| /* ==================================================================== |
| * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/bio.h> |
| |
| #include <assert.h> |
| |
| #include <openssl/buf.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| |
| struct bio_bio_st { |
| BIO *peer; /* NULL if buf == NULL. |
| * If peer != NULL, then peer->ptr is also a bio_bio_st, |
| * and its "peer" member points back to us. |
| * peer != NULL iff init != 0 in the BIO. */ |
| |
| /* This is for what we write (i.e. reading uses peer's struct): */ |
| int closed; /* valid iff peer != NULL */ |
| size_t len; /* valid iff buf != NULL; 0 if peer == NULL */ |
| size_t offset; /* valid iff buf != NULL; 0 if len == 0 */ |
| size_t size; |
| uint8_t *buf; /* "size" elements (if != NULL) */ |
| char buf_externally_allocated; /* true iff buf was externally allocated. */ |
| |
| char zero_copy_read_lock; /* true iff a zero copy read operation |
| * is in progress. */ |
| char zero_copy_write_lock; /* true iff a zero copy write operation |
| * is in progress. */ |
| |
| size_t request; /* valid iff peer != NULL; 0 if len != 0, |
| * otherwise set by peer to number of bytes |
| * it (unsuccessfully) tried to read, |
| * never more than buffer space (size-len) warrants. */ |
| }; |
| |
| static int bio_new(BIO *bio) { |
| struct bio_bio_st *b; |
| |
| b = OPENSSL_malloc(sizeof *b); |
| if (b == NULL) { |
| return 0; |
| } |
| memset(b, 0, sizeof(struct bio_bio_st)); |
| |
| b->size = 17 * 1024; /* enough for one TLS record (just a default) */ |
| bio->ptr = b; |
| return 1; |
| } |
| |
| static void bio_destroy_pair(BIO *bio) { |
| struct bio_bio_st *b = bio->ptr; |
| BIO *peer_bio; |
| struct bio_bio_st *peer_b; |
| |
| if (b == NULL) { |
| return; |
| } |
| |
| peer_bio = b->peer; |
| if (peer_bio == NULL) { |
| return; |
| } |
| |
| peer_b = peer_bio->ptr; |
| |
| assert(peer_b != NULL); |
| assert(peer_b->peer == bio); |
| |
| peer_b->peer = NULL; |
| peer_bio->init = 0; |
| assert(peer_b->buf != NULL); |
| peer_b->len = 0; |
| peer_b->offset = 0; |
| |
| b->peer = NULL; |
| bio->init = 0; |
| assert(b->buf != NULL); |
| b->len = 0; |
| b->offset = 0; |
| } |
| |
| static int bio_free(BIO *bio) { |
| struct bio_bio_st *b; |
| |
| if (bio == NULL) { |
| return 0; |
| } |
| b = bio->ptr; |
| |
| assert(b != NULL); |
| |
| if (b->peer) { |
| bio_destroy_pair(bio); |
| } |
| |
| if (b->buf != NULL && !b->buf_externally_allocated) { |
| OPENSSL_free(b->buf); |
| } |
| |
| OPENSSL_free(b); |
| |
| return 1; |
| } |
| |
| static size_t bio_zero_copy_get_read_buf(struct bio_bio_st* peer_b, |
| uint8_t** out_read_buf, |
| size_t* out_buf_offset) { |
| size_t max_available; |
| if (peer_b->len > peer_b->size - peer_b->offset) { |
| /* Only the first half of the ring buffer can be read. */ |
| max_available = peer_b->size - peer_b->offset; |
| } else { |
| max_available = peer_b->len; |
| } |
| |
| *out_read_buf = peer_b->buf; |
| *out_buf_offset = peer_b->offset; |
| return max_available; |
| } |
| |
| int BIO_zero_copy_get_read_buf(BIO* bio, uint8_t** out_read_buf, |
| size_t* out_buf_offset, |
| size_t* out_available_bytes) { |
| struct bio_bio_st* b; |
| struct bio_bio_st* peer_b; |
| size_t max_available; |
| *out_available_bytes = 0; |
| |
| BIO_clear_retry_flags(bio); |
| |
| if (!bio->init) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf, BIO_R_UNINITIALIZED); |
| return 0; |
| } |
| |
| b = bio->ptr; |
| |
| if (!b || !b->peer) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf, |
| BIO_R_UNSUPPORTED_METHOD); |
| return 0; |
| } |
| |
| peer_b = b->peer->ptr; |
| if (!peer_b || !peer_b->peer || peer_b->peer->ptr != b) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf, |
| BIO_R_UNSUPPORTED_METHOD); |
| return 0; |
| } |
| |
| if (peer_b->zero_copy_read_lock) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf, BIO_R_INVALID_ARGUMENT); |
| return 0; |
| } |
| |
| peer_b->request = 0; /* Is not used by zero-copy API. */ |
| |
| max_available = |
| bio_zero_copy_get_read_buf(peer_b, out_read_buf, out_buf_offset); |
| |
| assert(peer_b->buf != NULL); |
| if (max_available > 0) { |
| peer_b->zero_copy_read_lock = 1; |
| } |
| |
| *out_available_bytes = max_available; |
| return 1; |
| } |
| |
| int BIO_zero_copy_get_read_buf_done(BIO* bio, size_t bytes_read) { |
| struct bio_bio_st* b; |
| struct bio_bio_st* peer_b; |
| size_t max_available; |
| size_t dummy_read_offset; |
| uint8_t* dummy_read_buf; |
| |
| assert(BIO_get_retry_flags(bio) == 0); |
| |
| if (!bio->init) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf_done, |
| BIO_R_UNINITIALIZED); |
| return 0; |
| } |
| |
| b = bio->ptr; |
| |
| if (!b || !b->peer) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf_done, |
| BIO_R_UNSUPPORTED_METHOD); |
| return 0; |
| } |
| |
| peer_b = b->peer->ptr; |
| if (!peer_b || !peer_b->peer || peer_b->peer->ptr != b) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf_done, |
| BIO_R_UNSUPPORTED_METHOD); |
| return 0; |
| } |
| |
| if (!peer_b->zero_copy_read_lock) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf_done, |
| BIO_R_INVALID_ARGUMENT); |
| return 0; |
| } |
| |
| max_available = |
| bio_zero_copy_get_read_buf(peer_b, &dummy_read_buf, &dummy_read_offset); |
| if (bytes_read > max_available) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_read_buf_done, |
| BIO_R_INVALID_ARGUMENT); |
| return 0; |
| } |
| |
| peer_b->len -= bytes_read; |
| assert(peer_b->len >= 0); |
| assert(peer_b->offset + bytes_read <= peer_b->size); |
| |
| /* Move read offset. If zero_copy_write_lock == 1 we must advance the |
| * offset even if buffer becomes empty, to make sure |
| * write_offset = (offset + len) mod size does not change. */ |
| if (peer_b->offset + bytes_read == peer_b->size || |
| (!peer_b->zero_copy_write_lock && peer_b->len == 0)) { |
| peer_b->offset = 0; |
| } else { |
| peer_b->offset += bytes_read; |
| } |
| |
| bio->num_read += bytes_read; |
| peer_b->zero_copy_read_lock = 0; |
| return 1; |
| } |
| |
| static size_t bio_zero_copy_get_write_buf(struct bio_bio_st* b, |
| uint8_t** out_write_buf, |
| size_t* out_buf_offset) { |
| size_t write_offset; |
| size_t max_available; |
| |
| assert(b->len <= b->size); |
| |
| write_offset = b->offset + b->len; |
| |
| if (write_offset >= b->size) { |
| /* Only the first half of the ring buffer can be written to. */ |
| write_offset -= b->size; |
| /* write up to the start of the ring buffer. */ |
| max_available = b->offset - write_offset; |
| } else { |
| /* write up to the end the buffer. */ |
| max_available = b->size - write_offset; |
| } |
| |
| *out_write_buf = b->buf; |
| *out_buf_offset = write_offset; |
| return max_available; |
| } |
| |
| int BIO_zero_copy_get_write_buf(BIO* bio, uint8_t** out_write_buf, |
| size_t* out_buf_offset, |
| size_t* out_available_bytes) { |
| struct bio_bio_st* b; |
| struct bio_bio_st* peer_b; |
| size_t max_available; |
| |
| *out_available_bytes = 0; |
| BIO_clear_retry_flags(bio); |
| |
| if (!bio->init) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf, BIO_R_UNINITIALIZED); |
| return 0; |
| } |
| |
| b = bio->ptr; |
| |
| if (!b || !b->buf || !b->peer) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf, |
| BIO_R_UNSUPPORTED_METHOD); |
| return 0; |
| } |
| peer_b = b->peer->ptr; |
| if (!peer_b || !peer_b->peer || peer_b->peer->ptr != b) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf, |
| BIO_R_UNSUPPORTED_METHOD); |
| return 0; |
| } |
| |
| assert(b->buf != NULL); |
| |
| if (b->zero_copy_write_lock) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf, BIO_R_INVALID_ARGUMENT); |
| return 0; |
| } |
| |
| b->request = 0; |
| if (b->closed) { |
| /* Bio is already closed. */ |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf, BIO_R_BROKEN_PIPE); |
| return 0; |
| } |
| |
| max_available = bio_zero_copy_get_write_buf(b, out_write_buf, out_buf_offset); |
| |
| if (max_available > 0) { |
| b->zero_copy_write_lock = 1; |
| } |
| |
| *out_available_bytes = max_available; |
| return 1; |
| } |
| |
| int BIO_zero_copy_get_write_buf_done(BIO* bio, size_t bytes_written) { |
| struct bio_bio_st* b; |
| struct bio_bio_st* peer_b; |
| |
| size_t rest; |
| size_t dummy_write_offset; |
| uint8_t* dummy_write_buf; |
| |
| if (!bio->init) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, |
| BIO_R_UNINITIALIZED); |
| return 0; |
| } |
| |
| b = bio->ptr; |
| |
| if (!b || !b->buf || !b->peer) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, |
| BIO_R_UNSUPPORTED_METHOD); |
| return 0; |
| } |
| peer_b = b->peer->ptr; |
| if (!peer_b || !peer_b->peer || peer_b->peer->ptr != b) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, |
| BIO_R_UNSUPPORTED_METHOD); |
| return 0; |
| } |
| |
| b->request = 0; |
| if (b->closed) { |
| /* BIO is already closed. */ |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, BIO_R_BROKEN_PIPE); |
| return 0; |
| } |
| |
| if (!b->zero_copy_write_lock) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, |
| BIO_R_INVALID_ARGUMENT); |
| return 0; |
| } |
| |
| rest = bio_zero_copy_get_write_buf(b, &dummy_write_buf, &dummy_write_offset); |
| |
| if (bytes_written > rest) { |
| OPENSSL_PUT_ERROR(BIO, BIO_zero_copy_get_write_buf_done, |
| BIO_R_INVALID_ARGUMENT); |
| return 0; |
| } |
| |
| bio->num_write += bytes_written; |
| /* Move write offset. */ |
| b->len += bytes_written; |
| b->zero_copy_write_lock = 0; |
| return 1; |
| } |
| |
| static int bio_read(BIO *bio, char *buf, int size_) { |
| size_t size = size_; |
| size_t rest; |
| struct bio_bio_st *b, *peer_b; |
| |
| BIO_clear_retry_flags(bio); |
| |
| if (!bio->init) { |
| return 0; |
| } |
| |
| b = bio->ptr; |
| assert(b != NULL); |
| assert(b->peer != NULL); |
| peer_b = b->peer->ptr; |
| assert(peer_b != NULL); |
| assert(peer_b->buf != NULL); |
| |
| peer_b->request = 0; /* will be set in "retry_read" situation */ |
| |
| if (buf == NULL || size == 0 || peer_b->zero_copy_read_lock) { |
| return 0; |
| } |
| |
| if (peer_b->len == 0) { |
| if (peer_b->closed) { |
| return 0; /* writer has closed, and no data is left */ |
| } else { |
| BIO_set_retry_read(bio); /* buffer is empty */ |
| if (size <= peer_b->size) { |
| peer_b->request = size; |
| } else { |
| /* don't ask for more than the peer can |
| * deliver in one write */ |
| peer_b->request = peer_b->size; |
| } |
| return -1; |
| } |
| } |
| |
| /* we can read */ |
| if (peer_b->len < size) { |
| size = peer_b->len; |
| } |
| |
| /* now read "size" bytes */ |
| rest = size; |
| |
| assert(rest > 0); |
| /* one or two iterations */ |
| do { |
| size_t chunk; |
| |
| assert(rest <= peer_b->len); |
| if (peer_b->offset + rest <= peer_b->size) { |
| chunk = rest; |
| } else { |
| /* wrap around ring buffer */ |
| chunk = peer_b->size - peer_b->offset; |
| } |
| assert(peer_b->offset + chunk <= peer_b->size); |
| |
| memcpy(buf, peer_b->buf + peer_b->offset, chunk); |
| |
| peer_b->len -= chunk; |
| /* If zero_copy_write_lock == 1 we must advance the offset even if buffer |
| * becomes empty, to make sure write_offset = (offset + len) % size |
| * does not change. */ |
| if (peer_b->len || peer_b->zero_copy_write_lock) { |
| peer_b->offset += chunk; |
| assert(peer_b->offset <= peer_b->size); |
| if (peer_b->offset == peer_b->size) { |
| peer_b->offset = 0; |
| } |
| buf += chunk; |
| } else { |
| /* buffer now empty, no need to advance "buf" */ |
| assert(chunk == rest); |
| peer_b->offset = 0; |
| } |
| rest -= chunk; |
| } while (rest); |
| |
| return size; |
| } |
| |
| static int bio_write(BIO *bio, const char *buf, int num_) { |
| size_t num = num_; |
| size_t rest; |
| struct bio_bio_st *b; |
| |
| BIO_clear_retry_flags(bio); |
| |
| if (!bio->init || buf == NULL || num == 0) { |
| return 0; |
| } |
| |
| b = bio->ptr; |
| assert(b != NULL); |
| assert(b->peer != NULL); |
| assert(b->buf != NULL); |
| |
| if (b->zero_copy_write_lock) { |
| return 0; |
| } |
| |
| b->request = 0; |
| if (b->closed) { |
| /* we already closed */ |
| OPENSSL_PUT_ERROR(BIO, bio_write, BIO_R_BROKEN_PIPE); |
| return -1; |
| } |
| |
| assert(b->len <= b->size); |
| |
| if (b->len == b->size) { |
| BIO_set_retry_write(bio); /* buffer is full */ |
| return -1; |
| } |
| |
| /* we can write */ |
| if (num > b->size - b->len) { |
| num = b->size - b->len; |
| } |
| |
| /* now write "num" bytes */ |
| rest = num; |
| |
| assert(rest > 0); |
| /* one or two iterations */ |
| do { |
| size_t write_offset; |
| size_t chunk; |
| |
| assert(b->len + rest <= b->size); |
| |
| write_offset = b->offset + b->len; |
| if (write_offset >= b->size) { |
| write_offset -= b->size; |
| } |
| /* b->buf[write_offset] is the first byte we can write to. */ |
| |
| if (write_offset + rest <= b->size) { |
| chunk = rest; |
| } else { |
| /* wrap around ring buffer */ |
| chunk = b->size - write_offset; |
| } |
| |
| memcpy(b->buf + write_offset, buf, chunk); |
| |
| b->len += chunk; |
| |
| assert(b->len <= b->size); |
| |
| rest -= chunk; |
| buf += chunk; |
| } while (rest); |
| |
| return num; |
| } |
| |
| static int bio_make_pair(BIO* bio1, BIO* bio2, |
| size_t writebuf1_len, uint8_t* ext_writebuf1, |
| size_t writebuf2_len, uint8_t* ext_writebuf2) { |
| struct bio_bio_st *b1, *b2; |
| |
| assert(bio1 != NULL); |
| assert(bio2 != NULL); |
| |
| b1 = bio1->ptr; |
| b2 = bio2->ptr; |
| |
| if (b1->peer != NULL || b2->peer != NULL) { |
| OPENSSL_PUT_ERROR(BIO, bio_make_pair, BIO_R_IN_USE); |
| return 0; |
| } |
| |
| assert(b1->buf_externally_allocated == 0); |
| assert(b2->buf_externally_allocated == 0); |
| |
| if (b1->buf == NULL) { |
| if (writebuf1_len) { |
| b1->size = writebuf1_len; |
| } |
| if (!ext_writebuf1) { |
| b1->buf_externally_allocated = 0; |
| b1->buf = OPENSSL_malloc(b1->size); |
| if (b1->buf == NULL) { |
| OPENSSL_PUT_ERROR(BIO, bio_make_pair, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| } else { |
| b1->buf = ext_writebuf1; |
| b1->buf_externally_allocated = 1; |
| } |
| b1->len = 0; |
| b1->offset = 0; |
| } |
| |
| if (b2->buf == NULL) { |
| if (writebuf2_len) { |
| b2->size = writebuf2_len; |
| } |
| if (!ext_writebuf2) { |
| b2->buf_externally_allocated = 0; |
| b2->buf = OPENSSL_malloc(b2->size); |
| if (b2->buf == NULL) { |
| OPENSSL_PUT_ERROR(BIO, bio_make_pair, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| } else { |
| b2->buf = ext_writebuf2; |
| b2->buf_externally_allocated = 1; |
| } |
| b2->len = 0; |
| b2->offset = 0; |
| } |
| |
| b1->peer = bio2; |
| b1->closed = 0; |
| b1->request = 0; |
| b1->zero_copy_read_lock = 0; |
| b1->zero_copy_write_lock = 0; |
| b2->peer = bio1; |
| b2->closed = 0; |
| b2->request = 0; |
| b2->zero_copy_read_lock = 0; |
| b2->zero_copy_write_lock = 0; |
| |
| bio1->init = 1; |
| bio2->init = 1; |
| |
| return 1; |
| } |
| |
| static long bio_ctrl(BIO *bio, int cmd, long num, void *ptr) { |
| long ret; |
| struct bio_bio_st *b = bio->ptr; |
| |
| assert(b != NULL); |
| |
| switch (cmd) { |
| /* specific CTRL codes */ |
| |
| case BIO_C_GET_WRITE_BUF_SIZE: |
| ret = (long)b->size; |
| break; |
| |
| case BIO_C_GET_WRITE_GUARANTEE: |
| /* How many bytes can the caller feed to the next write |
| * without having to keep any? */ |
| if (b->peer == NULL || b->closed) { |
| ret = 0; |
| } else { |
| ret = (long)b->size - b->len; |
| } |
| break; |
| |
| case BIO_C_GET_READ_REQUEST: |
| /* If the peer unsuccessfully tried to read, how many bytes |
| * were requested? (As with BIO_CTRL_PENDING, that number |
| * can usually be treated as boolean.) */ |
| ret = (long)b->request; |
| break; |
| |
| case BIO_C_RESET_READ_REQUEST: |
| /* Reset request. (Can be useful after read attempts |
| * at the other side that are meant to be non-blocking, |
| * e.g. when probing SSL_read to see if any data is |
| * available.) */ |
| b->request = 0; |
| ret = 1; |
| break; |
| |
| case BIO_C_SHUTDOWN_WR: |
| /* similar to shutdown(..., SHUT_WR) */ |
| b->closed = 1; |
| ret = 1; |
| break; |
| |
| /* standard CTRL codes follow */ |
| |
| case BIO_CTRL_GET_CLOSE: |
| ret = bio->shutdown; |
| break; |
| |
| case BIO_CTRL_SET_CLOSE: |
| bio->shutdown = (int)num; |
| ret = 1; |
| break; |
| |
| case BIO_CTRL_PENDING: |
| if (b->peer != NULL) { |
| struct bio_bio_st *peer_b = b->peer->ptr; |
| ret = (long)peer_b->len; |
| } else { |
| ret = 0; |
| } |
| break; |
| |
| case BIO_CTRL_WPENDING: |
| ret = 0; |
| if (b->buf != NULL) { |
| ret = (long)b->len; |
| } |
| break; |
| |
| case BIO_CTRL_FLUSH: |
| ret = 1; |
| break; |
| |
| case BIO_CTRL_EOF: { |
| BIO *other_bio = ptr; |
| |
| if (other_bio) { |
| struct bio_bio_st *other_b = other_bio->ptr; |
| assert(other_b != NULL); |
| ret = other_b->len == 0 && other_b->closed; |
| } else { |
| ret = 1; |
| } |
| } break; |
| |
| default: |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| static int bio_puts(BIO *bio, const char *str) { |
| return bio_write(bio, str, strlen(str)); |
| } |
| |
| static const BIO_METHOD methods_biop = { |
| BIO_TYPE_BIO, "BIO pair", bio_write, bio_read, |
| bio_puts, NULL /* no bio_gets */, bio_ctrl, bio_new, |
| bio_free, NULL /* no bio_callback_ctrl */ |
| }; |
| |
| const BIO_METHOD *bio_s_bio(void) { return &methods_biop; } |
| |
| int BIO_new_bio_pair(BIO** bio1_p, size_t writebuf1, |
| BIO** bio2_p, size_t writebuf2) { |
| return BIO_new_bio_pair_external_buf(bio1_p, writebuf1, NULL, bio2_p, |
| writebuf2, NULL); |
| } |
| |
| int BIO_new_bio_pair_external_buf(BIO** bio1_p, size_t writebuf1_len, |
| uint8_t* ext_writebuf1, |
| BIO** bio2_p, size_t writebuf2_len, |
| uint8_t* ext_writebuf2) { |
| BIO *bio1 = NULL, *bio2 = NULL; |
| int ret = 0; |
| |
| /* External buffers must have sizes greater than 0. */ |
| if ((ext_writebuf1 && !writebuf1_len) || (ext_writebuf2 && !writebuf2_len)) { |
| goto err; |
| } |
| |
| bio1 = BIO_new(bio_s_bio()); |
| if (bio1 == NULL) { |
| goto err; |
| } |
| bio2 = BIO_new(bio_s_bio()); |
| if (bio2 == NULL) { |
| goto err; |
| } |
| |
| if (!bio_make_pair(bio1, bio2, writebuf1_len, ext_writebuf1, writebuf2_len, |
| ext_writebuf2)) { |
| goto err; |
| } |
| ret = 1; |
| |
| err: |
| if (ret == 0) { |
| if (bio1) { |
| BIO_free(bio1); |
| bio1 = NULL; |
| } |
| if (bio2) { |
| BIO_free(bio2); |
| bio2 = NULL; |
| } |
| } |
| |
| *bio1_p = bio1; |
| *bio2_p = bio2; |
| return ret; |
| } |
| |
| size_t BIO_ctrl_get_read_request(BIO *bio) { |
| return BIO_ctrl(bio, BIO_C_GET_READ_REQUEST, 0, NULL); |
| } |
| |
| size_t BIO_ctrl_get_write_guarantee(BIO *bio) { |
| return BIO_ctrl(bio, BIO_C_GET_WRITE_GUARANTEE, 0, NULL); |
| } |
| |
| int BIO_shutdown_wr(BIO *bio) { |
| return BIO_ctrl(bio, BIO_C_SHUTDOWN_WR, 0, NULL); |
| } |