movdqu		(@MSG[3],&QWP(0x30,$inp)); | 
 | 	&pshufb		(@MSG[2],$BSWAP); | 
 |  | 
 | 	&movdqa		($E,$ABCD); | 
 | 	&sha1rnds4	($ABCD,$E_,3);		# 76-79 | 
 | 	&movdqa		($E_,&QWP(0,"esp")); | 
 | 	&pshufb		(@MSG[3],$BSWAP); | 
 | 	&sha1nexte	($E,$E_); | 
 | 	&paddd		($ABCD,&QWP(16,"esp")); | 
 |  | 
 | 	&jnz		(&label("loop_shaext")); | 
 |  | 
 | 	&pshufd	($ABCD,$ABCD,0b00011011); | 
 | 	&pshufd	($E,$E,0b00011011); | 
 | 	&movdqu	(&QWP(0,$ctx),$ABCD) | 
 | 	&movd	(&DWP(16,$ctx),$E); | 
 | 	&mov	("esp","ebx"); | 
 | &function_end("_sha1_block_data_order_shaext"); | 
 | } | 
 | ###################################################################### | 
 | # The SSSE3 implementation. | 
 | # | 
 | # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last | 
 | # 32 elements of the message schedule or Xupdate outputs. First 4 | 
 | # quadruples are simply byte-swapped input, next 4 are calculated | 
 | # according to method originally suggested by Dean Gaudet (modulo | 
 | # being implemented in SSSE3). Once 8 quadruples or 32 elements are | 
 | # collected, it switches to routine proposed by Max Locktyukhin. | 
 | # | 
 | # Calculations inevitably require temporary reqisters, and there are | 
 | # no %xmm registers left to spare. For this reason part of the ring | 
 | # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring | 
 | # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] - | 
 | # X[-5], and X[4] - X[-4]... | 
 | # | 
 | # Another notable optimization is aggressive stack frame compression | 
 | # aiming to minimize amount of 9-byte instructions... | 
 | # | 
 | # Yet another notable optimization is "jumping" $B variable. It means | 
 | # that there is no register permanently allocated for $B value. This | 
 | # allowed to eliminate one instruction from body_20_39... | 
 | # | 
 | my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded | 
 | my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4 | 
 | my @V=($A,$B,$C,$D,$E); | 
 | my $j=0;			# hash round | 
 | my $rx=0; | 
 | my @T=($T,$tmp1); | 
 | my $inp; | 
 |  | 
 | my $_rol=sub { &rol(@_) }; | 
 | my $_ror=sub { &ror(@_) }; | 
 |  | 
 | &function_begin("_sha1_block_data_order_ssse3"); | 
 | 	&call	(&label("pic_point"));	# make it PIC! | 
 | 	&set_label("pic_point"); | 
 | 	&blindpop($tmp1); | 
 | 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); | 
 | &set_label("ssse3_shortcut"); | 
 |  | 
 | 	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19 | 
 | 	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39 | 
 | 	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59 | 
 | 	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79 | 
 | 	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask | 
 |  | 
 | 	&mov	($E,&wparam(0));		# load argument block | 
 | 	&mov	($inp=@T[1],&wparam(1)); | 
 | 	&mov	($D,&wparam(2)); | 
 | 	&mov	(@T[0],"esp"); | 
 |  | 
 | 	# stack frame layout | 
 | 	# | 
 | 	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area | 
 | 	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K | 
 | 	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K | 
 | 	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K | 
 | 	# | 
 | 	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area | 
 | 	#	X[4]	X[5]	X[6]	X[7] | 
 | 	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19 | 
 | 	# | 
 | 	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants | 
 | 	#	K_40_59	K_40_59	K_40_59	K_40_59 | 
 | 	#	K_60_79	K_60_79	K_60_79	K_60_79 | 
 | 	#	K_00_19	K_00_19	K_00_19	K_00_19 | 
 | 	#	pbswap mask | 
 | 	# | 
 | 	# +192	ctx				# argument block | 
 | 	# +196	inp | 
 | 	# +200	end | 
 | 	# +204	esp | 
 | 	&sub	("esp",208); | 
 | 	&and	("esp",-64); | 
 |  | 
 | 	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants | 
 | 	&movdqa	(&QWP(112+16,"esp"),@X[5]); | 
 | 	&movdqa	(&QWP(112+32,"esp"),@X[6]); | 
 | 	&shl	($D,6);				# len*64 | 
 | 	&movdqa	(&QWP(112+48,"esp"),@X[3]); | 
 | 	&add	($D,$inp);			# end of input | 
 | 	&movdqa	(&QWP(112+64,"esp"),@X[2]); | 
 | 	&add	($inp,64); | 
 | 	&mov	(&DWP(192+0,"esp"),$E);		# save argument block | 
 | 	&mov	(&DWP(192+4,"esp"),$inp); | 
 | 	&mov	(&DWP(192+8,"esp"),$D); | 
 | 	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp | 
 |  | 
 | 	&mov	($A,&DWP(0,$E));		# load context | 
 | 	&mov	($B,&DWP(4,$E)); | 
 | 	&mov	($C,&DWP(8,$E)); | 
 | 	&mov	($D,&DWP(12,$E)); | 
 | 	&mov	($E,&DWP(16,$E)); | 
 | 	&mov	(@T[0],$B);			# magic seed | 
 |  | 
 | 	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3] | 
 | 	&movdqu	(@X[-3&7],&QWP(-48,$inp)); | 
 | 	&movdqu	(@X[-2&7],&QWP(-32,$inp)); | 
 | 	&movdqu	(@X[-1&7],&QWP(-16,$inp)); | 
 | 	&pshufb	(@X[-4&7],@X[2]);		# byte swap | 
 | 	&pshufb	(@X[-3&7],@X[2]); | 
 | 	&pshufb	(@X[-2&7],@X[2]); | 
 | 	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot | 
 | 	&pshufb	(@X[-1&7],@X[2]); | 
 | 	&paddd	(@X[-4&7],@X[3]);		# add K_00_19 | 
 | 	&paddd	(@X[-3&7],@X[3]); | 
 | 	&paddd	(@X[-2&7],@X[3]); | 
 | 	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU | 
 | 	&psubd	(@X[-4&7],@X[3]);		# restore X[] | 
 | 	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]); | 
 | 	&psubd	(@X[-3&7],@X[3]); | 
 | 	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]); | 
 | 	&mov	(@T[1],$C); | 
 | 	&psubd	(@X[-2&7],@X[3]); | 
 | 	&xor	(@T[1],$D); | 
 | 	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]); | 
 | 	&and	(@T[0],@T[1]); | 
 | 	&jmp	(&label("loop")); | 
 |  | 
 | ###################################################################### | 
 | # SSE instruction sequence is first broken to groups of indepentent | 
 | # instructions, independent in respect to their inputs and shifter | 
 | # (not all architectures have more than one). Then IALU instructions | 
 | # are "knitted in" between the SSE groups. Distance is maintained for | 
 | # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer | 
 | # [which allegedly also implements SSSE3]... | 
 | # | 
 | # Temporary registers usage. X[2] is volatile at the entry and at the | 
 | # end is restored from backtrace ring buffer. X[3] is expected to | 
 | # contain current K_XX_XX constant and is used to caclulate X[-1]+K | 
 | # from previous round, it becomes volatile the moment the value is | 
 | # saved to stack for transfer to IALU. X[4] becomes volatile whenever | 
 | # X[-4] is accumulated and offloaded to backtrace ring buffer, at the | 
 | # end it is loaded with next K_XX_XX [which becomes X[3] in next | 
 | # round]... | 
 | # | 
 | sub Xupdate_ssse3_16_31()		# recall that $Xi starts wtih 4 | 
 | { use integer; | 
 |   my $body = shift; | 
 |   my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions | 
 |   my ($a,$b,$c,$d,$e); | 
 |  | 
 | 	 eval(shift(@insns));		# ror | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&punpcklqdq(@X[0],@X[-3&7]);	# compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8); | 
 | 	&movdqa	(@X[2],@X[-1&7]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	  &paddd	(@X[3],@X[-1&7]); | 
 | 	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer | 
 | 	 eval(shift(@insns));		# rol | 
 | 	 eval(shift(@insns)); | 
 | 	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]" | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# ror | 
 |  | 
 | 	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]" | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]" | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# rol | 
 | 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&movdqa	(@X[4],@X[0]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# ror | 
 | 	&movdqa (@X[2],@X[0]); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword | 
 | 	&paddd	(@X[0],@X[0]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&psrld	(@X[2],31); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# rol | 
 | 	&movdqa	(@X[3],@X[4]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&psrld	(@X[4],30); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# ror | 
 | 	&por	(@X[0],@X[2]);		# "X[0]"<<<=1 | 
 | 	 eval(shift(@insns)); | 
 | 	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&pslld	(@X[3],2); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# rol | 
 | 	&pxor   (@X[0],@X[4]); | 
 | 	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2 | 
 | 	  &pshufd	(@X[1],@X[-3&7],0xee)	if ($Xi<7);	# was &movdqa	(@X[1],@X[-2&7]) | 
 | 	  &pshufd	(@X[3],@X[-1&7],0xee)	if ($Xi==7); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	 foreach (@insns) { eval; }	# remaining instructions [if any] | 
 |  | 
 |   $Xi++;	push(@X,shift(@X));	# "rotate" X[] | 
 | } | 
 |  | 
 | sub Xupdate_ssse3_32_79() | 
 | { use integer; | 
 |   my $body = shift; | 
 |   my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions | 
 |   my ($a,$b,$c,$d,$e); | 
 |  | 
 | 	 eval(shift(@insns));		# body_20_39 | 
 | 	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]" | 
 | 	&punpcklqdq(@X[2],@X[-1&7]);	# compose "X[-6]", was &palignr(@X[2],@X[-2&7],8) | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# rol | 
 |  | 
 | 	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]" | 
 | 	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns))		if (@insns[0] =~ /_rol/); | 
 | 	 if ($Xi%5) { | 
 | 	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX... | 
 | 	 } else {			# ... or load next one | 
 | 	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp")); | 
 | 	 } | 
 | 	 eval(shift(@insns));		# ror | 
 | 	  &paddd	(@X[3],@X[-1&7]); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]" | 
 | 	 eval(shift(@insns));		# body_20_39 | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# rol | 
 |  | 
 | 	&movdqa	(@X[2],@X[0]); | 
 | 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# ror | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns))		if (@insns[0] =~ /_rol/); | 
 |  | 
 | 	&pslld	(@X[0],2); | 
 | 	 eval(shift(@insns));		# body_20_39 | 
 | 	 eval(shift(@insns)); | 
 | 	&psrld	(@X[2],30); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# rol | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# ror | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns))		if (@insns[1] =~ /_rol/); | 
 | 	 eval(shift(@insns))		if (@insns[0] =~ /_rol/); | 
 |  | 
 | 	&por	(@X[0],@X[2]);		# "X[0]"<<<=2 | 
 | 	 eval(shift(@insns));		# body_20_39 | 
 | 	 eval(shift(@insns)); | 
 | 	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# rol | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# ror | 
 | 	  &pshufd	(@X[3],@X[-1],0xee)	if ($Xi<19);	# was &movdqa	(@X[3],@X[0]) | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	 foreach (@insns) { eval; }	# remaining instructions | 
 |  | 
 |   $Xi++;	push(@X,shift(@X));	# "rotate" X[] | 
 | } | 
 |  | 
 | sub Xuplast_ssse3_80() | 
 | { use integer; | 
 |   my $body = shift; | 
 |   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions | 
 |   my ($a,$b,$c,$d,$e); | 
 |  | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	  &paddd	(@X[3],@X[-1&7]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU | 
 |  | 
 | 	 foreach (@insns) { eval; }		# remaining instructions | 
 |  | 
 | 	&mov	($inp=@T[1],&DWP(192+4,"esp")); | 
 | 	&cmp	($inp,&DWP(192+8,"esp")); | 
 | 	&je	(&label("done")); | 
 |  | 
 | 	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19 | 
 | 	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask | 
 | 	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input | 
 | 	&movdqu	(@X[-3&7],&QWP(16,$inp)); | 
 | 	&movdqu	(@X[-2&7],&QWP(32,$inp)); | 
 | 	&movdqu	(@X[-1&7],&QWP(48,$inp)); | 
 | 	&add	($inp,64); | 
 | 	&pshufb	(@X[-4&7],@X[2]);		# byte swap | 
 | 	&mov	(&DWP(192+4,"esp"),$inp); | 
 | 	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot | 
 |  | 
 |   $Xi=0; | 
 | } | 
 |  | 
 | sub Xloop_ssse3() | 
 | { use integer; | 
 |   my $body = shift; | 
 |   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions | 
 |   my ($a,$b,$c,$d,$e); | 
 |  | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&pshufb	(@X[($Xi-3)&7],@X[2]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&paddd	(@X[($Xi-4)&7],@X[3]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&psubd	(@X[($Xi-4)&7],@X[3]); | 
 |  | 
 | 	foreach (@insns) { eval; } | 
 |   $Xi++; | 
 | } | 
 |  | 
 | sub Xtail_ssse3() | 
 | { use integer; | 
 |   my $body = shift; | 
 |   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions | 
 |   my ($a,$b,$c,$d,$e); | 
 |  | 
 | 	foreach (@insns) { eval; } | 
 | } | 
 |  | 
 | sub body_00_19 () {	# ((c^d)&b)^d | 
 | 	# on start @T[0]=(c^d)&b | 
 | 	return &body_20_39()	if ($rx==19);	$rx++; | 
 | 	( | 
 | 	'($a,$b,$c,$d,$e)=@V;'. | 
 | 	'&$_ror	($b,$j?7:2);',	# $b>>>2 | 
 | 	'&xor	(@T[0],$d);', | 
 | 	'&mov	(@T[1],$a);',	# $b in next round | 
 |  | 
 | 	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer | 
 | 	'&xor	($b,$c);',	# $c^$d for next round | 
 |  | 
 | 	'&$_rol	($a,5);', | 
 | 	'&add	($e,@T[0]);', | 
 | 	'&and	(@T[1],$b);',	# ($b&($c^$d)) for next round | 
 |  | 
 | 	'&xor	($b,$c);',	# restore $b | 
 | 	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' | 
 | 	); | 
 | } | 
 |  | 
 | sub body_20_39 () {	# b^d^c | 
 | 	# on entry @T[0]=b^d | 
 | 	return &body_40_59()	if ($rx==39);	$rx++; | 
 | 	( | 
 | 	'($a,$b,$c,$d,$e)=@V;'. | 
 | 	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer | 
 | 	'&xor	(@T[0],$d)	if($j==19);'. | 
 | 	'&xor	(@T[0],$c)	if($j> 19);',	# ($b^$d^$c) | 
 | 	'&mov	(@T[1],$a);',	# $b in next round | 
 |  | 
 | 	'&$_rol	($a,5);', | 
 | 	'&add	($e,@T[0]);', | 
 | 	'&xor	(@T[1],$c)	if ($j< 79);',	# $b^$d for next round | 
 |  | 
 | 	'&$_ror	($b,7);',	# $b>>>2 | 
 | 	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' | 
 | 	); | 
 | } | 
 |  | 
 | sub body_40_59 () {	# ((b^c)&(c^d))^c | 
 | 	# on entry @T[0]=(b^c), (c^=d) | 
 | 	$rx++; | 
 | 	( | 
 | 	'($a,$b,$c,$d,$e)=@V;'. | 
 | 	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer | 
 | 	'&and	(@T[0],$c)	if ($j>=40);',	# (b^c)&(c^d) | 
 | 	'&xor	($c,$d)		if ($j>=40);',	# restore $c | 
 |  | 
 | 	'&$_ror	($b,7);',	# $b>>>2 | 
 | 	'&mov	(@T[1],$a);',	# $b for next round | 
 | 	'&xor	(@T[0],$c);', | 
 |  | 
 | 	'&$_rol	($a,5);', | 
 | 	'&add	($e,@T[0]);', | 
 | 	'&xor	(@T[1],$c)	if ($j==59);'. | 
 | 	'&xor	(@T[1],$b)	if ($j< 59);',	# b^c for next round | 
 |  | 
 | 	'&xor	($b,$c)		if ($j< 59);',	# c^d for next round | 
 | 	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' | 
 | 	); | 
 | } | 
 | ###### | 
 | sub bodyx_00_19 () {	# ((c^d)&b)^d | 
 | 	# on start @T[0]=(b&c)^(~b&d), $e+=X[]+K | 
 | 	return &bodyx_20_39()	if ($rx==19);	$rx++; | 
 | 	( | 
 | 	'($a,$b,$c,$d,$e)=@V;'. | 
 |  | 
 | 	'&rorx	($b,$b,2)			if ($j==0);'.	# $b>>>2 | 
 | 	'&rorx	($b,@T[1],7)			if ($j!=0);',	# $b>>>2 | 
 | 	'&lea	($e,&DWP(0,$e,@T[0]));', | 
 | 	'&rorx	(@T[0],$a,5);', | 
 |  | 
 | 	'&andn	(@T[1],$a,$c);', | 
 | 	'&and	($a,$b)', | 
 | 	'&add	($d,&DWP(4*(($j+1)&15),"esp"));',	# X[]+K xfer | 
 |  | 
 | 	'&xor	(@T[1],$a)', | 
 | 	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' | 
 | 	); | 
 | } | 
 |  | 
 | sub bodyx_20_39 () {	# b^d^c | 
 | 	# on start $b=b^c^d | 
 | 	return &bodyx_40_59()	if ($rx==39);	$rx++; | 
 | 	( | 
 | 	'($a,$b,$c,$d,$e)=@V;'. | 
 |  | 
 | 	'&add	($e,($j==19?@T[0]:$b))', | 
 | 	'&rorx	($b,@T[1],7);',	# $b>>>2 | 
 | 	'&rorx	(@T[0],$a,5);', | 
 |  | 
 | 	'&xor	($a,$b)				if ($j<79);', | 
 | 	'&add	($d,&DWP(4*(($j+1)&15),"esp"))	if ($j<79);',	# X[]+K xfer | 
 | 	'&xor	($a,$c)				if ($j<79);', | 
 | 	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' | 
 | 	); | 
 | } | 
 |  | 
 | sub bodyx_40_59 () {	# ((b^c)&(c^d))^c | 
 | 	# on start $b=((b^c)&(c^d))^c | 
 | 	return &bodyx_20_39()	if ($rx==59);	$rx++; | 
 | 	( | 
 | 	'($a,$b,$c,$d,$e)=@V;'. | 
 |  | 
 | 	'&rorx	(@T[0],$a,5)', | 
 | 	'&lea	($e,&DWP(0,$e,$b))', | 
 | 	'&rorx	($b,@T[1],7)',	# $b>>>2 | 
 | 	'&add	($d,&DWP(4*(($j+1)&15),"esp"))',	# X[]+K xfer | 
 |  | 
 | 	'&mov	(@T[1],$c)', | 
 | 	'&xor	($a,$b)',	# b^c for next round | 
 | 	'&xor	(@T[1],$b)',	# c^d for next round | 
 |  | 
 | 	'&and	($a,@T[1])', | 
 | 	'&add	($e,@T[0])', | 
 | 	'&xor	($a,$b)'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));' | 
 | 	); | 
 | } | 
 |  | 
 | &set_label("loop",16); | 
 | 	&Xupdate_ssse3_16_31(\&body_00_19); | 
 | 	&Xupdate_ssse3_16_31(\&body_00_19); | 
 | 	&Xupdate_ssse3_16_31(\&body_00_19); | 
 | 	&Xupdate_ssse3_16_31(\&body_00_19); | 
 | 	&Xupdate_ssse3_32_79(\&body_00_19); | 
 | 	&Xupdate_ssse3_32_79(\&body_20_39); | 
 | 	&Xupdate_ssse3_32_79(\&body_20_39); | 
 | 	&Xupdate_ssse3_32_79(\&body_20_39); | 
 | 	&Xupdate_ssse3_32_79(\&body_20_39); | 
 | 	&Xupdate_ssse3_32_79(\&body_20_39); | 
 | 	&Xupdate_ssse3_32_79(\&body_40_59); | 
 | 	&Xupdate_ssse3_32_79(\&body_40_59); | 
 | 	&Xupdate_ssse3_32_79(\&body_40_59); | 
 | 	&Xupdate_ssse3_32_79(\&body_40_59); | 
 | 	&Xupdate_ssse3_32_79(\&body_40_59); | 
 | 	&Xupdate_ssse3_32_79(\&body_20_39); | 
 | 	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done" | 
 |  | 
 | 				$saved_j=$j; @saved_V=@V; | 
 |  | 
 | 	&Xloop_ssse3(\&body_20_39); | 
 | 	&Xloop_ssse3(\&body_20_39); | 
 | 	&Xloop_ssse3(\&body_20_39); | 
 |  | 
 | 	&mov	(@T[1],&DWP(192,"esp"));	# update context | 
 | 	&add	($A,&DWP(0,@T[1])); | 
 | 	&add	(@T[0],&DWP(4,@T[1]));		# $b | 
 | 	&add	($C,&DWP(8,@T[1])); | 
 | 	&mov	(&DWP(0,@T[1]),$A); | 
 | 	&add	($D,&DWP(12,@T[1])); | 
 | 	&mov	(&DWP(4,@T[1]),@T[0]); | 
 | 	&add	($E,&DWP(16,@T[1])); | 
 | 	&mov	(&DWP(8,@T[1]),$C); | 
 | 	&mov	($B,$C); | 
 | 	&mov	(&DWP(12,@T[1]),$D); | 
 | 	&xor	($B,$D); | 
 | 	&mov	(&DWP(16,@T[1]),$E); | 
 | 	&mov	(@T[1],@T[0]); | 
 | 	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]); | 
 | 	&and	(@T[0],$B); | 
 | 	&mov	($B,$T[1]); | 
 |  | 
 | 	&jmp	(&label("loop")); | 
 |  | 
 | &set_label("done",16);		$j=$saved_j; @V=@saved_V; | 
 |  | 
 | 	&Xtail_ssse3(\&body_20_39); | 
 | 	&Xtail_ssse3(\&body_20_39); | 
 | 	&Xtail_ssse3(\&body_20_39); | 
 |  | 
 | 	&mov	(@T[1],&DWP(192,"esp"));	# update context | 
 | 	&add	($A,&DWP(0,@T[1])); | 
 | 	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp | 
 | 	&add	(@T[0],&DWP(4,@T[1]));		# $b | 
 | 	&add	($C,&DWP(8,@T[1])); | 
 | 	&mov	(&DWP(0,@T[1]),$A); | 
 | 	&add	($D,&DWP(12,@T[1])); | 
 | 	&mov	(&DWP(4,@T[1]),@T[0]); | 
 | 	&add	($E,&DWP(16,@T[1])); | 
 | 	&mov	(&DWP(8,@T[1]),$C); | 
 | 	&mov	(&DWP(12,@T[1]),$D); | 
 | 	&mov	(&DWP(16,@T[1]),$E); | 
 |  | 
 | &function_end("_sha1_block_data_order_ssse3"); | 
 |  | 
 | $rx=0;	# reset | 
 |  | 
 | if ($ymm) { | 
 | my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded | 
 | my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4 | 
 | my @V=($A,$B,$C,$D,$E); | 
 | my $j=0;			# hash round | 
 | my @T=($T,$tmp1); | 
 | my $inp; | 
 |  | 
 | my $_rol=sub { &shld(@_[0],@_) }; | 
 | my $_ror=sub { &shrd(@_[0],@_) }; | 
 |  | 
 | &function_begin("_sha1_block_data_order_avx"); | 
 | 	&call	(&label("pic_point"));	# make it PIC! | 
 | 	&set_label("pic_point"); | 
 | 	&blindpop($tmp1); | 
 | 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1)); | 
 | &set_label("avx_shortcut"); | 
 | 	&vzeroall(); | 
 |  | 
 | 	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19 | 
 | 	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39 | 
 | 	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59 | 
 | 	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79 | 
 | 	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask | 
 |  | 
 | 	&mov	($E,&wparam(0));		# load argument block | 
 | 	&mov	($inp=@T[1],&wparam(1)); | 
 | 	&mov	($D,&wparam(2)); | 
 | 	&mov	(@T[0],"esp"); | 
 |  | 
 | 	# stack frame layout | 
 | 	# | 
 | 	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area | 
 | 	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K | 
 | 	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K | 
 | 	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K | 
 | 	# | 
 | 	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area | 
 | 	#	X[4]	X[5]	X[6]	X[7] | 
 | 	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19 | 
 | 	# | 
 | 	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants | 
 | 	#	K_40_59	K_40_59	K_40_59	K_40_59 | 
 | 	#	K_60_79	K_60_79	K_60_79	K_60_79 | 
 | 	#	K_00_19	K_00_19	K_00_19	K_00_19 | 
 | 	#	pbswap mask | 
 | 	# | 
 | 	# +192	ctx				# argument block | 
 | 	# +196	inp | 
 | 	# +200	end | 
 | 	# +204	esp | 
 | 	&sub	("esp",208); | 
 | 	&and	("esp",-64); | 
 |  | 
 | 	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants | 
 | 	&vmovdqa(&QWP(112+16,"esp"),@X[5]); | 
 | 	&vmovdqa(&QWP(112+32,"esp"),@X[6]); | 
 | 	&shl	($D,6);				# len*64 | 
 | 	&vmovdqa(&QWP(112+48,"esp"),@X[3]); | 
 | 	&add	($D,$inp);			# end of input | 
 | 	&vmovdqa(&QWP(112+64,"esp"),@X[2]); | 
 | 	&add	($inp,64); | 
 | 	&mov	(&DWP(192+0,"esp"),$E);		# save argument block | 
 | 	&mov	(&DWP(192+4,"esp"),$inp); | 
 | 	&mov	(&DWP(192+8,"esp"),$D); | 
 | 	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp | 
 |  | 
 | 	&mov	($A,&DWP(0,$E));		# load context | 
 | 	&mov	($B,&DWP(4,$E)); | 
 | 	&mov	($C,&DWP(8,$E)); | 
 | 	&mov	($D,&DWP(12,$E)); | 
 | 	&mov	($E,&DWP(16,$E)); | 
 | 	&mov	(@T[0],$B);			# magic seed | 
 |  | 
 | 	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3] | 
 | 	&vmovdqu(@X[-3&7],&QWP(-48,$inp)); | 
 | 	&vmovdqu(@X[-2&7],&QWP(-32,$inp)); | 
 | 	&vmovdqu(@X[-1&7],&QWP(-16,$inp)); | 
 | 	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap | 
 | 	&vpshufb(@X[-3&7],@X[-3&7],@X[2]); | 
 | 	&vpshufb(@X[-2&7],@X[-2&7],@X[2]); | 
 | 	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot | 
 | 	&vpshufb(@X[-1&7],@X[-1&7],@X[2]); | 
 | 	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19 | 
 | 	&vpaddd	(@X[1],@X[-3&7],@X[3]); | 
 | 	&vpaddd	(@X[2],@X[-2&7],@X[3]); | 
 | 	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU | 
 | 	&mov	(@T[1],$C); | 
 | 	&vmovdqa(&QWP(0+16,"esp"),@X[1]); | 
 | 	&xor	(@T[1],$D); | 
 | 	&vmovdqa(&QWP(0+32,"esp"),@X[2]); | 
 | 	&and	(@T[0],@T[1]); | 
 | 	&jmp	(&label("loop")); | 
 |  | 
 | sub Xupdate_avx_16_31()		# recall that $Xi starts wtih 4 | 
 | { use integer; | 
 |   my $body = shift; | 
 |   my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions | 
 |   my ($a,$b,$c,$d,$e); | 
 |  | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]" | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	  &vpaddd	(@X[3],@X[3],@X[-1&7]); | 
 | 	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]" | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]" | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]" | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&vpsrld	(@X[2],@X[0],31); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword | 
 | 	&vpaddd	(@X[0],@X[0],@X[0]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&vpsrld	(@X[3],@X[4],30); | 
 | 	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1 | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&vpslld	(@X[4],@X[4],2); | 
 | 	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&vpxor	(@X[0],@X[0],@X[3]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2 | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	 foreach (@insns) { eval; }	# remaining instructions [if any] | 
 |  | 
 |   $Xi++;	push(@X,shift(@X));	# "rotate" X[] | 
 | } | 
 |  | 
 | sub Xupdate_avx_32_79() | 
 | { use integer; | 
 |   my $body = shift; | 
 |   my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions | 
 |   my ($a,$b,$c,$d,$e); | 
 |  | 
 | 	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]" | 
 | 	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]" | 
 | 	 eval(shift(@insns));		# body_20_39 | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# rol | 
 |  | 
 | 	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]" | 
 | 	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 if ($Xi%5) { | 
 | 	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX... | 
 | 	 } else {			# ... or load next one | 
 | 	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp")); | 
 | 	 } | 
 | 	  &vpaddd	(@X[3],@X[3],@X[-1&7]); | 
 | 	 eval(shift(@insns));		# ror | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]" | 
 | 	 eval(shift(@insns));		# body_20_39 | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# rol | 
 |  | 
 | 	&vpsrld	(@X[2],@X[0],30); | 
 | 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# ror | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&vpslld	(@X[0],@X[0],2); | 
 | 	 eval(shift(@insns));		# body_20_39 | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# rol | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# ror | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2 | 
 | 	 eval(shift(@insns));		# body_20_39 | 
 | 	 eval(shift(@insns)); | 
 | 	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# rol | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns));		# ror | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	 foreach (@insns) { eval; }	# remaining instructions | 
 |  | 
 |   $Xi++;	push(@X,shift(@X));	# "rotate" X[] | 
 | } | 
 |  | 
 | sub Xuplast_avx_80() | 
 | { use integer; | 
 |   my $body = shift; | 
 |   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions | 
 |   my ($a,$b,$c,$d,$e); | 
 |  | 
 | 	 eval(shift(@insns)); | 
 | 	  &vpaddd	(@X[3],@X[3],@X[-1&7]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU | 
 |  | 
 | 	 foreach (@insns) { eval; }		# remaining instructions | 
 |  | 
 | 	&mov	($inp=@T[1],&DWP(192+4,"esp")); | 
 | 	&cmp	($inp,&DWP(192+8,"esp")); | 
 | 	&je	(&label("done")); | 
 |  | 
 | 	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19 | 
 | 	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask | 
 | 	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input | 
 | 	&vmovdqu(@X[-3&7],&QWP(16,$inp)); | 
 | 	&vmovdqu(@X[-2&7],&QWP(32,$inp)); | 
 | 	&vmovdqu(@X[-1&7],&QWP(48,$inp)); | 
 | 	&add	($inp,64); | 
 | 	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap | 
 | 	&mov	(&DWP(192+4,"esp"),$inp); | 
 | 	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot | 
 |  | 
 |   $Xi=0; | 
 | } | 
 |  | 
 | sub Xloop_avx() | 
 | { use integer; | 
 |   my $body = shift; | 
 |   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions | 
 |   my ($a,$b,$c,$d,$e); | 
 |  | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 | 	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU | 
 | 	 eval(shift(@insns)); | 
 | 	 eval(shift(@insns)); | 
 |  | 
 | 	foreach (@insns) { eval; } | 
 |   $Xi++; | 
 | } | 
 |  | 
 | sub Xtail_avx() | 
 | { use integer; | 
 |   my $body = shift; | 
 |   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions | 
 |   my ($a,$b,$c,$d,$e); | 
 |  | 
 | 	foreach (@insns) { eval; } | 
 | } | 
 |  | 
 | &set_label("loop",16); | 
 | 	&Xupdate_avx_16_31(\&body_00_19); | 
 | 	&Xupdate_avx_16_31(\&body_00_19); | 
 | 	&Xupdate_avx_16_31(\&body_00_19); | 
 | 	&Xupdate_avx_16_31(\&body_00_19); | 
 | 	&Xupdate_avx_32_79(\&body_00_19); | 
 | 	&Xupdate_avx_32_79(\&body_20_39); | 
 | 	&Xupdate_avx_32_79(\&body_20_39); | 
 | 	&Xupdate_avx_32_79(\&body_20_39); | 
 | 	&Xupdate_avx_32_79(\&body_20_39); | 
 | 	&Xupdate_avx_32_79(\&body_20_39); | 
 | 	&Xupdate_avx_32_79(\&body_40_59); | 
 | 	&Xupdate_avx_32_79(\&body_40_59); | 
 | 	&Xupdate_avx_32_79(\&body_40_59); | 
 | 	&Xupdate_avx_32_79(\&body_40_59); | 
 | 	&Xupdate_avx_32_79(\&body_40_59); | 
 | 	&Xupdate_avx_32_79(\&body_20_39); | 
 | 	&Xuplast_avx_80(\&body_20_39);	# can jump to "done" | 
 |  | 
 | 				$saved_j=$j; @saved_V=@V; | 
 |  | 
 | 	&Xloop_avx(\&body_20_39); | 
 | 	&Xloop_avx(\&body_20_39); | 
 | 	&Xloop_avx(\&body_20_39); | 
 |  | 
 | 	&mov	(@T[1],&DWP(192,"esp"));	# update context | 
 | 	&add	($A,&DWP(0,@T[1])); | 
 | 	&add	(@T[0],&DWP(4,@T[1]));		# $b | 
 | 	&add	($C,&DWP(8,@T[1])); | 
 | 	&mov	(&DWP(0,@T[1]),$A); | 
 | 	&add	($D,&DWP(12,@T[1])); | 
 | 	&mov	(&DWP(4,@T[1]),@T[0]); | 
 | 	&add	($E,&DWP(16,@T[1])); | 
 | 	&mov	($B,$C); | 
 | 	&mov	(&DWP(8,@T[1]),$C); | 
 | 	&xor	($B,$D); | 
 | 	&mov	(&DWP(12,@T[1]),$D); | 
 | 	&mov	(&DWP(16,@T[1]),$E); | 
 | 	&mov	(@T[1],@T[0]); | 
 | 	&and	(@T[0],$B); | 
 | 	&mov	($B,@T[1]); | 
 |  | 
 | 	&jmp	(&label("loop")); | 
 |  | 
 | &set_label("done",16);		$j=$saved_j; @V=@saved_V; | 
 |  | 
 | 	&Xtail_avx(\&body_20_39); | 
 | 	&Xtail_avx(\&body_20_39); | 
 | 	&Xtail_avx(\&body_20_39); | 
 |  | 
 | 	&vzeroall(); | 
 |  | 
 | 	&mov	(@T[1],&DWP(192,"esp"));	# update context | 
 | 	&add	($A,&DWP(0,@T[1])); | 
 | 	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp | 
 | 	&add	(@T[0],&DWP(4,@T[1]));		# $b | 
 | 	&add	($C,&DWP(8,@T[1])); | 
 | 	&mov	(&DWP(0,@T[1]),$A); | 
 | 	&add	($D,&DWP(12,@T[1])); | 
 | 	&mov	(&DWP(4,@T[1]),@T[0]); | 
 | 	&add	($E,&DWP(16,@T[1])); | 
 | 	&mov	(&DWP(8,@T[1]),$C); | 
 | 	&mov	(&DWP(12,@T[1]),$D); | 
 | 	&mov	(&DWP(16,@T[1]),$E); | 
 | &function_end("_sha1_block_data_order_avx"); | 
 | } | 
 | &set_label("K_XX_XX",64); | 
 | &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19 | 
 | &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39 | 
 | &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59 | 
 | &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79 | 
 | &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask | 
 | &data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0); | 
 | } | 
 | &asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>"); | 
 |  | 
 | &asm_finish(); |