| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * ECC cipher suite support in OpenSSL originally developed by |
| * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. |
| */ |
| /* ==================================================================== |
| * Copyright 2005 Nokia. All rights reserved. |
| * |
| * The portions of the attached software ("Contribution") is developed by |
| * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
| * license. |
| * |
| * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
| * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
| * support (see RFC 4279) to OpenSSL. |
| * |
| * No patent licenses or other rights except those expressly stated in |
| * the OpenSSL open source license shall be deemed granted or received |
| * expressly, by implication, estoppel, or otherwise. |
| * |
| * No assurances are provided by Nokia that the Contribution does not |
| * infringe the patent or other intellectual property rights of any third |
| * party or that the license provides you with all the necessary rights |
| * to make use of the Contribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
| * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
| * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
| * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
| * OTHERWISE. */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/md5.h> |
| #include <openssl/mem.h> |
| #include <openssl/sha.h> |
| #include <openssl/stack.h> |
| |
| #include "internal.h" |
| #include "../crypto/internal.h" |
| |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| static constexpr SSL_CIPHER kCiphers[] = { |
| // The RSA ciphers |
| |
| // Cipher 0A |
| { |
| SSL3_TXT_RSA_DES_192_CBC3_SHA, |
| "TLS_RSA_WITH_3DES_EDE_CBC_SHA", |
| SSL3_CK_RSA_DES_192_CBC3_SHA, |
| SSL_kRSA, |
| SSL_aRSA_DECRYPT, |
| SSL_3DES, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| |
| // New AES ciphersuites |
| |
| // Cipher 2F |
| { |
| TLS1_TXT_RSA_WITH_AES_128_SHA, |
| "TLS_RSA_WITH_AES_128_CBC_SHA", |
| TLS1_CK_RSA_WITH_AES_128_SHA, |
| SSL_kRSA, |
| SSL_aRSA_DECRYPT, |
| SSL_AES128, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| // Cipher 35 |
| { |
| TLS1_TXT_RSA_WITH_AES_256_SHA, |
| "TLS_RSA_WITH_AES_256_CBC_SHA", |
| TLS1_CK_RSA_WITH_AES_256_SHA, |
| SSL_kRSA, |
| SSL_aRSA_DECRYPT, |
| SSL_AES256, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| // PSK cipher suites. |
| |
| // Cipher 8C |
| { |
| TLS1_TXT_PSK_WITH_AES_128_CBC_SHA, |
| "TLS_PSK_WITH_AES_128_CBC_SHA", |
| TLS1_CK_PSK_WITH_AES_128_CBC_SHA, |
| SSL_kPSK, |
| SSL_aPSK, |
| SSL_AES128, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| // Cipher 8D |
| { |
| TLS1_TXT_PSK_WITH_AES_256_CBC_SHA, |
| "TLS_PSK_WITH_AES_256_CBC_SHA", |
| TLS1_CK_PSK_WITH_AES_256_CBC_SHA, |
| SSL_kPSK, |
| SSL_aPSK, |
| SSL_AES256, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| // GCM ciphersuites from RFC 5288 |
| |
| // Cipher 9C |
| { |
| TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256, |
| "TLS_RSA_WITH_AES_128_GCM_SHA256", |
| TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, |
| SSL_kRSA, |
| SSL_aRSA_DECRYPT, |
| SSL_AES128GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| // Cipher 9D |
| { |
| TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384, |
| "TLS_RSA_WITH_AES_256_GCM_SHA384", |
| TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, |
| SSL_kRSA, |
| SSL_aRSA_DECRYPT, |
| SSL_AES256GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA384, |
| }, |
| |
| // TLS 1.3 suites. |
| |
| // Cipher 1301 |
| { |
| TLS1_3_RFC_AES_128_GCM_SHA256, |
| "TLS_AES_128_GCM_SHA256", |
| TLS1_3_CK_AES_128_GCM_SHA256, |
| SSL_kGENERIC, |
| SSL_aGENERIC, |
| SSL_AES128GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| // Cipher 1302 |
| { |
| TLS1_3_RFC_AES_256_GCM_SHA384, |
| "TLS_AES_256_GCM_SHA384", |
| TLS1_3_CK_AES_256_GCM_SHA384, |
| SSL_kGENERIC, |
| SSL_aGENERIC, |
| SSL_AES256GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA384, |
| }, |
| |
| // Cipher 1303 |
| { |
| TLS1_3_RFC_CHACHA20_POLY1305_SHA256, |
| "TLS_CHACHA20_POLY1305_SHA256", |
| TLS1_3_CK_CHACHA20_POLY1305_SHA256, |
| SSL_kGENERIC, |
| SSL_aGENERIC, |
| SSL_CHACHA20POLY1305, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| // Cipher C009 |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, |
| "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA", |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_AES128, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| // Cipher C00A |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, |
| "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA", |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_AES256, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| // Cipher C013 |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA, |
| "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", |
| TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aRSA_SIGN, |
| SSL_AES128, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| // Cipher C014 |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA, |
| "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA", |
| TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aRSA_SIGN, |
| SSL_AES256, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| // Cipher C027 |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA256, |
| "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256", |
| TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA256, |
| SSL_kECDHE, |
| SSL_aRSA_SIGN, |
| SSL_AES128, |
| SSL_SHA256, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| // GCM based TLS v1.2 ciphersuites from RFC 5289 |
| |
| // Cipher C02B |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, |
| "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_AES128GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| // Cipher C02C |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, |
| "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_AES256GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA384, |
| }, |
| |
| // Cipher C02F |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256, |
| "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", |
| TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, |
| SSL_kECDHE, |
| SSL_aRSA_SIGN, |
| SSL_AES128GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| // Cipher C030 |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384, |
| "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384", |
| TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, |
| SSL_kECDHE, |
| SSL_aRSA_SIGN, |
| SSL_AES256GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA384, |
| }, |
| |
| // ECDHE-PSK cipher suites. |
| |
| // Cipher C035 |
| { |
| TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA, |
| "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA", |
| TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aPSK, |
| SSL_AES128, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| // Cipher C036 |
| { |
| TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA, |
| "TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA", |
| TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aPSK, |
| SSL_AES256, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| // ChaCha20-Poly1305 cipher suites. |
| |
| // Cipher CCA8 |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, |
| "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256", |
| TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, |
| SSL_kECDHE, |
| SSL_aRSA_SIGN, |
| SSL_CHACHA20POLY1305, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| // Cipher CCA9 |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, |
| "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256", |
| TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_CHACHA20POLY1305, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| // Cipher CCAB |
| { |
| TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, |
| "TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256", |
| TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, |
| SSL_kECDHE, |
| SSL_aPSK, |
| SSL_CHACHA20POLY1305, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| }; |
| |
| Span<const SSL_CIPHER> AllCiphers() { |
| return MakeConstSpan(kCiphers, OPENSSL_ARRAY_SIZE(kCiphers)); |
| } |
| |
| static constexpr size_t NumTLS13Ciphers() { |
| size_t num = 0; |
| for (const auto &cipher : kCiphers) { |
| if (cipher.algorithm_mkey == SSL_kGENERIC) { |
| num++; |
| } |
| } |
| return num; |
| } |
| |
| #define CIPHER_ADD 1 |
| #define CIPHER_KILL 2 |
| #define CIPHER_DEL 3 |
| #define CIPHER_ORD 4 |
| #define CIPHER_SPECIAL 5 |
| |
| typedef struct cipher_order_st { |
| const SSL_CIPHER *cipher; |
| bool active; |
| bool in_group; |
| struct cipher_order_st *next, *prev; |
| } CIPHER_ORDER; |
| |
| typedef struct cipher_alias_st { |
| // name is the name of the cipher alias. |
| const char *name = nullptr; |
| |
| // The following fields are bitmasks for the corresponding fields on |
| // |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the |
| // bit corresponding to the cipher's value is set to 1. If any bitmask is |
| // all zeroes, the alias matches nothing. Use |~0u| for the default value. |
| uint32_t algorithm_mkey = ~0u; |
| uint32_t algorithm_auth = ~0u; |
| uint32_t algorithm_enc = ~0u; |
| uint32_t algorithm_mac = ~0u; |
| |
| // min_version, if non-zero, matches all ciphers which were added in that |
| // particular protocol version. |
| uint16_t min_version = 0; |
| |
| // include_deprecated, if true, means this alias includes deprecated ciphers. |
| bool include_deprecated = false; |
| } CIPHER_ALIAS; |
| |
| static const CIPHER_ALIAS kCipherAliases[] = { |
| {"ALL", ~0u, ~0u, ~0u, ~0u, 0}, |
| |
| // The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing. |
| |
| // key exchange aliases |
| // (some of those using only a single bit here combine |
| // multiple key exchange algs according to the RFCs. |
| {"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0}, |
| |
| {"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, |
| {"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, |
| {"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, |
| |
| {"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0}, |
| |
| // server authentication aliases |
| {"aRSA", ~0u, SSL_aRSA_SIGN | SSL_aRSA_DECRYPT, ~0u, ~0u, 0}, |
| {"aECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0}, |
| {"ECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0}, |
| {"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0}, |
| |
| // aliases combining key exchange and server authentication |
| {"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, |
| {"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, |
| {"RSA", SSL_kRSA, SSL_aRSA_SIGN | SSL_aRSA_DECRYPT, ~0u, ~0u, 0}, |
| {"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0}, |
| |
| // symmetric encryption aliases |
| {"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0, /*include_deprecated=*/true}, |
| {"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0, |
| /*include_deprecated=*/false}, |
| {"AES256", ~0u, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0, |
| /*include_deprecated=*/false}, |
| {"AES", ~0u, ~0u, SSL_AES, ~0u, 0}, |
| {"AESGCM", ~0u, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0, |
| /*include_deprecated=*/false}, |
| {"CHACHA20", ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, |
| /*include_deprecated=*/false}, |
| |
| // MAC aliases |
| {"SHA1", ~0u, ~0u, ~0u, SSL_SHA1, 0}, |
| {"SHA", ~0u, ~0u, ~0u, SSL_SHA1, 0}, |
| |
| // Legacy protocol minimum version aliases. "TLSv1" is intentionally the |
| // same as "SSLv3". |
| {"SSLv3", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION}, |
| {"TLSv1", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION}, |
| {"TLSv1.2", ~0u, ~0u, ~0u, ~0u, TLS1_2_VERSION}, |
| |
| // Legacy strength classes. |
| {"HIGH", ~0u, ~0u, ~0u, ~0u, 0}, |
| {"FIPS", ~0u, ~0u, ~0u, ~0u, 0}, |
| |
| // Temporary no-op aliases corresponding to removed SHA-2 legacy CBC |
| // ciphers. These should be removed after 2018-05-14. |
| {"SHA256", 0, 0, 0, 0, 0}, |
| {"SHA384", 0, 0, 0, 0, 0}, |
| }; |
| |
| static const size_t kCipherAliasesLen = OPENSSL_ARRAY_SIZE(kCipherAliases); |
| |
| bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead, |
| size_t *out_mac_secret_len, |
| size_t *out_fixed_iv_len, const SSL_CIPHER *cipher, |
| uint16_t version) { |
| *out_aead = NULL; |
| *out_mac_secret_len = 0; |
| *out_fixed_iv_len = 0; |
| |
| if (cipher->algorithm_mac == SSL_AEAD) { |
| if (cipher->algorithm_enc == SSL_AES128GCM) { |
| if (version < TLS1_3_VERSION) { |
| *out_aead = EVP_aead_aes_128_gcm_tls12(); |
| } else { |
| *out_aead = EVP_aead_aes_128_gcm_tls13(); |
| } |
| *out_fixed_iv_len = 4; |
| } else if (cipher->algorithm_enc == SSL_AES256GCM) { |
| if (version < TLS1_3_VERSION) { |
| *out_aead = EVP_aead_aes_256_gcm_tls12(); |
| } else { |
| *out_aead = EVP_aead_aes_256_gcm_tls13(); |
| } |
| *out_fixed_iv_len = 4; |
| } else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305) { |
| *out_aead = EVP_aead_chacha20_poly1305(); |
| *out_fixed_iv_len = 12; |
| } else { |
| return false; |
| } |
| |
| // In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code |
| // above computes the TLS 1.2 construction. |
| if (version >= TLS1_3_VERSION) { |
| *out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead); |
| } |
| } else if (cipher->algorithm_mac == SSL_SHA1) { |
| if (cipher->algorithm_enc == SSL_3DES) { |
| if (version == TLS1_VERSION) { |
| *out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(); |
| *out_fixed_iv_len = 8; |
| } else { |
| *out_aead = EVP_aead_des_ede3_cbc_sha1_tls(); |
| } |
| } else if (cipher->algorithm_enc == SSL_AES128) { |
| if (version == TLS1_VERSION) { |
| *out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(); |
| *out_fixed_iv_len = 16; |
| } else { |
| *out_aead = EVP_aead_aes_128_cbc_sha1_tls(); |
| } |
| } else if (cipher->algorithm_enc == SSL_AES256) { |
| if (version == TLS1_VERSION) { |
| *out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(); |
| *out_fixed_iv_len = 16; |
| } else { |
| *out_aead = EVP_aead_aes_256_cbc_sha1_tls(); |
| } |
| } else { |
| return false; |
| } |
| |
| *out_mac_secret_len = SHA_DIGEST_LENGTH; |
| } else if (cipher->algorithm_mac == SSL_SHA256) { |
| if (cipher->algorithm_enc == SSL_AES128) { |
| *out_aead = EVP_aead_aes_128_cbc_sha256_tls(); |
| } else { |
| return false; |
| } |
| |
| *out_mac_secret_len = SHA256_DIGEST_LENGTH; |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| const EVP_MD *ssl_get_handshake_digest(uint16_t version, |
| const SSL_CIPHER *cipher) { |
| switch (cipher->algorithm_prf) { |
| case SSL_HANDSHAKE_MAC_DEFAULT: |
| return version >= TLS1_2_VERSION ? EVP_sha256() : EVP_md5_sha1(); |
| case SSL_HANDSHAKE_MAC_SHA256: |
| return EVP_sha256(); |
| case SSL_HANDSHAKE_MAC_SHA384: |
| return EVP_sha384(); |
| default: |
| assert(0); |
| return NULL; |
| } |
| } |
| |
| static bool is_cipher_list_separator(char c, bool is_strict) { |
| if (c == ':') { |
| return true; |
| } |
| return !is_strict && (c == ' ' || c == ';' || c == ','); |
| } |
| |
| // rule_equals returns whether the NUL-terminated string |rule| is equal to the |
| // |buf_len| bytes at |buf|. |
| static bool rule_equals(const char *rule, const char *buf, size_t buf_len) { |
| // |strncmp| alone only checks that |buf| is a prefix of |rule|. |
| return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0'; |
| } |
| |
| static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, |
| CIPHER_ORDER **tail) { |
| if (curr == *tail) { |
| return; |
| } |
| if (curr == *head) { |
| *head = curr->next; |
| } |
| if (curr->prev != NULL) { |
| curr->prev->next = curr->next; |
| } |
| if (curr->next != NULL) { |
| curr->next->prev = curr->prev; |
| } |
| (*tail)->next = curr; |
| curr->prev = *tail; |
| curr->next = NULL; |
| *tail = curr; |
| } |
| |
| static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, |
| CIPHER_ORDER **tail) { |
| if (curr == *head) { |
| return; |
| } |
| if (curr == *tail) { |
| *tail = curr->prev; |
| } |
| if (curr->next != NULL) { |
| curr->next->prev = curr->prev; |
| } |
| if (curr->prev != NULL) { |
| curr->prev->next = curr->next; |
| } |
| (*head)->prev = curr; |
| curr->next = *head; |
| curr->prev = NULL; |
| *head = curr; |
| } |
| |
| SSLCipherPreferenceList::~SSLCipherPreferenceList() { |
| OPENSSL_free(in_group_flags); |
| } |
| |
| bool SSLCipherPreferenceList::Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers_arg, |
| Span<const bool> in_group_flags_arg) { |
| if (sk_SSL_CIPHER_num(ciphers_arg.get()) != in_group_flags_arg.size()) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| Array<bool> copy; |
| if (!copy.CopyFrom(in_group_flags_arg)) { |
| return false; |
| } |
| ciphers = std::move(ciphers_arg); |
| size_t unused_len; |
| copy.Release(&in_group_flags, &unused_len); |
| return true; |
| } |
| |
| bool SSLCipherPreferenceList::Init(const SSLCipherPreferenceList& other) { |
| size_t size = sk_SSL_CIPHER_num(other.ciphers.get()); |
| Span<const bool> other_flags(other.in_group_flags, size); |
| UniquePtr<STACK_OF(SSL_CIPHER)> other_ciphers(sk_SSL_CIPHER_dup( |
| other.ciphers.get())); |
| if (!other_ciphers) { |
| return false; |
| } |
| return Init(std::move(other_ciphers), other_flags); |
| } |
| |
| void SSLCipherPreferenceList::Remove(const SSL_CIPHER *cipher) { |
| size_t index; |
| if (!sk_SSL_CIPHER_find(ciphers.get(), &index, cipher)) { |
| return; |
| } |
| if (!in_group_flags[index] /* last element of group */ && index > 0) { |
| in_group_flags[index-1] = false; |
| } |
| for (size_t i = index; i < sk_SSL_CIPHER_num(ciphers.get()) - 1; ++i) { |
| in_group_flags[i] = in_group_flags[i+1]; |
| } |
| sk_SSL_CIPHER_delete(ciphers.get(), index); |
| } |
| |
| bool ssl_cipher_is_deprecated(const SSL_CIPHER *cipher) { |
| return cipher->id == TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA256 || |
| cipher->algorithm_enc == SSL_3DES; |
| } |
| |
| // ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its |
| // parameters in the linked list from |*head_p| to |*tail_p|. It writes the new |
| // head and tail of the list to |*head_p| and |*tail_p|, respectively. |
| // |
| // - If |cipher_id| is non-zero, only that cipher is selected. |
| // - Otherwise, if |strength_bits| is non-negative, it selects ciphers |
| // of that strength. |
| // - Otherwise, |alias| must be non-null. It selects ciphers that matches |
| // |*alias|. |
| static void ssl_cipher_apply_rule(uint32_t cipher_id, const CIPHER_ALIAS *alias, |
| int rule, int strength_bits, bool in_group, |
| CIPHER_ORDER **head_p, |
| CIPHER_ORDER **tail_p) { |
| CIPHER_ORDER *head, *tail, *curr, *next, *last; |
| const SSL_CIPHER *cp; |
| bool reverse = false; |
| |
| if (cipher_id == 0 && strength_bits == -1 && alias->min_version == 0 && |
| (alias->algorithm_mkey == 0 || alias->algorithm_auth == 0 || |
| alias->algorithm_enc == 0 || alias->algorithm_mac == 0)) { |
| // The rule matches nothing, so bail early. |
| return; |
| } |
| |
| if (rule == CIPHER_DEL) { |
| // needed to maintain sorting between currently deleted ciphers |
| reverse = true; |
| } |
| |
| head = *head_p; |
| tail = *tail_p; |
| |
| if (reverse) { |
| next = tail; |
| last = head; |
| } else { |
| next = head; |
| last = tail; |
| } |
| |
| curr = NULL; |
| for (;;) { |
| if (curr == last) { |
| break; |
| } |
| |
| curr = next; |
| if (curr == NULL) { |
| break; |
| } |
| |
| next = reverse ? curr->prev : curr->next; |
| cp = curr->cipher; |
| |
| // Selection criteria is either a specific cipher, the value of |
| // |strength_bits|, or the algorithms used. |
| if (cipher_id != 0) { |
| if (cipher_id != cp->id) { |
| continue; |
| } |
| } else if (strength_bits >= 0) { |
| if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) { |
| continue; |
| } |
| } else { |
| if (!(alias->algorithm_mkey & cp->algorithm_mkey) || |
| !(alias->algorithm_auth & cp->algorithm_auth) || |
| !(alias->algorithm_enc & cp->algorithm_enc) || |
| !(alias->algorithm_mac & cp->algorithm_mac) || |
| (alias->min_version != 0 && |
| SSL_CIPHER_get_min_version(cp) != alias->min_version) || |
| (!alias->include_deprecated && ssl_cipher_is_deprecated(cp))) { |
| continue; |
| } |
| } |
| |
| // add the cipher if it has not been added yet. |
| if (rule == CIPHER_ADD) { |
| // reverse == false |
| if (!curr->active) { |
| ll_append_tail(&head, curr, &tail); |
| curr->active = true; |
| curr->in_group = in_group; |
| } |
| } |
| |
| // Move the added cipher to this location |
| else if (rule == CIPHER_ORD) { |
| // reverse == false |
| if (curr->active) { |
| ll_append_tail(&head, curr, &tail); |
| curr->in_group = false; |
| } |
| } else if (rule == CIPHER_DEL) { |
| // reverse == true |
| if (curr->active) { |
| // most recently deleted ciphersuites get best positions |
| // for any future CIPHER_ADD (note that the CIPHER_DEL loop |
| // works in reverse to maintain the order) |
| ll_append_head(&head, curr, &tail); |
| curr->active = false; |
| curr->in_group = false; |
| } |
| } else if (rule == CIPHER_KILL) { |
| // reverse == false |
| if (head == curr) { |
| head = curr->next; |
| } else { |
| curr->prev->next = curr->next; |
| } |
| |
| if (tail == curr) { |
| tail = curr->prev; |
| } |
| curr->active = false; |
| if (curr->next != NULL) { |
| curr->next->prev = curr->prev; |
| } |
| if (curr->prev != NULL) { |
| curr->prev->next = curr->next; |
| } |
| curr->next = NULL; |
| curr->prev = NULL; |
| } |
| } |
| |
| *head_p = head; |
| *tail_p = tail; |
| } |
| |
| static bool ssl_cipher_strength_sort(CIPHER_ORDER **head_p, |
| CIPHER_ORDER **tail_p) { |
| // This routine sorts the ciphers with descending strength. The sorting must |
| // keep the pre-sorted sequence, so we apply the normal sorting routine as |
| // '+' movement to the end of the list. |
| int max_strength_bits = 0; |
| CIPHER_ORDER *curr = *head_p; |
| while (curr != NULL) { |
| if (curr->active && |
| SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) { |
| max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL); |
| } |
| curr = curr->next; |
| } |
| |
| Array<int> number_uses; |
| if (!number_uses.Init(max_strength_bits + 1)) { |
| return false; |
| } |
| OPENSSL_memset(number_uses.data(), 0, (max_strength_bits + 1) * sizeof(int)); |
| |
| // Now find the strength_bits values actually used. |
| curr = *head_p; |
| while (curr != NULL) { |
| if (curr->active) { |
| number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++; |
| } |
| curr = curr->next; |
| } |
| |
| // Go through the list of used strength_bits values in descending order. |
| for (int i = max_strength_bits; i >= 0; i--) { |
| if (number_uses[i] > 0) { |
| ssl_cipher_apply_rule(/*cipher_id=*/0, /*alias=*/nullptr, CIPHER_ORD, i, |
| false, head_p, tail_p); |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool ssl_cipher_process_rulestr(const char *rule_str, |
| CIPHER_ORDER **head_p, |
| CIPHER_ORDER **tail_p, bool strict) { |
| const char *l, *buf; |
| bool in_group = false, has_group = false; |
| size_t j, buf_len; |
| char ch; |
| |
| l = rule_str; |
| for (;;) { |
| ch = *l; |
| |
| if (ch == '\0') { |
| break; // done |
| } |
| |
| int rule; |
| if (in_group) { |
| if (ch == ']') { |
| if (*tail_p) { |
| (*tail_p)->in_group = false; |
| } |
| in_group = false; |
| l++; |
| continue; |
| } |
| |
| if (ch == '|') { |
| rule = CIPHER_ADD; |
| l++; |
| continue; |
| } else if (!OPENSSL_isalnum(ch)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP); |
| return false; |
| } else { |
| rule = CIPHER_ADD; |
| } |
| } else if (ch == '-') { |
| rule = CIPHER_DEL; |
| l++; |
| } else if (ch == '+') { |
| rule = CIPHER_ORD; |
| l++; |
| } else if (ch == '!') { |
| rule = CIPHER_KILL; |
| l++; |
| } else if (ch == '@') { |
| rule = CIPHER_SPECIAL; |
| l++; |
| } else if (ch == '[') { |
| assert(!in_group); |
| in_group = true; |
| has_group = true; |
| l++; |
| continue; |
| } else { |
| rule = CIPHER_ADD; |
| } |
| |
| // If preference groups are enabled, the only legal operator is +. |
| // Otherwise the in_group bits will get mixed up. |
| if (has_group && rule != CIPHER_ADD) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS); |
| return false; |
| } |
| |
| if (is_cipher_list_separator(ch, strict)) { |
| l++; |
| continue; |
| } |
| |
| bool multi = false; |
| uint32_t cipher_id = 0; |
| CIPHER_ALIAS alias; |
| bool skip_rule = false; |
| |
| // When adding, exclude deprecated ciphers by default. |
| alias.include_deprecated = rule != CIPHER_ADD; |
| |
| for (;;) { |
| ch = *l; |
| buf = l; |
| buf_len = 0; |
| while (OPENSSL_isalnum(ch) || ch == '-' || ch == '.' || ch == '_') { |
| ch = *(++l); |
| buf_len++; |
| } |
| |
| if (buf_len == 0) { |
| // We hit something we cannot deal with, it is no command or separator |
| // nor alphanumeric, so we call this an error. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); |
| return false; |
| } |
| |
| if (rule == CIPHER_SPECIAL) { |
| break; |
| } |
| |
| // Look for a matching exact cipher. These aren't allowed in multipart |
| // rules. |
| if (!multi && ch != '+') { |
| for (j = 0; j < OPENSSL_ARRAY_SIZE(kCiphers); j++) { |
| const SSL_CIPHER *cipher = &kCiphers[j]; |
| if (rule_equals(cipher->name, buf, buf_len) || |
| rule_equals(cipher->standard_name, buf, buf_len)) { |
| cipher_id = cipher->id; |
| break; |
| } |
| } |
| } |
| if (cipher_id == 0) { |
| // If not an exact cipher, look for a matching cipher alias. |
| for (j = 0; j < kCipherAliasesLen; j++) { |
| if (rule_equals(kCipherAliases[j].name, buf, buf_len)) { |
| alias.algorithm_mkey &= kCipherAliases[j].algorithm_mkey; |
| alias.algorithm_auth &= kCipherAliases[j].algorithm_auth; |
| alias.algorithm_enc &= kCipherAliases[j].algorithm_enc; |
| alias.algorithm_mac &= kCipherAliases[j].algorithm_mac; |
| |
| // When specifying a combination of aliases, if any aliases |
| // enables deprecated ciphers, deprecated ciphers are included. This |
| // is slightly different from the bitmasks in that adding aliases |
| // can increase the set of matched ciphers. This is so that an alias |
| // like "RSA" will only specifiy AES-based RSA ciphers, but |
| // "RSA+3DES" will still specify 3DES. |
| alias.include_deprecated |= kCipherAliases[j].include_deprecated; |
| |
| if (alias.min_version != 0 && |
| alias.min_version != kCipherAliases[j].min_version) { |
| skip_rule = true; |
| } else { |
| alias.min_version = kCipherAliases[j].min_version; |
| } |
| break; |
| } |
| } |
| if (j == kCipherAliasesLen) { |
| skip_rule = true; |
| if (strict) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); |
| return false; |
| } |
| } |
| } |
| |
| // Check for a multipart rule. |
| if (ch != '+') { |
| break; |
| } |
| l++; |
| multi = true; |
| } |
| |
| // Ok, we have the rule, now apply it. |
| if (rule == CIPHER_SPECIAL) { |
| if (buf_len != 8 || strncmp(buf, "STRENGTH", 8) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); |
| return false; |
| } |
| if (!ssl_cipher_strength_sort(head_p, tail_p)) { |
| return false; |
| } |
| |
| // We do not support any "multi" options together with "@", so throw away |
| // the rest of the command, if any left, until end or ':' is found. |
| while (*l != '\0' && !is_cipher_list_separator(*l, strict)) { |
| l++; |
| } |
| } else if (!skip_rule) { |
| ssl_cipher_apply_rule(cipher_id, &alias, rule, -1, in_group, head_p, |
| tail_p); |
| } |
| } |
| |
| if (in_group) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list, |
| const bool has_aes_hw, const char *rule_str, |
| bool strict) { |
| // Return with error if nothing to do. |
| if (rule_str == NULL || out_cipher_list == NULL) { |
| return false; |
| } |
| |
| // We prefer ECDHE ciphers over non-PFS ciphers. Then we prefer AEAD over |
| // non-AEAD. The constants are masked by 0xffff to remove the vestigial 0x03 |
| // byte from SSL 2.0. |
| static const uint16_t kAESCiphers[] = { |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 & 0xffff, |
| TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256 & 0xffff, |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 & 0xffff, |
| TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384 & 0xffff, |
| }; |
| static const uint16_t kChaChaCiphers[] = { |
| TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 & 0xffff, |
| TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 & 0xffff, |
| TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 & 0xffff, |
| }; |
| static const uint16_t kLegacyCiphers[] = { |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA & 0xffff, |
| TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA & 0xffff, |
| TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA & 0xffff, |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA & 0xffff, |
| TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA & 0xffff, |
| TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA & 0xffff, |
| TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA256 & 0xffff, |
| TLS1_CK_RSA_WITH_AES_128_GCM_SHA256 & 0xffff, |
| TLS1_CK_RSA_WITH_AES_256_GCM_SHA384 & 0xffff, |
| TLS1_CK_RSA_WITH_AES_128_SHA & 0xffff, |
| TLS1_CK_PSK_WITH_AES_128_CBC_SHA & 0xffff, |
| TLS1_CK_RSA_WITH_AES_256_SHA & 0xffff, |
| TLS1_CK_PSK_WITH_AES_256_CBC_SHA & 0xffff, |
| SSL3_CK_RSA_DES_192_CBC3_SHA & 0xffff, |
| }; |
| |
| // Set up a linked list of ciphers. |
| CIPHER_ORDER co_list[OPENSSL_ARRAY_SIZE(kAESCiphers) + |
| OPENSSL_ARRAY_SIZE(kChaChaCiphers) + |
| OPENSSL_ARRAY_SIZE(kLegacyCiphers)]; |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(co_list); i++) { |
| co_list[i].next = |
| i + 1 < OPENSSL_ARRAY_SIZE(co_list) ? &co_list[i + 1] : nullptr; |
| co_list[i].prev = i == 0 ? nullptr : &co_list[i - 1]; |
| co_list[i].active = false; |
| co_list[i].in_group = false; |
| } |
| CIPHER_ORDER *head = &co_list[0]; |
| CIPHER_ORDER *tail = &co_list[OPENSSL_ARRAY_SIZE(co_list) - 1]; |
| |
| // Order AES ciphers vs ChaCha ciphers based on whether we have AES hardware. |
| // |
| // TODO(crbug.com/boringssl/29): We should also set up equipreference groups |
| // as a server. |
| size_t num = 0; |
| if (has_aes_hw) { |
| for (uint16_t id : kAESCiphers) { |
| co_list[num++].cipher = SSL_get_cipher_by_value(id); |
| assert(co_list[num - 1].cipher != nullptr); |
| } |
| } |
| for (uint16_t id : kChaChaCiphers) { |
| co_list[num++].cipher = SSL_get_cipher_by_value(id); |
| assert(co_list[num - 1].cipher != nullptr); |
| } |
| if (!has_aes_hw) { |
| for (uint16_t id : kAESCiphers) { |
| co_list[num++].cipher = SSL_get_cipher_by_value(id); |
| assert(co_list[num - 1].cipher != nullptr); |
| } |
| } |
| for (uint16_t id : kLegacyCiphers) { |
| co_list[num++].cipher = SSL_get_cipher_by_value(id); |
| assert(co_list[num - 1].cipher != nullptr); |
| } |
| assert(num == OPENSSL_ARRAY_SIZE(co_list)); |
| static_assert(OPENSSL_ARRAY_SIZE(co_list) + NumTLS13Ciphers() == |
| OPENSSL_ARRAY_SIZE(kCiphers), |
| "Not all ciphers are included in the cipher order"); |
| |
| // If the rule_string begins with DEFAULT, apply the default rule before |
| // using the (possibly available) additional rules. |
| const char *rule_p = rule_str; |
| if (strncmp(rule_str, "DEFAULT", 7) == 0) { |
| if (!ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail, |
| strict)) { |
| return false; |
| } |
| rule_p += 7; |
| if (*rule_p == ':') { |
| rule_p++; |
| } |
| } |
| |
| if (*rule_p != '\0' && |
| !ssl_cipher_process_rulestr(rule_p, &head, &tail, strict)) { |
| return false; |
| } |
| |
| // Allocate new "cipherstack" for the result, return with error |
| // if we cannot get one. |
| UniquePtr<STACK_OF(SSL_CIPHER)> cipherstack(sk_SSL_CIPHER_new_null()); |
| Array<bool> in_group_flags; |
| if (cipherstack == nullptr || |
| !in_group_flags.Init(OPENSSL_ARRAY_SIZE(kCiphers))) { |
| return false; |
| } |
| |
| // The cipher selection for the list is done. The ciphers are added |
| // to the resulting precedence to the STACK_OF(SSL_CIPHER). |
| size_t num_in_group_flags = 0; |
| for (CIPHER_ORDER *curr = head; curr != NULL; curr = curr->next) { |
| if (curr->active) { |
| if (!sk_SSL_CIPHER_push(cipherstack.get(), curr->cipher)) { |
| return false; |
| } |
| in_group_flags[num_in_group_flags++] = curr->in_group; |
| } |
| } |
| |
| UniquePtr<SSLCipherPreferenceList> pref_list = |
| MakeUnique<SSLCipherPreferenceList>(); |
| if (!pref_list || |
| !pref_list->Init( |
| std::move(cipherstack), |
| MakeConstSpan(in_group_flags).subspan(0, num_in_group_flags))) { |
| return false; |
| } |
| |
| *out_cipher_list = std::move(pref_list); |
| |
| // Configuring an empty cipher list is an error but still updates the |
| // output. |
| if (sk_SSL_CIPHER_num((*out_cipher_list)->ciphers.get()) == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key, bool sign_ok) { |
| switch (EVP_PKEY_id(key)) { |
| case EVP_PKEY_RSA: |
| return sign_ok ? (SSL_aRSA_SIGN | SSL_aRSA_DECRYPT) : SSL_aRSA_DECRYPT; |
| case EVP_PKEY_EC: |
| case EVP_PKEY_ED25519: |
| // Ed25519 keys in TLS 1.2 repurpose the ECDSA ciphers. |
| return sign_ok ? SSL_aECDSA : 0; |
| default: |
| return 0; |
| } |
| } |
| |
| bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_auth & SSL_aCERT) != 0; |
| } |
| |
| bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) { |
| // Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. It is |
| // optional or omitted in all others. |
| return (cipher->algorithm_mkey & SSL_kECDHE) != 0; |
| } |
| |
| size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) { |
| size_t block_size; |
| switch (cipher->algorithm_enc) { |
| case SSL_3DES: |
| block_size = 8; |
| break; |
| case SSL_AES128: |
| case SSL_AES256: |
| block_size = 16; |
| break; |
| default: |
| return 0; |
| } |
| |
| // All supported TLS 1.0 ciphers use SHA-1. |
| assert(cipher->algorithm_mac == SSL_SHA1); |
| size_t ret = 1 + SHA_DIGEST_LENGTH; |
| ret += block_size - (ret % block_size); |
| return ret; |
| } |
| |
| BSSL_NAMESPACE_END |
| |
| using namespace bssl; |
| |
| static constexpr int ssl_cipher_id_cmp(const SSL_CIPHER *a, |
| const SSL_CIPHER *b) { |
| if (a->id > b->id) { |
| return 1; |
| } |
| if (a->id < b->id) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int ssl_cipher_id_cmp_void(const void *in_a, const void *in_b) { |
| return ssl_cipher_id_cmp(reinterpret_cast<const SSL_CIPHER *>(in_a), |
| reinterpret_cast<const SSL_CIPHER *>(in_b)); |
| } |
| |
| template <size_t N> |
| static constexpr bool ssl_ciphers_sorted(const SSL_CIPHER (&ciphers)[N]) { |
| for (size_t i = 1; i < N; i++) { |
| if (ssl_cipher_id_cmp(&ciphers[i - 1], &ciphers[i]) >= 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static_assert(ssl_ciphers_sorted(kCiphers), |
| "Ciphers are not sorted, bsearch won't work"); |
| |
| const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) { |
| SSL_CIPHER c; |
| |
| c.id = 0x03000000L | value; |
| return reinterpret_cast<const SSL_CIPHER *>(bsearch( |
| &c, kCiphers, OPENSSL_ARRAY_SIZE(kCiphers), sizeof(SSL_CIPHER), |
| ssl_cipher_id_cmp_void)); |
| } |
| |
| uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; } |
| |
| uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *cipher) { |
| // All OpenSSL cipher IDs are prefaced with 0x03. Historically this referred |
| // to SSLv2 vs SSLv3. |
| assert((cipher->id & 0xff000000) == 0x03000000); |
| return static_cast<uint16_t>(cipher->id); |
| } |
| |
| int SSL_CIPHER_is_aead(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_mac & SSL_AEAD) != 0; |
| } |
| |
| int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *cipher) { |
| switch (cipher->algorithm_enc) { |
| case SSL_3DES: |
| return NID_des_ede3_cbc; |
| case SSL_AES128: |
| return NID_aes_128_cbc; |
| case SSL_AES256: |
| return NID_aes_256_cbc; |
| case SSL_AES128GCM: |
| return NID_aes_128_gcm; |
| case SSL_AES256GCM: |
| return NID_aes_256_gcm; |
| case SSL_CHACHA20POLY1305: |
| return NID_chacha20_poly1305; |
| } |
| assert(0); |
| return NID_undef; |
| } |
| |
| int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *cipher) { |
| switch (cipher->algorithm_mac) { |
| case SSL_AEAD: |
| return NID_undef; |
| case SSL_SHA1: |
| return NID_sha1; |
| case SSL_SHA256: |
| return NID_sha256; |
| } |
| assert(0); |
| return NID_undef; |
| } |
| |
| int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *cipher) { |
| switch (cipher->algorithm_mkey) { |
| case SSL_kRSA: |
| return NID_kx_rsa; |
| case SSL_kECDHE: |
| return NID_kx_ecdhe; |
| case SSL_kPSK: |
| return NID_kx_psk; |
| case SSL_kGENERIC: |
| return NID_kx_any; |
| } |
| assert(0); |
| return NID_undef; |
| } |
| |
| int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *cipher) { |
| switch (cipher->algorithm_auth) { |
| case SSL_aRSA_DECRYPT: |
| case SSL_aRSA_SIGN: |
| return NID_auth_rsa; |
| case SSL_aECDSA: |
| return NID_auth_ecdsa; |
| case SSL_aPSK: |
| return NID_auth_psk; |
| case SSL_aGENERIC: |
| return NID_auth_any; |
| } |
| assert(0); |
| return NID_undef; |
| } |
| |
| const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *cipher) { |
| switch (cipher->algorithm_prf) { |
| case SSL_HANDSHAKE_MAC_DEFAULT: |
| return EVP_md5_sha1(); |
| case SSL_HANDSHAKE_MAC_SHA256: |
| return EVP_sha256(); |
| case SSL_HANDSHAKE_MAC_SHA384: |
| return EVP_sha384(); |
| } |
| assert(0); |
| return NULL; |
| } |
| |
| int SSL_CIPHER_get_prf_nid(const SSL_CIPHER *cipher) { |
| const EVP_MD *md = SSL_CIPHER_get_handshake_digest(cipher); |
| if (md == NULL) { |
| return NID_undef; |
| } |
| return EVP_MD_nid(md); |
| } |
| |
| int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) { |
| return cipher->algorithm_mac != SSL_AEAD; |
| } |
| |
| uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) { |
| if (cipher->algorithm_mkey == SSL_kGENERIC || |
| cipher->algorithm_auth == SSL_aGENERIC) { |
| return TLS1_3_VERSION; |
| } |
| |
| if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) { |
| // Cipher suites before TLS 1.2 use the default PRF, while all those added |
| // afterwards specify a particular hash. |
| return TLS1_2_VERSION; |
| } |
| return SSL3_VERSION; |
| } |
| |
| uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) { |
| if (cipher->algorithm_mkey == SSL_kGENERIC || |
| cipher->algorithm_auth == SSL_aGENERIC) { |
| return TLS1_3_VERSION; |
| } |
| return TLS1_2_VERSION; |
| } |
| |
| static const char* kUnknownCipher = "(NONE)"; |
| |
| // return the actual cipher being used |
| const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) { |
| if (cipher != NULL) { |
| return cipher->name; |
| } |
| |
| return kUnknownCipher; |
| } |
| |
| const char *SSL_CIPHER_standard_name(const SSL_CIPHER *cipher) { |
| return cipher->standard_name; |
| } |
| |
| const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) { |
| if (cipher == NULL) { |
| return ""; |
| } |
| |
| switch (cipher->algorithm_mkey) { |
| case SSL_kRSA: |
| return "RSA"; |
| |
| case SSL_kECDHE: |
| switch (cipher->algorithm_auth) { |
| case SSL_aECDSA: |
| return "ECDHE_ECDSA"; |
| case SSL_aRSA_SIGN: |
| return "ECDHE_RSA"; |
| case SSL_aPSK: |
| return "ECDHE_PSK"; |
| default: |
| assert(0); |
| return "UNKNOWN"; |
| } |
| |
| case SSL_kPSK: |
| assert(cipher->algorithm_auth == SSL_aPSK); |
| return "PSK"; |
| |
| case SSL_kGENERIC: |
| assert(cipher->algorithm_auth == SSL_aGENERIC); |
| return "GENERIC"; |
| |
| default: |
| assert(0); |
| return "UNKNOWN"; |
| } |
| } |
| |
| int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) { |
| if (cipher == NULL) { |
| return 0; |
| } |
| |
| int alg_bits, strength_bits; |
| switch (cipher->algorithm_enc) { |
| case SSL_AES128: |
| case SSL_AES128GCM: |
| alg_bits = 128; |
| strength_bits = 128; |
| break; |
| |
| case SSL_AES256: |
| case SSL_AES256GCM: |
| case SSL_CHACHA20POLY1305: |
| alg_bits = 256; |
| strength_bits = 256; |
| break; |
| |
| case SSL_3DES: |
| alg_bits = 168; |
| strength_bits = 112; |
| break; |
| |
| default: |
| assert(0); |
| alg_bits = 0; |
| strength_bits = 0; |
| } |
| |
| if (out_alg_bits != NULL) { |
| *out_alg_bits = alg_bits; |
| } |
| return strength_bits; |
| } |
| |
| const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, |
| int len) { |
| const char *kx, *au, *enc, *mac; |
| uint32_t alg_mkey, alg_auth, alg_enc, alg_mac; |
| |
| alg_mkey = cipher->algorithm_mkey; |
| alg_auth = cipher->algorithm_auth; |
| alg_enc = cipher->algorithm_enc; |
| alg_mac = cipher->algorithm_mac; |
| |
| switch (alg_mkey) { |
| case SSL_kRSA: |
| kx = "RSA"; |
| break; |
| |
| case SSL_kECDHE: |
| kx = "ECDH"; |
| break; |
| |
| case SSL_kPSK: |
| kx = "PSK"; |
| break; |
| |
| case SSL_kGENERIC: |
| kx = "GENERIC"; |
| break; |
| |
| default: |
| kx = "unknown"; |
| } |
| |
| switch (alg_auth) { |
| case SSL_aRSA_DECRYPT: |
| case SSL_aRSA_SIGN: |
| au = "RSA"; |
| break; |
| |
| case SSL_aECDSA: |
| au = "ECDSA"; |
| break; |
| |
| case SSL_aPSK: |
| au = "PSK"; |
| break; |
| |
| case SSL_aGENERIC: |
| au = "GENERIC"; |
| break; |
| |
| default: |
| au = "unknown"; |
| break; |
| } |
| |
| switch (alg_enc) { |
| case SSL_3DES: |
| enc = "3DES(168)"; |
| break; |
| |
| case SSL_AES128: |
| enc = "AES(128)"; |
| break; |
| |
| case SSL_AES256: |
| enc = "AES(256)"; |
| break; |
| |
| case SSL_AES128GCM: |
| enc = "AESGCM(128)"; |
| break; |
| |
| case SSL_AES256GCM: |
| enc = "AESGCM(256)"; |
| break; |
| |
| case SSL_CHACHA20POLY1305: |
| enc = "ChaCha20-Poly1305"; |
| break; |
| |
| default: |
| enc = "unknown"; |
| break; |
| } |
| |
| switch (alg_mac) { |
| case SSL_SHA1: |
| mac = "SHA1"; |
| break; |
| |
| case SSL_SHA256: |
| mac = "SHA256"; |
| break; |
| |
| case SSL_AEAD: |
| mac = "AEAD"; |
| break; |
| |
| default: |
| mac = "unknown"; |
| break; |
| } |
| |
| if (buf == NULL) { |
| len = 128; |
| buf = (char *)OPENSSL_malloc(len); |
| if (buf == NULL) { |
| return NULL; |
| } |
| } else if (len < 128) { |
| return "Buffer too small"; |
| } |
| |
| snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n", cipher->name, |
| kx, au, enc, mac); |
| return buf; |
| } |
| |
| const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) { |
| return "TLSv1/SSLv3"; |
| } |
| |
| STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { return NULL; } |
| |
| int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; } |
| |
| const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; } |
| |
| const char *SSL_COMP_get0_name(const SSL_COMP *comp) { return comp->name; } |
| |
| int SSL_COMP_get_id(const SSL_COMP *comp) { return comp->id; } |
| |
| void SSL_COMP_free_compression_methods(void) {} |
| |
| size_t SSL_get_all_cipher_names(const char **out, size_t max_out) { |
| return GetAllNames(out, max_out, MakeConstSpan(&kUnknownCipher, 1), |
| &SSL_CIPHER::name, MakeConstSpan(kCiphers)); |
| } |
| |
| size_t SSL_get_all_standard_cipher_names(const char **out, size_t max_out) { |
| return GetAllNames(out, max_out, Span<const char *>(), |
| &SSL_CIPHER::standard_name, MakeConstSpan(kCiphers)); |
| } |