| /* |
| * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| |
| #include <utility> |
| |
| #include <openssl/rand.h> |
| |
| #include "../crypto/internal.h" |
| #include "internal.h" |
| |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| SSL_HANDSHAKE::SSL_HANDSHAKE(SSL *ssl_arg) |
| : ssl(ssl_arg), |
| transcript(SSL_is_dtls(ssl_arg)), |
| inner_transcript(SSL_is_dtls(ssl_arg)), |
| ech_is_inner(false), |
| ech_authenticated_reject(false), |
| scts_requested(false), |
| handshake_finalized(false), |
| accept_psk_mode(false), |
| cert_request(false), |
| certificate_status_expected(false), |
| ocsp_stapling_requested(false), |
| should_ack_sni(false), |
| in_false_start(false), |
| in_early_data(false), |
| early_data_offered(false), |
| can_early_read(false), |
| can_early_write(false), |
| is_early_version(false), |
| next_proto_neg_seen(false), |
| ticket_expected(false), |
| extended_master_secret(false), |
| pending_private_key_op(false), |
| handback(false), |
| hints_requested(false), |
| cert_compression_negotiated(false), |
| apply_jdk11_workaround(false), |
| can_release_private_key(false), |
| channel_id_negotiated(false), |
| received_hello_verify_request(false) { |
| assert(ssl); |
| |
| // Draw entropy for all GREASE values at once. This avoids calling |
| // |RAND_bytes| repeatedly and makes the values consistent within a |
| // connection. The latter is so the second ClientHello matches after |
| // HelloRetryRequest and so supported_groups and key_shares are consistent. |
| RAND_bytes(grease_seed, sizeof(grease_seed)); |
| } |
| |
| SSL_HANDSHAKE::~SSL_HANDSHAKE() { |
| ssl->ctx->x509_method->hs_flush_cached_ca_names(this); |
| } |
| |
| bool SSL_HANDSHAKE::GetClientHello(SSLMessage *out_msg, |
| SSL_CLIENT_HELLO *out_client_hello) { |
| if (!ech_client_hello_buf.empty()) { |
| // If the backing buffer is non-empty, the ClientHelloInner has been set. |
| out_msg->is_v2_hello = false; |
| out_msg->type = SSL3_MT_CLIENT_HELLO; |
| out_msg->raw = CBS(ech_client_hello_buf); |
| size_t header_len = |
| SSL_is_dtls(ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH; |
| out_msg->body = CBS(Span(ech_client_hello_buf).subspan(header_len)); |
| } else if (!ssl->method->get_message(ssl, out_msg)) { |
| // The message has already been read, so this cannot fail. |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| if (!ssl_client_hello_init(ssl, out_client_hello, out_msg->body)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CLIENTHELLO_PARSE_FAILED); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return false; |
| } |
| return true; |
| } |
| |
| UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl) { |
| UniquePtr<SSL_HANDSHAKE> hs = MakeUnique<SSL_HANDSHAKE>(ssl); |
| if (!hs || !hs->transcript.Init()) { |
| return nullptr; |
| } |
| hs->config = ssl->config.get(); |
| if (!hs->config) { |
| assert(hs->config); |
| return nullptr; |
| } |
| return hs; |
| } |
| |
| bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type) { |
| if (msg.type != type) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); |
| ERR_add_error_dataf("got type %d, wanted type %d", msg.type, type); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ssl_add_message_cbb(SSL *ssl, CBB *cbb) { |
| Array<uint8_t> msg; |
| if (!ssl->method->finish_message(ssl, cbb, &msg) || |
| !ssl->method->add_message(ssl, std::move(msg))) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| size_t ssl_max_handshake_message_len(const SSL *ssl) { |
| // kMaxMessageLen is the default maximum message size for handshakes which do |
| // not accept peer certificate chains. |
| static const size_t kMaxMessageLen = 16384; |
| |
| if (SSL_in_init(ssl)) { |
| SSL_CONFIG *config = ssl->config.get(); // SSL_in_init() implies not NULL. |
| if ((!ssl->server || (config->verify_mode & SSL_VERIFY_PEER)) && |
| kMaxMessageLen < ssl->max_cert_list) { |
| return ssl->max_cert_list; |
| } |
| return kMaxMessageLen; |
| } |
| |
| if (ssl_protocol_version(ssl) < TLS1_3_VERSION) { |
| // In TLS 1.2 and below, the largest acceptable post-handshake message is |
| // a HelloRequest. |
| return 0; |
| } |
| |
| if (ssl->server) { |
| // The largest acceptable post-handshake message for a server is a |
| // KeyUpdate. We will never initiate post-handshake auth. |
| return 1; |
| } |
| |
| // Clients must accept NewSessionTicket, so allow the default size. |
| return kMaxMessageLen; |
| } |
| |
| bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg) { |
| // V2ClientHello messages are pre-hashed. |
| if (msg.is_v2_hello) { |
| return true; |
| } |
| |
| return hs->transcript.Update(msg.raw); |
| } |
| |
| bool ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert, |
| std::initializer_list<SSLExtension *> extensions, |
| bool ignore_unknown) { |
| // Reset everything. |
| for (SSLExtension *ext : extensions) { |
| ext->present = false; |
| CBS_init(&ext->data, nullptr, 0); |
| if (!ext->allowed) { |
| assert(!ignore_unknown); |
| } |
| } |
| |
| CBS copy = *cbs; |
| while (CBS_len(©) != 0) { |
| uint16_t type; |
| CBS data; |
| if (!CBS_get_u16(©, &type) || |
| !CBS_get_u16_length_prefixed(©, &data)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| SSLExtension *found = nullptr; |
| for (SSLExtension *ext : extensions) { |
| if (type == ext->type && ext->allowed) { |
| found = ext; |
| break; |
| } |
| } |
| |
| if (found == nullptr) { |
| if (ignore_unknown) { |
| continue; |
| } |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION); |
| ERR_add_error_dataf("extension %u", unsigned{type}); |
| *out_alert = SSL_AD_UNSUPPORTED_EXTENSION; |
| return false; |
| } |
| |
| // Duplicate ext_types are forbidden. |
| if (found->present) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_EXTENSION); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return false; |
| } |
| |
| found->present = true; |
| found->data = data; |
| } |
| |
| return true; |
| } |
| |
| enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| const SSL_SESSION *prev_session = ssl->s3->established_session.get(); |
| if (prev_session != NULL) { |
| // If renegotiating, the server must not change the server certificate. See |
| // https://mitls.org/pages/attacks/3SHAKE. We never resume on renegotiation, |
| // so this check is sufficient to ensure the reported peer certificate never |
| // changes on renegotiation. |
| assert(!ssl->server); |
| if (sk_CRYPTO_BUFFER_num(prev_session->certs.get()) != |
| sk_CRYPTO_BUFFER_num(hs->new_session->certs.get())) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_CERT_CHANGED); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| return ssl_verify_invalid; |
| } |
| |
| for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()); |
| i++) { |
| const CRYPTO_BUFFER *old_cert = |
| sk_CRYPTO_BUFFER_value(prev_session->certs.get(), i); |
| const CRYPTO_BUFFER *new_cert = |
| sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), i); |
| if (Span(CRYPTO_BUFFER_data(old_cert), CRYPTO_BUFFER_len(old_cert)) != |
| Span(CRYPTO_BUFFER_data(new_cert), CRYPTO_BUFFER_len(new_cert))) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_CERT_CHANGED); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| return ssl_verify_invalid; |
| } |
| } |
| |
| // The certificate is identical, so we may skip re-verifying the |
| // certificate. Since we only authenticated the previous one, copy other |
| // authentication from the established session and ignore what was newly |
| // received. |
| hs->new_session->ocsp_response = UpRef(prev_session->ocsp_response); |
| hs->new_session->signed_cert_timestamp_list = |
| UpRef(prev_session->signed_cert_timestamp_list); |
| hs->new_session->verify_result = prev_session->verify_result; |
| return ssl_verify_ok; |
| } |
| |
| uint8_t alert = SSL_AD_CERTIFICATE_UNKNOWN; |
| enum ssl_verify_result_t ret; |
| if (hs->config->custom_verify_callback != nullptr) { |
| ret = hs->config->custom_verify_callback(ssl, &alert); |
| switch (ret) { |
| case ssl_verify_ok: |
| hs->new_session->verify_result = X509_V_OK; |
| break; |
| case ssl_verify_invalid: |
| // If |SSL_VERIFY_NONE|, the error is non-fatal, but we keep the result. |
| if (hs->config->verify_mode == SSL_VERIFY_NONE) { |
| ERR_clear_error(); |
| ret = ssl_verify_ok; |
| } |
| hs->new_session->verify_result = X509_V_ERR_APPLICATION_VERIFICATION; |
| break; |
| case ssl_verify_retry: |
| break; |
| } |
| } else { |
| ret = ssl->ctx->x509_method->session_verify_cert_chain( |
| hs->new_session.get(), hs, &alert) |
| ? ssl_verify_ok |
| : ssl_verify_invalid; |
| } |
| |
| if (ret == ssl_verify_invalid) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| } |
| |
| // Emulate OpenSSL's client OCSP callback. OpenSSL verifies certificates |
| // before it receives the OCSP, so it needs a second callback for OCSP. |
| if (ret == ssl_verify_ok && !ssl->server && |
| hs->config->ocsp_stapling_enabled && |
| ssl->ctx->legacy_ocsp_callback != nullptr) { |
| int cb_ret = |
| ssl->ctx->legacy_ocsp_callback(ssl, ssl->ctx->legacy_ocsp_callback_arg); |
| if (cb_ret <= 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_OCSP_CB_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, |
| cb_ret == 0 ? SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE |
| : SSL_AD_INTERNAL_ERROR); |
| ret = ssl_verify_invalid; |
| } |
| } |
| |
| return ret; |
| } |
| |
| // Verifies a stored certificate when resuming a session. A few things are |
| // different from verify_peer_cert: |
| // 1. We can't be renegotiating if we're resuming a session. |
| // 2. The session is immutable, so we don't support verify_mode == |
| // SSL_VERIFY_NONE |
| // 3. We don't call the OCSP callback. |
| // 4. We only support custom verify callbacks. |
| enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs, |
| bool send_alert) { |
| SSL *const ssl = hs->ssl; |
| assert(ssl->s3->established_session == nullptr); |
| assert(hs->config->verify_mode != SSL_VERIFY_NONE); |
| |
| uint8_t alert = SSL_AD_CERTIFICATE_UNKNOWN; |
| enum ssl_verify_result_t ret = ssl_verify_invalid; |
| if (hs->config->custom_verify_callback != nullptr) { |
| ret = hs->config->custom_verify_callback(ssl, &alert); |
| } |
| |
| if (ret == ssl_verify_invalid) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED); |
| if (send_alert) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static uint16_t grease_index_to_value(const SSL_HANDSHAKE *hs, |
| enum ssl_grease_index_t index) { |
| // This generates a random value of the form 0xωaωa, for all 0 ≤ ω < 16. |
| uint16_t ret = hs->grease_seed[index]; |
| ret = (ret & 0xf0) | 0x0a; |
| ret |= ret << 8; |
| return ret; |
| } |
| |
| uint16_t ssl_get_grease_value(const SSL_HANDSHAKE *hs, |
| enum ssl_grease_index_t index) { |
| uint16_t ret = grease_index_to_value(hs, index); |
| if (index == ssl_grease_extension2 && |
| ret == grease_index_to_value(hs, ssl_grease_extension1)) { |
| // The two fake extensions must not have the same value. GREASE values are |
| // of the form 0x1a1a, 0x2a2a, 0x3a3a, etc., so XOR to generate a different |
| // one. |
| ret ^= 0x1010; |
| } |
| return ret; |
| } |
| |
| enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_FINISHED)) { |
| return ssl_hs_error; |
| } |
| |
| // Snapshot the finished hash before incorporating the new message. |
| uint8_t finished[EVP_MAX_MD_SIZE]; |
| size_t finished_len; |
| if (!hs->transcript.GetFinishedMAC(finished, &finished_len, |
| ssl_handshake_session(hs), !ssl->server) || |
| !ssl_hash_message(hs, msg)) { |
| return ssl_hs_error; |
| } |
| |
| int finished_ok = CBS_mem_equal(&msg.body, finished, finished_len); |
| #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| finished_ok = 1; |
| #endif |
| if (!finished_ok) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED); |
| return ssl_hs_error; |
| } |
| |
| // Copy the Finished so we can use it for renegotiation checks. |
| if (finished_len > ssl->s3->previous_client_finished.capacity() || |
| finished_len > ssl->s3->previous_server_finished.capacity()) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (ssl->server) { |
| ssl->s3->previous_client_finished.CopyFrom(Span(finished, finished_len)); |
| } else { |
| ssl->s3->previous_server_finished.CopyFrom(Span(finished, finished_len)); |
| } |
| |
| // The Finished message should be the end of a flight. |
| if (ssl->method->has_unprocessed_handshake_data(ssl)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA); |
| return ssl_hs_error; |
| } |
| |
| ssl->method->next_message(ssl); |
| return ssl_hs_ok; |
| } |
| |
| bool ssl_send_finished(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| const SSL_SESSION *session = ssl_handshake_session(hs); |
| |
| uint8_t finished_buf[EVP_MAX_MD_SIZE]; |
| size_t finished_len; |
| if (!hs->transcript.GetFinishedMAC(finished_buf, &finished_len, session, |
| ssl->server)) { |
| return false; |
| } |
| auto finished = Span(finished_buf, finished_len); |
| |
| // Log the master secret, if logging is enabled. |
| if (!ssl_log_secret(ssl, "CLIENT_RANDOM", session->secret)) { |
| return false; |
| } |
| |
| // Copy the Finished so we can use it for renegotiation checks. |
| bool ok = ssl->server |
| ? ssl->s3->previous_server_finished.TryCopyFrom(finished) |
| : ssl->s3->previous_client_finished.TryCopyFrom(finished); |
| if (!ok) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| ScopedCBB cbb; |
| CBB body; |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_FINISHED) || |
| !CBB_add_bytes(&body, finished.data(), finished.size()) || |
| !ssl_add_message_cbb(ssl, cbb.get())) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ssl_send_tls12_certificate(SSL_HANDSHAKE *hs) { |
| ScopedCBB cbb; |
| CBB body, certs, cert; |
| if (!hs->ssl->method->init_message(hs->ssl, cbb.get(), &body, |
| SSL3_MT_CERTIFICATE) || |
| !CBB_add_u24_length_prefixed(&body, &certs)) { |
| return false; |
| } |
| |
| if (hs->credential != nullptr) { |
| assert(hs->credential->type == SSLCredentialType::kX509); |
| STACK_OF(CRYPTO_BUFFER) *chain = hs->credential->chain.get(); |
| for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(chain); i++) { |
| CRYPTO_BUFFER *buffer = sk_CRYPTO_BUFFER_value(chain, i); |
| if (!CBB_add_u24_length_prefixed(&certs, &cert) || |
| !CBB_add_bytes(&cert, CRYPTO_BUFFER_data(buffer), |
| CRYPTO_BUFFER_len(buffer))) { |
| return false; |
| } |
| } |
| } |
| |
| return ssl_add_message_cbb(hs->ssl, cbb.get()); |
| } |
| |
| const SSL_SESSION *ssl_handshake_session(const SSL_HANDSHAKE *hs) { |
| if (hs->new_session) { |
| return hs->new_session.get(); |
| } |
| return hs->ssl->session.get(); |
| } |
| |
| int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return) { |
| SSL *const ssl = hs->ssl; |
| for (;;) { |
| // If a timeout during the handshake triggered a DTLS ACK or retransmit, we |
| // resolve that first. E.g., if |ssl_hs_private_key_operation| is slow, the |
| // ACK timer may fire. |
| if (hs->wait != ssl_hs_error && SSL_is_dtls(ssl)) { |
| int ret = ssl->method->flush(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| |
| // Resolve the operation the handshake was waiting on. Each condition may |
| // halt the handshake by returning, or continue executing if the handshake |
| // may immediately proceed. Cases which halt the handshake can clear |
| // |hs->wait| to re-enter the state machine on the next iteration, or leave |
| // it set to keep the condition sticky. |
| switch (hs->wait) { |
| case ssl_hs_error: |
| ERR_restore_state(hs->error.get()); |
| return -1; |
| |
| case ssl_hs_flush: { |
| int ret = ssl->method->flush(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| break; |
| } |
| |
| case ssl_hs_read_server_hello: |
| case ssl_hs_read_message: |
| case ssl_hs_read_change_cipher_spec: { |
| if (SSL_is_quic(ssl)) { |
| // QUIC has no ChangeCipherSpec messages. |
| assert(hs->wait != ssl_hs_read_change_cipher_spec); |
| // The caller should call |SSL_provide_quic_data|. Clear |hs->wait| so |
| // the handshake can check if there is sufficient data next iteration. |
| ssl->s3->rwstate = SSL_ERROR_WANT_READ; |
| hs->wait = ssl_hs_ok; |
| return -1; |
| } |
| |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| size_t consumed = 0; |
| ssl_open_record_t ret; |
| if (hs->wait == ssl_hs_read_change_cipher_spec) { |
| ret = ssl_open_change_cipher_spec(ssl, &consumed, &alert, |
| ssl->s3->read_buffer.span()); |
| } else { |
| ret = ssl_open_handshake(ssl, &consumed, &alert, |
| ssl->s3->read_buffer.span()); |
| } |
| if (ret == ssl_open_record_error && |
| hs->wait == ssl_hs_read_server_hello) { |
| uint32_t err = ERR_peek_error(); |
| if (ERR_GET_LIB(err) == ERR_LIB_SSL && |
| ERR_GET_REASON(err) == SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE) { |
| // Add a dedicated error code to the queue for a handshake_failure |
| // alert in response to ClientHello. This matches NSS's client |
| // behavior and gives a better error on a (probable) failure to |
| // negotiate initial parameters. Note: this error code comes after |
| // the original one. |
| // |
| // See https://crbug.com/446505. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_FAILURE_ON_CLIENT_HELLO); |
| } |
| } |
| bool retry; |
| int bio_ret = ssl_handle_open_record(ssl, &retry, ret, consumed, alert); |
| if (bio_ret <= 0) { |
| return bio_ret; |
| } |
| if (retry) { |
| continue; |
| } |
| ssl->s3->read_buffer.DiscardConsumed(); |
| break; |
| } |
| |
| case ssl_hs_read_end_of_early_data: { |
| if (ssl->s3->hs->can_early_read) { |
| // While we are processing early data, the handshake returns early. |
| *out_early_return = true; |
| return 1; |
| } |
| hs->wait = ssl_hs_ok; |
| break; |
| } |
| |
| case ssl_hs_certificate_selection_pending: |
| ssl->s3->rwstate = SSL_ERROR_PENDING_CERTIFICATE; |
| hs->wait = ssl_hs_ok; |
| return -1; |
| |
| case ssl_hs_handoff: |
| ssl->s3->rwstate = SSL_ERROR_HANDOFF; |
| hs->wait = ssl_hs_ok; |
| return -1; |
| |
| case ssl_hs_handback: { |
| int ret = ssl->method->flush(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| ssl->s3->rwstate = SSL_ERROR_HANDBACK; |
| hs->wait = ssl_hs_handback; |
| return -1; |
| } |
| |
| // The following cases are associated with callback APIs which expect to |
| // be called each time the state machine runs. Thus they set |hs->wait| |
| // to |ssl_hs_ok| so that, next time, we re-enter the state machine and |
| // call the callback again. |
| case ssl_hs_x509_lookup: |
| ssl->s3->rwstate = SSL_ERROR_WANT_X509_LOOKUP; |
| hs->wait = ssl_hs_ok; |
| return -1; |
| case ssl_hs_private_key_operation: |
| ssl->s3->rwstate = SSL_ERROR_WANT_PRIVATE_KEY_OPERATION; |
| hs->wait = ssl_hs_ok; |
| return -1; |
| case ssl_hs_pending_session: |
| ssl->s3->rwstate = SSL_ERROR_PENDING_SESSION; |
| hs->wait = ssl_hs_ok; |
| return -1; |
| case ssl_hs_pending_ticket: |
| ssl->s3->rwstate = SSL_ERROR_PENDING_TICKET; |
| hs->wait = ssl_hs_ok; |
| return -1; |
| case ssl_hs_certificate_verify: |
| ssl->s3->rwstate = SSL_ERROR_WANT_CERTIFICATE_VERIFY; |
| hs->wait = ssl_hs_ok; |
| return -1; |
| |
| case ssl_hs_early_data_rejected: |
| assert(ssl->s3->early_data_reason != ssl_early_data_unknown); |
| assert(!hs->can_early_write); |
| ssl->s3->rwstate = SSL_ERROR_EARLY_DATA_REJECTED; |
| return -1; |
| |
| case ssl_hs_early_return: |
| if (!ssl->server) { |
| // On ECH reject, the handshake should never complete. |
| assert(ssl->s3->ech_status != ssl_ech_rejected); |
| } |
| *out_early_return = true; |
| hs->wait = ssl_hs_ok; |
| return 1; |
| |
| case ssl_hs_hints_ready: |
| ssl->s3->rwstate = SSL_ERROR_HANDSHAKE_HINTS_READY; |
| return -1; |
| |
| case ssl_hs_ok: |
| break; |
| } |
| |
| // Run the state machine again. |
| hs->wait = ssl->do_handshake(hs); |
| if (hs->wait == ssl_hs_error) { |
| hs->error.reset(ERR_save_state()); |
| return -1; |
| } |
| if (hs->wait == ssl_hs_ok) { |
| if (!ssl->server) { |
| // On ECH reject, the handshake should never complete. |
| assert(ssl->s3->ech_status != ssl_ech_rejected); |
| } |
| // The handshake has completed. |
| *out_early_return = false; |
| return 1; |
| } |
| // If the handshake returns |ssl_hs_flush|, implicitly finish the flight. |
| // This is a convenience so we do not need to manually insert this |
| // throughout the handshake. |
| if (hs->wait == ssl_hs_flush) { |
| ssl->method->finish_flight(ssl); |
| } |
| |
| // Loop to the beginning and resolve what was blocking the handshake. |
| } |
| } |
| |
| BSSL_NAMESPACE_END |