blob: 4d7dfe28f9cac19f8de21deb0171341ea719942f [file] [log] [blame] [edit]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#if !defined(_POSIX_C_SOURCE)
#define _POSIX_C_SOURCE 201410L
#endif
#include <openssl/base.h>
#if !defined(OPENSSL_WINDOWS)
#include <arpa/inet.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>
#else
#include <io.h>
#pragma warning(push, 3)
#include <winsock2.h>
#include <ws2tcpip.h>
#pragma warning(pop)
#endif
#include <openssl/bio.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <algorithm>
#include "../test/scoped_types.h"
#if !defined(OPENSSL_WINDOWS)
static int closesocket(int sock) {
return close(sock);
}
static void PrintSocketError(const char *func) {
perror(func);
}
#else
static void PrintSocketError(const char *func) {
fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
}
#endif
class ScopedSocket {
public:
ScopedSocket(int sock) : sock_(sock) {}
~ScopedSocket() {
closesocket(sock_);
}
private:
const int sock_;
};
static bool TestSocketConnect() {
static const char kTestMessage[] = "test";
int listening_sock = socket(AF_INET, SOCK_STREAM, 0);
if (listening_sock == -1) {
PrintSocketError("socket");
return false;
}
ScopedSocket listening_sock_closer(listening_sock);
struct sockaddr_in sin;
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) {
PrintSocketError("inet_pton");
return false;
}
if (bind(listening_sock, (struct sockaddr *)&sin, sizeof(sin)) != 0) {
PrintSocketError("bind");
return false;
}
if (listen(listening_sock, 1)) {
PrintSocketError("listen");
return false;
}
socklen_t sockaddr_len = sizeof(sin);
if (getsockname(listening_sock, (struct sockaddr *)&sin, &sockaddr_len) ||
sockaddr_len != sizeof(sin)) {
PrintSocketError("getsockname");
return false;
}
char hostname[80];
BIO_snprintf(hostname, sizeof(hostname), "%s:%d", "127.0.0.1",
ntohs(sin.sin_port));
ScopedBIO bio(BIO_new_connect(hostname));
if (!bio) {
fprintf(stderr, "BIO_new_connect failed.\n");
return false;
}
if (BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage)) !=
sizeof(kTestMessage)) {
fprintf(stderr, "BIO_write failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
int sock = accept(listening_sock, (struct sockaddr *) &sin, &sockaddr_len);
if (sock == -1) {
PrintSocketError("accept");
return false;
}
ScopedSocket sock_closer(sock);
char buf[5];
if (recv(sock, buf, sizeof(buf), 0) != sizeof(kTestMessage)) {
PrintSocketError("read");
return false;
}
if (memcmp(buf, kTestMessage, sizeof(kTestMessage))) {
return false;
}
return true;
}
// BioReadZeroCopyWrapper is a wrapper around the zero-copy APIs to make
// testing easier.
static size_t BioReadZeroCopyWrapper(BIO *bio, uint8_t *data, size_t len) {
uint8_t *read_buf;
size_t read_buf_offset;
size_t available_bytes;
size_t len_read = 0;
do {
if (!BIO_zero_copy_get_read_buf(bio, &read_buf, &read_buf_offset,
&available_bytes)) {
return 0;
}
available_bytes = std::min(available_bytes, len - len_read);
memmove(data + len_read, read_buf + read_buf_offset, available_bytes);
BIO_zero_copy_get_read_buf_done(bio, available_bytes);
len_read += available_bytes;
} while (len - len_read > 0 && available_bytes > 0);
return len_read;
}
// BioWriteZeroCopyWrapper is a wrapper around the zero-copy APIs to make
// testing easier.
static size_t BioWriteZeroCopyWrapper(BIO *bio, const uint8_t *data,
size_t len) {
uint8_t *write_buf;
size_t write_buf_offset;
size_t available_bytes;
size_t len_written = 0;
do {
if (!BIO_zero_copy_get_write_buf(bio, &write_buf, &write_buf_offset,
&available_bytes)) {
return 0;
}
available_bytes = std::min(available_bytes, len - len_written);
memmove(write_buf + write_buf_offset, data + len_written, available_bytes);
BIO_zero_copy_get_write_buf_done(bio, available_bytes);
len_written += available_bytes;
} while (len - len_written > 0 && available_bytes > 0);
return len_written;
}
static bool TestZeroCopyBioPairs() {
// Test read and write, especially triggering the ring buffer wrap-around.
uint8_t bio1_application_send_buffer[1024];
uint8_t bio2_application_recv_buffer[1024];
const size_t kLengths[] = {254, 255, 256, 257, 510, 511, 512, 513};
// These trigger ring buffer wrap around.
const size_t kPartialLengths[] = {0, 1, 2, 3, 128, 255, 256, 257, 511, 512};
static const size_t kBufferSize = 512;
srand(1);
for (size_t i = 0; i < sizeof(bio1_application_send_buffer); i++) {
bio1_application_send_buffer[i] = rand() & 255;
}
// Transfer bytes from bio1_application_send_buffer to
// bio2_application_recv_buffer in various ways.
for (size_t i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) {
for (size_t j = 0; j < sizeof(kPartialLengths) / sizeof(kPartialLengths[0]);
j++) {
size_t total_write = 0;
size_t total_read = 0;
BIO *bio1, *bio2;
if (!BIO_new_bio_pair(&bio1, kBufferSize, &bio2, kBufferSize)) {
return false;
}
ScopedBIO bio1_scoper(bio1);
ScopedBIO bio2_scoper(bio2);
total_write += BioWriteZeroCopyWrapper(
bio1, bio1_application_send_buffer, kLengths[i]);
// This tests interleaved read/write calls. Do a read between zero copy
// write calls.
uint8_t *write_buf;
size_t write_buf_offset;
size_t available_bytes;
if (!BIO_zero_copy_get_write_buf(bio1, &write_buf, &write_buf_offset,
&available_bytes)) {
return false;
}
// Free kPartialLengths[j] bytes in the beginning of bio1 write buffer.
// This enables ring buffer wrap around for the next write.
total_read += BIO_read(bio2, bio2_application_recv_buffer + total_read,
kPartialLengths[j]);
size_t interleaved_write_len = std::min(kPartialLengths[j],
available_bytes);
// Write the data for the interleaved write call. If the buffer becomes
// empty after a read, the write offset is normally set to 0. Check that
// this does not happen for interleaved read/write and that
// |write_buf_offset| is still valid.
memcpy(write_buf + write_buf_offset,
bio1_application_send_buffer + total_write, interleaved_write_len);
if (BIO_zero_copy_get_write_buf_done(bio1, interleaved_write_len)) {
total_write += interleaved_write_len;
}
// Do another write in case |write_buf_offset| was wrapped.
total_write += BioWriteZeroCopyWrapper(
bio1, bio1_application_send_buffer + total_write,
kPartialLengths[j] - interleaved_write_len);
// Drain the rest.
size_t bytes_left = BIO_pending(bio2);
total_read += BioReadZeroCopyWrapper(
bio2, bio2_application_recv_buffer + total_read, bytes_left);
if (total_read != total_write) {
fprintf(stderr, "Lengths not equal in round (%u, %u)\n", (unsigned)i,
(unsigned)j);
return false;
}
if (total_read > kLengths[i] + kPartialLengths[j]) {
fprintf(stderr, "Bad lengths in round (%u, %u)\n", (unsigned)i,
(unsigned)j);
return false;
}
if (memcmp(bio1_application_send_buffer, bio2_application_recv_buffer,
total_read) != 0) {
fprintf(stderr, "Buffers not equal in round (%u, %u)\n", (unsigned)i,
(unsigned)j);
return false;
}
}
}
return true;
}
static bool TestPrintf() {
// Test a short output, a very long one, and various sizes around
// 256 (the size of the buffer) to ensure edge cases are correct.
static const size_t kLengths[] = { 5, 250, 251, 252, 253, 254, 1023 };
ScopedBIO bio(BIO_new(BIO_s_mem()));
if (!bio) {
fprintf(stderr, "BIO_new failed\n");
return false;
}
for (size_t i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) {
char string[1024];
if (kLengths[i] >= sizeof(string)) {
fprintf(stderr, "Bad test string length\n");
return false;
}
memset(string, 'a', sizeof(string));
string[kLengths[i]] = '\0';
int ret = BIO_printf(bio.get(), "test %s", string);
if (ret < 0 || static_cast<size_t>(ret) != 5 + kLengths[i]) {
fprintf(stderr, "BIO_printf failed: %d\n", ret);
return false;
}
const uint8_t *contents;
size_t len;
if (!BIO_mem_contents(bio.get(), &contents, &len)) {
fprintf(stderr, "BIO_mem_contents failed\n");
return false;
}
if (len != 5 + kLengths[i] ||
strncmp((const char *)contents, "test ", 5) != 0 ||
strncmp((const char *)contents + 5, string, kLengths[i]) != 0) {
fprintf(stderr, "Contents did not match: %.*s\n", (int)len, contents);
return false;
}
if (!BIO_reset(bio.get())) {
fprintf(stderr, "BIO_reset failed\n");
return false;
}
}
return true;
}
static bool ReadASN1(bool should_succeed, const uint8_t *data, size_t data_len,
size_t expected_len, size_t max_len) {
ScopedBIO bio(BIO_new_mem_buf(const_cast<uint8_t*>(data), data_len));
uint8_t *out;
size_t out_len;
int ok = BIO_read_asn1(bio.get(), &out, &out_len, max_len);
if (!ok) {
out = nullptr;
}
ScopedOpenSSLBytes out_storage(out);
if (should_succeed != (ok == 1)) {
return false;
}
if (should_succeed &&
(out_len != expected_len || memcmp(data, out, expected_len) != 0)) {
return false;
}
return true;
}
static bool TestASN1() {
static const uint8_t kData1[] = {0x30, 2, 1, 2, 0, 0};
static const uint8_t kData2[] = {0x30, 3, 1, 2}; /* truncated */
static const uint8_t kData3[] = {0x30, 0x81, 1, 1}; /* should be short len */
static const uint8_t kData4[] = {0x30, 0x82, 0, 1, 1}; /* zero padded. */
if (!ReadASN1(true, kData1, sizeof(kData1), 4, 100) ||
!ReadASN1(false, kData2, sizeof(kData2), 0, 100) ||
!ReadASN1(false, kData3, sizeof(kData3), 0, 100) ||
!ReadASN1(false, kData4, sizeof(kData4), 0, 100)) {
return false;
}
static const size_t kLargePayloadLen = 8000;
static const uint8_t kLargePrefix[] = {0x30, 0x82, kLargePayloadLen >> 8,
kLargePayloadLen & 0xff};
ScopedOpenSSLBytes large(reinterpret_cast<uint8_t *>(
OPENSSL_malloc(sizeof(kLargePrefix) + kLargePayloadLen)));
if (!large) {
return false;
}
memset(large.get() + sizeof(kLargePrefix), 0, kLargePayloadLen);
memcpy(large.get(), kLargePrefix, sizeof(kLargePrefix));
if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
sizeof(kLargePrefix) + kLargePayloadLen,
kLargePayloadLen * 2)) {
fprintf(stderr, "Large payload test failed.\n");
return false;
}
if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
sizeof(kLargePrefix) + kLargePayloadLen,
kLargePayloadLen - 1)) {
fprintf(stderr, "max_len test failed.\n");
return false;
}
static const uint8_t kIndefPrefix[] = {0x30, 0x80};
memcpy(large.get(), kIndefPrefix, sizeof(kIndefPrefix));
if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
sizeof(kLargePrefix) + kLargePayloadLen,
kLargePayloadLen*2)) {
fprintf(stderr, "indefinite length test failed.\n");
return false;
}
if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen,
sizeof(kLargePrefix) + kLargePayloadLen,
kLargePayloadLen-1)) {
fprintf(stderr, "indefinite length, max_len test failed.\n");
return false;
}
return true;
}
int main(void) {
CRYPTO_library_init();
ERR_load_crypto_strings();
#if defined(OPENSSL_WINDOWS)
// Initialize Winsock.
WORD wsa_version = MAKEWORD(2, 2);
WSADATA wsa_data;
int wsa_err = WSAStartup(wsa_version, &wsa_data);
if (wsa_err != 0) {
fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
return 1;
}
if (wsa_data.wVersion != wsa_version) {
fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
return 1;
}
#endif
if (!TestSocketConnect() ||
!TestPrintf() ||
!TestZeroCopyBioPairs() ||
!TestASN1()) {
return 1;
}
printf("PASS\n");
return 0;
}