blob: c541da96d04c5dcea2adbe5934674cb3d945577d [file] [log] [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "parse_certificate.h"
#include <gtest/gtest.h>
#include <openssl/pool.h>
#include "cert_errors.h"
#include "general_names.h"
#include "input.h"
#include "parsed_certificate.h"
#include "test_helpers.h"
BSSL_NAMESPACE_BEGIN
namespace {
// Pretty-prints a GeneralizedTime as a human-readable string for use in test
// expectations (it is more readable to specify the expected results as a
// string).
std::string ToString(const der::GeneralizedTime &time) {
std::ostringstream pretty_time;
pretty_time << "year=" << int{time.year} << ", month=" << int{time.month}
<< ", day=" << int{time.day} << ", hours=" << int{time.hours}
<< ", minutes=" << int{time.minutes}
<< ", seconds=" << int{time.seconds};
return pretty_time.str();
}
std::string GetFilePath(const std::string &file_name) {
return std::string("testdata/parse_certificate_unittest/") + file_name;
}
// Loads certificate data and expectations from the PEM file |file_name|.
// Verifies that parsing the Certificate matches expectations:
// * If expected to fail, emits the expected errors
// * If expected to succeeds, the parsed fields match expectations
void RunCertificateTest(const std::string &file_name) {
std::string data;
std::string expected_errors;
std::string expected_tbs_certificate;
std::string expected_signature_algorithm;
std::string expected_signature;
// Read the certificate data and test expectations from a single PEM file.
const PemBlockMapping mappings[] = {
{"CERTIFICATE", &data},
{"ERRORS", &expected_errors, true /*optional*/},
{"SIGNATURE", &expected_signature, true /*optional*/},
{"SIGNATURE ALGORITHM", &expected_signature_algorithm, true /*optional*/},
{"TBS CERTIFICATE", &expected_tbs_certificate, true /*optional*/},
};
std::string test_file_path = GetFilePath(file_name);
ASSERT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings));
// Note that empty expected_errors doesn't necessarily mean success.
bool expected_result = !expected_tbs_certificate.empty();
// Parsing the certificate.
der::Input tbs_certificate_tlv;
der::Input signature_algorithm_tlv;
der::BitString signature_value;
CertErrors errors;
bool actual_result =
ParseCertificate(der::Input(data), &tbs_certificate_tlv,
&signature_algorithm_tlv, &signature_value, &errors);
EXPECT_EQ(expected_result, actual_result);
VerifyCertErrors(expected_errors, errors, test_file_path);
// Ensure that the parsed certificate matches expectations.
if (expected_result && actual_result) {
EXPECT_EQ(0, signature_value.unused_bits());
EXPECT_EQ(der::Input(expected_signature), signature_value.bytes());
EXPECT_EQ(der::Input(expected_signature_algorithm),
signature_algorithm_tlv);
EXPECT_EQ(der::Input(expected_tbs_certificate), tbs_certificate_tlv);
}
}
// Tests parsing a Certificate.
TEST(ParseCertificateTest, Version3) {
RunCertificateTest("cert_version3.pem");
}
// Tests parsing a simplified Certificate-like structure (the sub-fields for
// algorithm and tbsCertificate are not actually valid, but ParseCertificate()
// doesn't check them)
TEST(ParseCertificateTest, Skeleton) {
RunCertificateTest("cert_skeleton.pem");
}
// Tests parsing a Certificate that is not a sequence fails.
TEST(ParseCertificateTest, NotSequence) {
RunCertificateTest("cert_not_sequence.pem");
}
// Tests that uncomsumed data is not allowed after the main SEQUENCE.
TEST(ParseCertificateTest, DataAfterSignature) {
RunCertificateTest("cert_data_after_signature.pem");
}
// Tests that parsing fails if the signature BIT STRING is missing.
TEST(ParseCertificateTest, MissingSignature) {
RunCertificateTest("cert_missing_signature.pem");
}
// Tests that parsing fails if the signature is present but not a BIT STRING.
TEST(ParseCertificateTest, SignatureNotBitString) {
RunCertificateTest("cert_signature_not_bit_string.pem");
}
// Tests that parsing fails if the main SEQUENCE is empty (missing all the
// fields).
TEST(ParseCertificateTest, EmptySequence) {
RunCertificateTest("cert_empty_sequence.pem");
}
// Tests what happens when the signature algorithm is present, but has the wrong
// tag.
TEST(ParseCertificateTest, AlgorithmNotSequence) {
RunCertificateTest("cert_algorithm_not_sequence.pem");
}
// Loads tbsCertificate data and expectations from the PEM file |file_name|.
// Verifies that parsing the TBSCertificate succeeds, and each parsed field
// matches the expectations.
//
// TODO(eroman): Get rid of the |expected_version| parameter -- this should be
// encoded in the test expectations file.
void RunTbsCertificateTestGivenVersion(const std::string &file_name,
CertificateVersion expected_version) {
std::string data;
std::string expected_serial_number;
std::string expected_signature_algorithm;
std::string expected_issuer;
std::string expected_validity_not_before;
std::string expected_validity_not_after;
std::string expected_subject;
std::string expected_spki;
std::string expected_issuer_unique_id;
std::string expected_subject_unique_id;
std::string expected_extensions;
std::string expected_errors;
// Read the certificate data and test expectations from a single PEM file.
const PemBlockMapping mappings[] = {
{"TBS CERTIFICATE", &data},
{"SIGNATURE ALGORITHM", &expected_signature_algorithm, true},
{"SERIAL NUMBER", &expected_serial_number, true},
{"ISSUER", &expected_issuer, true},
{"VALIDITY NOTBEFORE", &expected_validity_not_before, true},
{"VALIDITY NOTAFTER", &expected_validity_not_after, true},
{"SUBJECT", &expected_subject, true},
{"SPKI", &expected_spki, true},
{"ISSUER UNIQUE ID", &expected_issuer_unique_id, true},
{"SUBJECT UNIQUE ID", &expected_subject_unique_id, true},
{"EXTENSIONS", &expected_extensions, true},
{"ERRORS", &expected_errors, true},
};
std::string test_file_path = GetFilePath(file_name);
ASSERT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings));
bool expected_result = !expected_spki.empty();
ParsedTbsCertificate parsed;
CertErrors errors;
bool actual_result =
ParseTbsCertificate(der::Input(data), {}, &parsed, &errors);
EXPECT_EQ(expected_result, actual_result);
VerifyCertErrors(expected_errors, errors, test_file_path);
if (!expected_result || !actual_result) {
return;
}
// Ensure that the ParsedTbsCertificate matches expectations.
EXPECT_EQ(expected_version, parsed.version);
EXPECT_EQ(der::Input(expected_serial_number), parsed.serial_number);
EXPECT_EQ(der::Input(expected_signature_algorithm),
parsed.signature_algorithm_tlv);
EXPECT_EQ(der::Input(expected_issuer), parsed.issuer_tlv);
// In the test expectations PEM file, validity is described as a
// textual string of the parsed value (rather than as DER).
EXPECT_EQ(expected_validity_not_before, ToString(parsed.validity_not_before));
EXPECT_EQ(expected_validity_not_after, ToString(parsed.validity_not_after));
EXPECT_EQ(der::Input(expected_subject), parsed.subject_tlv);
EXPECT_EQ(der::Input(expected_spki), parsed.spki_tlv);
EXPECT_EQ(!expected_issuer_unique_id.empty(),
parsed.issuer_unique_id.has_value());
if (parsed.issuer_unique_id.has_value()) {
EXPECT_EQ(der::Input(expected_issuer_unique_id),
parsed.issuer_unique_id->bytes());
}
EXPECT_EQ(!expected_subject_unique_id.empty(),
parsed.subject_unique_id.has_value());
if (parsed.subject_unique_id.has_value()) {
EXPECT_EQ(der::Input(expected_subject_unique_id),
parsed.subject_unique_id->bytes());
}
EXPECT_EQ(!expected_extensions.empty(), parsed.extensions_tlv.has_value());
if (parsed.extensions_tlv) {
EXPECT_EQ(der::Input(expected_extensions), parsed.extensions_tlv.value());
}
}
void RunTbsCertificateTest(const std::string &file_name) {
RunTbsCertificateTestGivenVersion(file_name, CertificateVersion::V3);
}
// Tests parsing a TBSCertificate for v3 that contains no optional fields.
TEST(ParseTbsCertificateTest, Version3NoOptionals) {
RunTbsCertificateTest("tbs_v3_no_optionals.pem");
}
// Tests parsing a TBSCertificate for v3 that contains extensions.
TEST(ParseTbsCertificateTest, Version3WithExtensions) {
RunTbsCertificateTest("tbs_v3_extensions.pem");
}
// Tests parsing a TBSCertificate which lacks a version number (causing it to
// default to v1).
TEST(ParseTbsCertificateTest, Version1) {
RunTbsCertificateTestGivenVersion("tbs_v1.pem", CertificateVersion::V1);
}
// The version was set to v1 explicitly rather than omitting the version field.
TEST(ParseTbsCertificateTest, ExplicitVersion1) {
RunTbsCertificateTest("tbs_explicit_v1.pem");
}
// Extensions are not defined in version 1.
TEST(ParseTbsCertificateTest, Version1WithExtensions) {
RunTbsCertificateTest("tbs_v1_extensions.pem");
}
// Extensions are not defined in version 2.
TEST(ParseTbsCertificateTest, Version2WithExtensions) {
RunTbsCertificateTest("tbs_v2_extensions.pem");
}
// A boring version 2 certificate with none of the optional fields.
TEST(ParseTbsCertificateTest, Version2NoOptionals) {
RunTbsCertificateTestGivenVersion("tbs_v2_no_optionals.pem",
CertificateVersion::V2);
}
// A version 2 certificate with an issuer unique ID field.
TEST(ParseTbsCertificateTest, Version2IssuerUniqueId) {
RunTbsCertificateTestGivenVersion("tbs_v2_issuer_unique_id.pem",
CertificateVersion::V2);
}
// A version 2 certificate with both a issuer and subject unique ID field.
TEST(ParseTbsCertificateTest, Version2IssuerAndSubjectUniqueId) {
RunTbsCertificateTestGivenVersion("tbs_v2_issuer_and_subject_unique_id.pem",
CertificateVersion::V2);
}
// A version 3 certificate with all of the optional fields (issuer unique id,
// subject unique id, and extensions).
TEST(ParseTbsCertificateTest, Version3AllOptionals) {
RunTbsCertificateTest("tbs_v3_all_optionals.pem");
}
// The version was set to v4, which is unrecognized.
TEST(ParseTbsCertificateTest, Version4) { RunTbsCertificateTest("tbs_v4.pem"); }
// Tests that extraneous data after extensions in a v3 is rejected.
TEST(ParseTbsCertificateTest, Version3DataAfterExtensions) {
RunTbsCertificateTest("tbs_v3_data_after_extensions.pem");
}
// Tests using a real-world certificate (whereas the other tests are fabricated
// (and in fact invalid) data.
TEST(ParseTbsCertificateTest, Version3Real) {
RunTbsCertificateTest("tbs_v3_real.pem");
}
// Parses a TBSCertificate whose "validity" field expresses both notBefore
// and notAfter using UTCTime.
TEST(ParseTbsCertificateTest, ValidityBothUtcTime) {
RunTbsCertificateTest("tbs_validity_both_utc_time.pem");
}
// Parses a TBSCertificate whose "validity" field expresses both notBefore
// and notAfter using GeneralizedTime.
TEST(ParseTbsCertificateTest, ValidityBothGeneralizedTime) {
RunTbsCertificateTest("tbs_validity_both_generalized_time.pem");
}
// Parses a TBSCertificate whose "validity" field expresses notBefore using
// UTCTime and notAfter using GeneralizedTime.
TEST(ParseTbsCertificateTest, ValidityUTCTimeAndGeneralizedTime) {
RunTbsCertificateTest("tbs_validity_utc_time_and_generalized_time.pem");
}
// Parses a TBSCertificate whose validity" field expresses notBefore using
// GeneralizedTime and notAfter using UTCTime. Also of interest, notBefore >
// notAfter. Parsing will succeed, however no time can satisfy this constraint.
TEST(ParseTbsCertificateTest, ValidityGeneralizedTimeAndUTCTime) {
RunTbsCertificateTest("tbs_validity_generalized_time_and_utc_time.pem");
}
// Parses a TBSCertificate whose "validity" field does not strictly follow
// the DER rules (and fails to be parsed).
TEST(ParseTbsCertificateTest, ValidityRelaxed) {
RunTbsCertificateTest("tbs_validity_relaxed.pem");
}
// Parses a KeyUsage with a single 0 bit.
TEST(ParseKeyUsageTest, OneBitAllZeros) {
const uint8_t der[] = {
0x03, 0x02, // BIT STRING
0x07, // Number of unused bits
0x00, // bits
};
der::BitString key_usage;
ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage));
}
// Parses a KeyUsage with 32 bits that are all 0.
TEST(ParseKeyUsageTest, 32BitsAllZeros) {
const uint8_t der[] = {
0x03, 0x05, // BIT STRING
0x00, // Number of unused bits
0x00, 0x00, 0x00, 0x00,
};
der::BitString key_usage;
ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage));
}
// Parses a KeyUsage with 32 bits, one of which is 1 (but not in recognized
// set).
TEST(ParseKeyUsageTest, 32BitsOneSet) {
const uint8_t der[] = {
0x03, 0x05, // BIT STRING
0x00, // Number of unused bits
0x00, 0x00, 0x00, 0x02,
};
der::BitString key_usage;
ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY));
}
// Parses a KeyUsage containing bit string 101.
TEST(ParseKeyUsageTest, ThreeBits) {
const uint8_t der[] = {
0x03, 0x02, // BIT STRING
0x05, // Number of unused bits
0xA0, // bits
};
der::BitString key_usage;
ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage));
EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION));
EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY));
}
// Parses a KeyUsage containing DECIPHER_ONLY, which is the
// only bit that doesn't fit in the first byte.
TEST(ParseKeyUsageTest, DecipherOnly) {
const uint8_t der[] = {
0x03, 0x03, // BIT STRING
0x07, // Number of unused bits
0x00, 0x80, // bits
};
der::BitString key_usage;
ASSERT_TRUE(ParseKeyUsage(der::Input(der), &key_usage));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_NON_REPUDIATION));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_DATA_ENCIPHERMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_AGREEMENT));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_KEY_CERT_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_CRL_SIGN));
EXPECT_FALSE(key_usage.AssertsBit(KEY_USAGE_BIT_ENCIPHER_ONLY));
EXPECT_TRUE(key_usage.AssertsBit(KEY_USAGE_BIT_DECIPHER_ONLY));
}
// Parses an empty KeyUsage.
TEST(ParseKeyUsageTest, Empty) {
const uint8_t der[] = {
0x03, 0x01, // BIT STRING
0x00, // Number of unused bits
};
der::BitString key_usage;
ASSERT_FALSE(ParseKeyUsage(der::Input(der), &key_usage));
}
TEST(ParseAuthorityInfoAccess, BasicTests) {
// SEQUENCE {
// SEQUENCE {
// # ocsp with directoryName
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 }
// [4] {
// SEQUENCE {
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// PrintableString { "ocsp" }
// }
// }
// }
// }
// }
// SEQUENCE {
// # caIssuers with directoryName
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.2 }
// [4] {
// SEQUENCE {
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// PrintableString { "ca issuer" }
// }
// }
// }
// }
// }
// SEQUENCE {
// # non-standard method with URI
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.3 }
// [6 PRIMITIVE] { "http://nonstandard.example.com" }
// }
// SEQUENCE {
// # ocsp with URI
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 }
// [6 PRIMITIVE] { "http://ocsp.example.com" }
// }
// SEQUENCE {
// # caIssuers with URI
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.2 }
// [6 PRIMITIVE] { "http://www.example.com/issuer.crt" }
// }
// }
const uint8_t der[] = {
0x30, 0x81, 0xc3, 0x30, 0x1d, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05,
0x07, 0x30, 0x01, 0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30, 0x0b, 0x06,
0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x6f, 0x63, 0x73, 0x70, 0x30, 0x22,
0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x02, 0xa4, 0x16,
0x30, 0x14, 0x31, 0x12, 0x30, 0x10, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13,
0x09, 0x63, 0x61, 0x20, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72, 0x30, 0x2a,
0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x03, 0x86, 0x1e,
0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6e, 0x6f, 0x6e, 0x73, 0x74,
0x61, 0x6e, 0x64, 0x61, 0x72, 0x64, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70,
0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x30, 0x23, 0x06, 0x08, 0x2b, 0x06,
0x01, 0x05, 0x05, 0x07, 0x30, 0x01, 0x86, 0x17, 0x68, 0x74, 0x74, 0x70,
0x3a, 0x2f, 0x2f, 0x6f, 0x63, 0x73, 0x70, 0x2e, 0x65, 0x78, 0x61, 0x6d,
0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x30, 0x2d, 0x06, 0x08, 0x2b,
0x06, 0x01, 0x05, 0x05, 0x07, 0x30, 0x02, 0x86, 0x21, 0x68, 0x74, 0x74,
0x70, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e, 0x65, 0x78, 0x61, 0x6d,
0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x2f, 0x69, 0x73, 0x73, 0x75,
0x65, 0x72, 0x2e, 0x63, 0x72, 0x74};
std::vector<AuthorityInfoAccessDescription> access_descriptions;
ASSERT_TRUE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions));
ASSERT_EQ(5u, access_descriptions.size());
{
const auto &desc = access_descriptions[0];
EXPECT_EQ(der::Input(kAdOcspOid), desc.access_method_oid);
const uint8_t location_der[] = {0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30,
0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13,
0x04, 0x6f, 0x63, 0x73, 0x70};
EXPECT_EQ(der::Input(location_der), desc.access_location);
}
{
const auto &desc = access_descriptions[1];
EXPECT_EQ(der::Input(kAdCaIssuersOid), desc.access_method_oid);
const uint8_t location_der[] = {
0xa4, 0x16, 0x30, 0x14, 0x31, 0x12, 0x30, 0x10, 0x06, 0x03, 0x55, 0x04,
0x03, 0x13, 0x09, 0x63, 0x61, 0x20, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72};
EXPECT_EQ(der::Input(location_der), desc.access_location);
}
{
const auto &desc = access_descriptions[2];
const uint8_t method_oid[] = {0x2b, 0x06, 0x01, 0x05,
0x05, 0x07, 0x30, 0x03};
EXPECT_EQ(der::Input(method_oid), desc.access_method_oid);
const uint8_t location_der[] = {
0x86, 0x1e, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6e, 0x6f,
0x6e, 0x73, 0x74, 0x61, 0x6e, 0x64, 0x61, 0x72, 0x64, 0x2e, 0x65,
0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d};
EXPECT_EQ(der::Input(location_der), desc.access_location);
}
{
const auto &desc = access_descriptions[3];
EXPECT_EQ(der::Input(kAdOcspOid), desc.access_method_oid);
const uint8_t location_der[] = {0x86, 0x17, 0x68, 0x74, 0x74, 0x70, 0x3a,
0x2f, 0x2f, 0x6f, 0x63, 0x73, 0x70, 0x2e,
0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65,
0x2e, 0x63, 0x6f, 0x6d};
EXPECT_EQ(der::Input(location_der), desc.access_location);
}
{
const auto &desc = access_descriptions[4];
EXPECT_EQ(der::Input(kAdCaIssuersOid), desc.access_method_oid);
const uint8_t location_der[] = {
0x86, 0x21, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77,
0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d,
0x2f, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72, 0x2e, 0x63, 0x72, 0x74};
EXPECT_EQ(der::Input(location_der), desc.access_location);
}
std::vector<std::string_view> ca_issuers_uris, ocsp_uris;
ASSERT_TRUE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris,
&ocsp_uris));
ASSERT_EQ(1u, ca_issuers_uris.size());
EXPECT_EQ("http://www.example.com/issuer.crt", ca_issuers_uris.front());
ASSERT_EQ(1u, ocsp_uris.size());
EXPECT_EQ("http://ocsp.example.com", ocsp_uris.front());
}
TEST(ParseAuthorityInfoAccess, NoOcspOrCaIssuersURIs) {
// SEQUENCE {
// SEQUENCE {
// # non-standard method with directoryName
// OBJECT_IDENTIFIER { 1.2.3 }
// [4] {
// SEQUENCE {
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// PrintableString { "foo" }
// }
// }
// }
// }
// }
// }
const uint8_t der[] = {0x30, 0x18, 0x30, 0x16, 0x06, 0x02, 0x2a, 0x03, 0xa4,
0x10, 0x30, 0x0e, 0x31, 0x0c, 0x30, 0x0a, 0x06, 0x03,
0x55, 0x04, 0x03, 0x13, 0x03, 0x66, 0x6f, 0x6f};
std::vector<AuthorityInfoAccessDescription> access_descriptions;
ASSERT_TRUE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions));
ASSERT_EQ(1u, access_descriptions.size());
const auto &desc = access_descriptions[0];
const uint8_t method_oid[] = {0x2a, 0x03};
EXPECT_EQ(der::Input(method_oid), desc.access_method_oid);
const uint8_t location_der[] = {0xa4, 0x10, 0x30, 0x0e, 0x31, 0x0c,
0x30, 0x0a, 0x06, 0x03, 0x55, 0x04,
0x03, 0x13, 0x03, 0x66, 0x6f, 0x6f};
EXPECT_EQ(der::Input(location_der), desc.access_location);
std::vector<std::string_view> ca_issuers_uris, ocsp_uris;
// ParseAuthorityInfoAccessURIs should still return success since it was a
// valid AuthorityInfoAccess extension, even though it did not contain any
// elements we care about, and both output vectors should be empty.
ASSERT_TRUE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris,
&ocsp_uris));
EXPECT_EQ(0u, ca_issuers_uris.size());
EXPECT_EQ(0u, ocsp_uris.size());
}
TEST(ParseAuthorityInfoAccess, IncompleteAccessDescription) {
// SEQUENCE {
// # first entry is ok
// SEQUENCE {
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 }
// [6 PRIMITIVE] { "http://ocsp.example.com" }
// }
// # second is missing accessLocation field
// SEQUENCE {
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.2 }
// }
// }
const uint8_t der[] = {0x30, 0x31, 0x30, 0x23, 0x06, 0x08, 0x2b, 0x06, 0x01,
0x05, 0x05, 0x07, 0x30, 0x01, 0x86, 0x17, 0x68, 0x74,
0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6f, 0x63, 0x73, 0x70,
0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e,
0x63, 0x6f, 0x6d, 0x30, 0x0a, 0x06, 0x08, 0x2b, 0x06,
0x01, 0x05, 0x05, 0x07, 0x30, 0x02};
std::vector<AuthorityInfoAccessDescription> access_descriptions;
EXPECT_FALSE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions));
std::vector<std::string_view> ca_issuers_uris, ocsp_uris;
EXPECT_FALSE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris,
&ocsp_uris));
}
TEST(ParseAuthorityInfoAccess, ExtraDataInAccessDescription) {
// SEQUENCE {
// SEQUENCE {
// OBJECT_IDENTIFIER { 1.3.6.1.5.5.7.48.1 }
// [6 PRIMITIVE] { "http://ocsp.example.com" }
// # invalid, AccessDescription only has 2 fields
// PrintableString { "henlo" }
// }
// }
const uint8_t der[] = {
0x30, 0x2c, 0x30, 0x2a, 0x06, 0x08, 0x2b, 0x06, 0x01, 0x05, 0x05, 0x07,
0x30, 0x01, 0x86, 0x17, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x6f,
0x63, 0x73, 0x70, 0x2e, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e,
0x63, 0x6f, 0x6d, 0x13, 0x05, 0x68, 0x65, 0x6e, 0x6c, 0x6f};
std::vector<AuthorityInfoAccessDescription> access_descriptions;
EXPECT_FALSE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions));
std::vector<std::string_view> ca_issuers_uris, ocsp_uris;
EXPECT_FALSE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris,
&ocsp_uris));
}
TEST(ParseAuthorityInfoAccess, EmptySequence) {
// SEQUENCE { }
const uint8_t der[] = {0x30, 0x00};
std::vector<AuthorityInfoAccessDescription> access_descriptions;
EXPECT_FALSE(ParseAuthorityInfoAccess(der::Input(der), &access_descriptions));
std::vector<std::string_view> ca_issuers_uris, ocsp_uris;
EXPECT_FALSE(ParseAuthorityInfoAccessURIs(der::Input(der), &ca_issuers_uris,
&ocsp_uris));
}
// Test fixture for testing ParseCrlDistributionPoints.
//
// Test data is encoded in certificate files. This fixture is responsible for
// reading and parsing the certificates to get at the extension under test.
class ParseCrlDistributionPointsTest : public ::testing::Test {
public:
protected:
bool GetCrlDps(const char *file_name,
std::vector<ParsedDistributionPoint> *dps) {
std::string cert_bytes;
// Read the test certificate file.
const PemBlockMapping mappings[] = {
{"CERTIFICATE", &cert_bytes},
};
std::string test_file_path = GetFilePath(file_name);
EXPECT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings));
// Extract the CRLDP from the test Certificate.
CertErrors errors;
std::shared_ptr<const ParsedCertificate> cert = ParsedCertificate::Create(
bssl::UniquePtr<CRYPTO_BUFFER>(CRYPTO_BUFFER_new(
reinterpret_cast<const uint8_t *>(cert_bytes.data()),
cert_bytes.size(), nullptr)),
{}, &errors);
if (!cert) {
return false;
}
auto it = cert->extensions().find(der::Input(kCrlDistributionPointsOid));
if (it == cert->extensions().end()) {
return false;
}
der::Input crl_dp_tlv = it->second.value;
// Keep the certificate data alive, since this function will return
// der::Inputs that reference it. Run the function under test (for parsing
//
// TODO(eroman): The use of ParsedCertificate in this test should be removed
// in lieu of lazy parsing.
keep_alive_certs_.push_back(cert);
return ParseCrlDistributionPoints(crl_dp_tlv, dps);
}
private:
ParsedCertificateList keep_alive_certs_;
};
TEST_F(ParseCrlDistributionPointsTest, OneUriNoIssuer) {
std::vector<ParsedDistributionPoint> dps;
ASSERT_TRUE(GetCrlDps("crldp_1uri_noissuer.pem", &dps));
ASSERT_EQ(1u, dps.size());
const ParsedDistributionPoint &dp1 = dps.front();
ASSERT_TRUE(dp1.distribution_point_fullname);
const GeneralNames &fullname = *dp1.distribution_point_fullname;
EXPECT_EQ(GENERAL_NAME_UNIFORM_RESOURCE_IDENTIFIER,
fullname.present_name_types);
ASSERT_EQ(1u, fullname.uniform_resource_identifiers.size());
EXPECT_EQ(fullname.uniform_resource_identifiers.front(),
std::string("http://www.example.com/foo.crl"));
EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer);
EXPECT_FALSE(dp1.reasons);
EXPECT_FALSE(dp1.crl_issuer);
}
TEST_F(ParseCrlDistributionPointsTest, ThreeUrisNoIssuer) {
std::vector<ParsedDistributionPoint> dps;
ASSERT_TRUE(GetCrlDps("crldp_3uri_noissuer.pem", &dps));
ASSERT_EQ(1u, dps.size());
const ParsedDistributionPoint &dp1 = dps.front();
ASSERT_TRUE(dp1.distribution_point_fullname);
const GeneralNames &fullname = *dp1.distribution_point_fullname;
EXPECT_EQ(GENERAL_NAME_UNIFORM_RESOURCE_IDENTIFIER,
fullname.present_name_types);
ASSERT_EQ(3u, fullname.uniform_resource_identifiers.size());
EXPECT_EQ(fullname.uniform_resource_identifiers[0],
std::string("http://www.example.com/foo1.crl"));
EXPECT_EQ(fullname.uniform_resource_identifiers[1],
std::string("http://www.example.com/blah.crl"));
EXPECT_EQ(fullname.uniform_resource_identifiers[2],
std::string("not-even-a-url"));
EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer);
EXPECT_FALSE(dp1.reasons);
EXPECT_FALSE(dp1.crl_issuer);
}
TEST_F(ParseCrlDistributionPointsTest, CrlIssuerAsDirname) {
std::vector<ParsedDistributionPoint> dps;
ASSERT_TRUE(GetCrlDps("crldp_issuer_as_dirname.pem", &dps));
ASSERT_EQ(1u, dps.size());
const ParsedDistributionPoint &dp1 = dps.front();
ASSERT_TRUE(dp1.distribution_point_fullname);
const GeneralNames &fullname = *dp1.distribution_point_fullname;
EXPECT_EQ(GENERAL_NAME_DIRECTORY_NAME, fullname.present_name_types);
// Generated by `ascii2der | xxd -i` from the Name value in
// crldp_issuer_as_dirname.pem.
const uint8_t kExpectedName[] = {
0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x55,
0x53, 0x31, 0x1f, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x16,
0x54, 0x65, 0x73, 0x74, 0x20, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69,
0x63, 0x61, 0x74, 0x65, 0x73, 0x20, 0x32, 0x30, 0x31, 0x31, 0x31, 0x22,
0x30, 0x20, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13, 0x19, 0x69, 0x6e, 0x64,
0x69, 0x72, 0x65, 0x63, 0x74, 0x43, 0x52, 0x4c, 0x20, 0x43, 0x41, 0x33,
0x20, 0x63, 0x52, 0x4c, 0x49, 0x73, 0x73, 0x75, 0x65, 0x72, 0x31, 0x29,
0x30, 0x27, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x20, 0x69, 0x6e, 0x64,
0x69, 0x72, 0x65, 0x63, 0x74, 0x20, 0x43, 0x52, 0x4c, 0x20, 0x66, 0x6f,
0x72, 0x20, 0x69, 0x6e, 0x64, 0x69, 0x72, 0x65, 0x63, 0x74, 0x43, 0x52,
0x4c, 0x20, 0x43, 0x41, 0x33};
ASSERT_EQ(1u, fullname.directory_names.size());
EXPECT_EQ(der::Input(kExpectedName), fullname.directory_names[0]);
EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer);
EXPECT_FALSE(dp1.reasons);
ASSERT_TRUE(dp1.crl_issuer);
// Generated by `ascii2der | xxd -i` from the cRLIssuer value in
// crldp_issuer_as_dirname.pem.
const uint8_t kExpectedCrlIssuer[] = {
0xa4, 0x54, 0x30, 0x52, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55,
0x04, 0x06, 0x13, 0x02, 0x55, 0x53, 0x31, 0x1f, 0x30, 0x1d, 0x06,
0x03, 0x55, 0x04, 0x0a, 0x13, 0x16, 0x54, 0x65, 0x73, 0x74, 0x20,
0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63, 0x61, 0x74, 0x65,
0x73, 0x20, 0x32, 0x30, 0x31, 0x31, 0x31, 0x22, 0x30, 0x20, 0x06,
0x03, 0x55, 0x04, 0x0b, 0x13, 0x19, 0x69, 0x6e, 0x64, 0x69, 0x72,
0x65, 0x63, 0x74, 0x43, 0x52, 0x4c, 0x20, 0x43, 0x41, 0x33, 0x20,
0x63, 0x52, 0x4c, 0x49, 0x73, 0x73, 0x75, 0x65, 0x72};
EXPECT_EQ(der::Input(kExpectedCrlIssuer), dp1.crl_issuer);
}
TEST_F(ParseCrlDistributionPointsTest, FullnameAsDirname) {
std::vector<ParsedDistributionPoint> dps;
ASSERT_TRUE(GetCrlDps("crldp_full_name_as_dirname.pem", &dps));
ASSERT_EQ(1u, dps.size());
const ParsedDistributionPoint &dp1 = dps.front();
ASSERT_TRUE(dp1.distribution_point_fullname);
const GeneralNames &fullname = *dp1.distribution_point_fullname;
EXPECT_EQ(GENERAL_NAME_DIRECTORY_NAME, fullname.present_name_types);
// Generated by `ascii2der | xxd -i` from the Name value in
// crldp_full_name_as_dirname.pem.
const uint8_t kExpectedName[] = {
0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x55,
0x53, 0x31, 0x1f, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x16,
0x54, 0x65, 0x73, 0x74, 0x20, 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69,
0x63, 0x61, 0x74, 0x65, 0x73, 0x20, 0x32, 0x30, 0x31, 0x31, 0x31, 0x45,
0x30, 0x43, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x3c, 0x53, 0x65, 0x6c,
0x66, 0x2d, 0x49, 0x73, 0x73, 0x75, 0x65, 0x64, 0x20, 0x43, 0x65, 0x72,
0x74, 0x20, 0x44, 0x50, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x42, 0x61, 0x73,
0x69, 0x63, 0x20, 0x53, 0x65, 0x6c, 0x66, 0x2d, 0x49, 0x73, 0x73, 0x75,
0x65, 0x64, 0x20, 0x43, 0x52, 0x4c, 0x20, 0x53, 0x69, 0x67, 0x6e, 0x69,
0x6e, 0x67, 0x20, 0x4b, 0x65, 0x79, 0x20, 0x43, 0x41};
ASSERT_EQ(1u, fullname.directory_names.size());
EXPECT_EQ(der::Input(kExpectedName), fullname.directory_names[0]);
EXPECT_FALSE(dp1.distribution_point_name_relative_to_crl_issuer);
EXPECT_FALSE(dp1.reasons);
EXPECT_FALSE(dp1.crl_issuer);
}
TEST_F(ParseCrlDistributionPointsTest, RelativeNameAndReasonsAndMultipleDPs) {
// SEQUENCE {
// SEQUENCE {
// # distributionPoint
// [0] {
// # nameRelativeToCRLIssuer
// [1] {
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// PrintableString { "CRL1" }
// }
// }
// }
// }
// # reasons
// [1 PRIMITIVE] { b`011` }
// }
// SEQUENCE {
// # distributionPoint
// [0] {
// # fullName
// [0] {
// [4] {
// SEQUENCE {
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// PrintableString { "CRL2" }
// }
// }
// }
// }
// }
// }
// # reasons
// [1 PRIMITIVE] { b`100111111` }
// }
// }
const uint8_t kInputDer[] = {
0x30, 0x37, 0x30, 0x17, 0xa0, 0x11, 0xa1, 0x0f, 0x31, 0x0d, 0x30, 0x0b,
0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x43, 0x52, 0x4c, 0x31, 0x81,
0x02, 0x05, 0x60, 0x30, 0x1c, 0xa0, 0x15, 0xa0, 0x13, 0xa4, 0x11, 0x30,
0x0f, 0x31, 0x0d, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04,
0x43, 0x52, 0x4c, 0x32, 0x81, 0x03, 0x07, 0x9f, 0x80};
std::vector<ParsedDistributionPoint> dps;
ASSERT_TRUE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps));
ASSERT_EQ(2u, dps.size());
{
const ParsedDistributionPoint &dp = dps[0];
EXPECT_FALSE(dp.distribution_point_fullname);
ASSERT_TRUE(dp.distribution_point_name_relative_to_crl_issuer);
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// PrintableString { "CRL1" }
// }
// }
const uint8_t kExpectedRDN[] = {0x31, 0x0d, 0x30, 0x0b, 0x06,
0x03, 0x55, 0x04, 0x03, 0x13,
0x04, 0x43, 0x52, 0x4c, 0x31};
EXPECT_EQ(der::Input(kExpectedRDN),
*dp.distribution_point_name_relative_to_crl_issuer);
ASSERT_TRUE(dp.reasons);
const uint8_t kExpectedReasons[] = {0x05, 0x60};
EXPECT_EQ(der::Input(kExpectedReasons), *dp.reasons);
EXPECT_FALSE(dp.crl_issuer);
}
{
const ParsedDistributionPoint &dp = dps[1];
ASSERT_TRUE(dp.distribution_point_fullname);
const GeneralNames &fullname = *dp.distribution_point_fullname;
EXPECT_EQ(GENERAL_NAME_DIRECTORY_NAME, fullname.present_name_types);
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// PrintableString { "CRL2" }
// }
// }
const uint8_t kExpectedName[] = {0x31, 0x0d, 0x30, 0x0b, 0x06,
0x03, 0x55, 0x04, 0x03, 0x13,
0x04, 0x43, 0x52, 0x4c, 0x32};
ASSERT_EQ(1u, fullname.directory_names.size());
EXPECT_EQ(der::Input(kExpectedName), fullname.directory_names[0]);
EXPECT_FALSE(dp.distribution_point_name_relative_to_crl_issuer);
ASSERT_TRUE(dp.reasons);
const uint8_t kExpectedReasons[] = {0x07, 0x9f, 0x80};
EXPECT_EQ(der::Input(kExpectedReasons), *dp.reasons);
EXPECT_FALSE(dp.crl_issuer);
}
}
TEST_F(ParseCrlDistributionPointsTest, NoDistributionPointName) {
// SEQUENCE {
// SEQUENCE {
// # cRLIssuer
// [2] {
// [4] {
// SEQUENCE {
// SET {
// SEQUENCE {
// # organizationUnitName
// OBJECT_IDENTIFIER { 2.5.4.11 }
// PrintableString { "crl issuer" }
// }
// }
// }
// }
// }
// }
// }
const uint8_t kInputDer[] = {0x30, 0x1d, 0x30, 0x1b, 0xa2, 0x19, 0xa4, 0x17,
0x30, 0x15, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03,
0x55, 0x04, 0x0b, 0x13, 0x0a, 0x63, 0x72, 0x6c,
0x20, 0x69, 0x73, 0x73, 0x75, 0x65, 0x72};
std::vector<ParsedDistributionPoint> dps;
ASSERT_TRUE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps));
ASSERT_EQ(1u, dps.size());
const ParsedDistributionPoint &dp = dps[0];
EXPECT_FALSE(dp.distribution_point_fullname);
EXPECT_FALSE(dp.distribution_point_name_relative_to_crl_issuer);
EXPECT_FALSE(dp.reasons);
ASSERT_TRUE(dp.crl_issuer);
const uint8_t kExpectedDer[] = {0xa4, 0x17, 0x30, 0x15, 0x31, 0x13, 0x30,
0x11, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13,
0x0a, 0x63, 0x72, 0x6c, 0x20, 0x69, 0x73,
0x73, 0x75, 0x65, 0x72};
EXPECT_EQ(der::Input(kExpectedDer), *dp.crl_issuer);
}
TEST_F(ParseCrlDistributionPointsTest, OnlyReasons) {
// SEQUENCE {
// SEQUENCE {
// # reasons
// [1 PRIMITIVE] { b`011` }
// }
// }
const uint8_t kInputDer[] = {0x30, 0x06, 0x30, 0x04, 0x81, 0x02, 0x05, 0x60};
std::vector<ParsedDistributionPoint> dps;
EXPECT_FALSE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps));
}
TEST_F(ParseCrlDistributionPointsTest, EmptyDistributionPoint) {
// SEQUENCE {
// SEQUENCE {
// }
// }
const uint8_t kInputDer[] = {0x30, 0x02, 0x30, 0x00};
std::vector<ParsedDistributionPoint> dps;
EXPECT_FALSE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps));
}
TEST_F(ParseCrlDistributionPointsTest, EmptyDistributionPoints) {
// SEQUENCE { }
const uint8_t kInputDer[] = {0x30, 0x00};
std::vector<ParsedDistributionPoint> dps;
EXPECT_FALSE(ParseCrlDistributionPoints(der::Input(kInputDer), &dps));
}
bool ParseAuthorityKeyIdentifierTestData(
const char *file_name, std::string *backing_bytes,
ParsedAuthorityKeyIdentifier *authority_key_identifier) {
// Read the test file.
const PemBlockMapping mappings[] = {
{"AUTHORITY_KEY_IDENTIFIER", backing_bytes},
};
std::string test_file_path =
std::string(
"testdata/parse_certificate_unittest/authority_key_identifier/") +
file_name;
EXPECT_TRUE(ReadTestDataFromPemFile(test_file_path, mappings));
return ParseAuthorityKeyIdentifier(der::Input(*backing_bytes),
authority_key_identifier);
}
TEST(ParseAuthorityKeyIdentifierTest, EmptyInput) {
ParsedAuthorityKeyIdentifier authority_key_identifier;
EXPECT_FALSE(
ParseAuthorityKeyIdentifier(der::Input(), &authority_key_identifier));
}
TEST(ParseAuthorityKeyIdentifierTest, EmptySequence) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
// TODO(mattm): should this be an error? RFC 5280 doesn't explicitly say it.
ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData(
"empty_sequence.pem", &backing_bytes, &authority_key_identifier));
EXPECT_FALSE(authority_key_identifier.key_identifier);
EXPECT_FALSE(authority_key_identifier.authority_cert_issuer);
EXPECT_FALSE(authority_key_identifier.authority_cert_serial_number);
}
TEST(ParseAuthorityKeyIdentifierTest, KeyIdentifier) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData(
"key_identifier.pem", &backing_bytes, &authority_key_identifier));
ASSERT_TRUE(authority_key_identifier.key_identifier);
const uint8_t kExpectedValue[] = {0xDE, 0xAD, 0xB0, 0x0F};
EXPECT_EQ(der::Input(kExpectedValue),
authority_key_identifier.key_identifier);
}
TEST(ParseAuthorityKeyIdentifierTest, IssuerAndSerial) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData(
"issuer_and_serial.pem", &backing_bytes, &authority_key_identifier));
EXPECT_FALSE(authority_key_identifier.key_identifier);
ASSERT_TRUE(authority_key_identifier.authority_cert_issuer);
const uint8_t kExpectedIssuer[] = {0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30,
0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c,
0x04, 0x52, 0x6f, 0x6f, 0x74};
EXPECT_EQ(der::Input(kExpectedIssuer),
authority_key_identifier.authority_cert_issuer);
ASSERT_TRUE(authority_key_identifier.authority_cert_serial_number);
const uint8_t kExpectedSerial[] = {0x27, 0x4F};
EXPECT_EQ(der::Input(kExpectedSerial),
authority_key_identifier.authority_cert_serial_number);
}
TEST(ParseAuthorityKeyIdentifierTest, KeyIdentifierAndIssuerAndSerial) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
ASSERT_TRUE(ParseAuthorityKeyIdentifierTestData(
"key_identifier_and_issuer_and_serial.pem", &backing_bytes,
&authority_key_identifier));
ASSERT_TRUE(authority_key_identifier.key_identifier);
const uint8_t kExpectedValue[] = {0xDE, 0xAD, 0xB0, 0x0F};
EXPECT_EQ(der::Input(kExpectedValue),
authority_key_identifier.key_identifier);
ASSERT_TRUE(authority_key_identifier.authority_cert_issuer);
const uint8_t kExpectedIssuer[] = {0xa4, 0x11, 0x30, 0x0f, 0x31, 0x0d, 0x30,
0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c,
0x04, 0x52, 0x6f, 0x6f, 0x74};
EXPECT_EQ(der::Input(kExpectedIssuer),
authority_key_identifier.authority_cert_issuer);
ASSERT_TRUE(authority_key_identifier.authority_cert_serial_number);
const uint8_t kExpectedSerial[] = {0x27, 0x4F};
EXPECT_EQ(der::Input(kExpectedSerial),
authority_key_identifier.authority_cert_serial_number);
}
TEST(ParseAuthorityKeyIdentifierTest, IssuerOnly) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData(
"issuer_only.pem", &backing_bytes, &authority_key_identifier));
}
TEST(ParseAuthorityKeyIdentifierTest, SerialOnly) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData(
"serial_only.pem", &backing_bytes, &authority_key_identifier));
}
TEST(ParseAuthorityKeyIdentifierTest, InvalidContents) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData(
"invalid_contents.pem", &backing_bytes, &authority_key_identifier));
}
TEST(ParseAuthorityKeyIdentifierTest, InvalidKeyIdentifier) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData(
"invalid_key_identifier.pem", &backing_bytes, &authority_key_identifier));
}
TEST(ParseAuthorityKeyIdentifierTest, InvalidIssuer) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData(
"invalid_issuer.pem", &backing_bytes, &authority_key_identifier));
}
TEST(ParseAuthorityKeyIdentifierTest, InvalidSerial) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData(
"invalid_serial.pem", &backing_bytes, &authority_key_identifier));
}
TEST(ParseAuthorityKeyIdentifierTest, ExtraContentsAfterIssuerAndSerial) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData(
"extra_contents_after_issuer_and_serial.pem", &backing_bytes,
&authority_key_identifier));
}
TEST(ParseAuthorityKeyIdentifierTest, ExtraContentsAfterExtensionSequence) {
std::string backing_bytes;
ParsedAuthorityKeyIdentifier authority_key_identifier;
EXPECT_FALSE(ParseAuthorityKeyIdentifierTestData(
"extra_contents_after_extension_sequence.pem", &backing_bytes,
&authority_key_identifier));
}
TEST(ParseSubjectKeyIdentifierTest, EmptyInput) {
der::Input subject_key_identifier;
EXPECT_FALSE(
ParseSubjectKeyIdentifier(der::Input(), &subject_key_identifier));
}
TEST(ParseSubjectKeyIdentifierTest, Valid) {
// OCTET_STRING {`abcd`}
const uint8_t kInput[] = {0x04, 0x02, 0xab, 0xcd};
const uint8_t kExpected[] = {0xab, 0xcd};
der::Input subject_key_identifier;
EXPECT_TRUE(
ParseSubjectKeyIdentifier(der::Input(kInput), &subject_key_identifier));
EXPECT_EQ(der::Input(kExpected), subject_key_identifier);
}
TEST(ParseSubjectKeyIdentifierTest, ExtraData) {
// OCTET_STRING {`abcd`}
// NULL
const uint8_t kInput[] = {0x04, 0x02, 0xab, 0xcd, 0x05};
der::Input subject_key_identifier;
EXPECT_FALSE(
ParseSubjectKeyIdentifier(der::Input(kInput), &subject_key_identifier));
}
} // namespace
BSSL_NAMESPACE_END