blob: 97fae1b9a3b8c143d1b43b34f5389100f3987e83 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/stack.h>
#include <assert.h>
#include <limits.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../internal.h"
struct stack_st {
// num contains the number of valid pointers in |data|.
size_t num;
void **data;
// sorted is non-zero if the values pointed to by |data| are in ascending
// order, based on |comp|.
int sorted;
// num_alloc contains the number of pointers allocated in the buffer pointed
// to by |data|, which may be larger than |num|.
size_t num_alloc;
// comp is an optional comparison function.
OPENSSL_sk_cmp_func comp;
};
// kMinSize is the number of pointers that will be initially allocated in a new
// stack.
static const size_t kMinSize = 4;
OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) {
OPENSSL_STACK *ret = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
if (ret == NULL) {
return NULL;
}
ret->data = OPENSSL_calloc(kMinSize, sizeof(void *));
if (ret->data == NULL) {
goto err;
}
ret->comp = comp;
ret->num_alloc = kMinSize;
return ret;
err:
OPENSSL_free(ret);
return NULL;
}
OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); }
size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) {
if (sk == NULL) {
return 0;
}
return sk->num;
}
void OPENSSL_sk_zero(OPENSSL_STACK *sk) {
if (sk == NULL || sk->num == 0) {
return;
}
OPENSSL_memset(sk->data, 0, sizeof(void*) * sk->num);
sk->num = 0;
sk->sorted = 0;
}
void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) {
if (!sk || i >= sk->num) {
return NULL;
}
return sk->data[i];
}
void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) {
if (!sk || i >= sk->num) {
return NULL;
}
return sk->data[i] = value;
}
void OPENSSL_sk_free(OPENSSL_STACK *sk) {
if (sk == NULL) {
return;
}
OPENSSL_free(sk->data);
OPENSSL_free(sk);
}
void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk,
OPENSSL_sk_call_free_func call_free_func,
OPENSSL_sk_free_func free_func) {
if (sk == NULL) {
return;
}
for (size_t i = 0; i < sk->num; i++) {
if (sk->data[i] != NULL) {
call_free_func(free_func, sk->data[i]);
}
}
OPENSSL_sk_free(sk);
}
// Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func|
// directly. This is undefined in C. Some callers called |sk_pop_free| directly,
// so we must maintain a compatibility version for now.
static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) {
func(ptr);
}
void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) {
OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func);
}
size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) {
if (sk == NULL) {
return 0;
}
if (sk->num >= INT_MAX) {
OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
return 0;
}
if (sk->num_alloc <= sk->num + 1) {
// Attempt to double the size of the array.
size_t new_alloc = sk->num_alloc << 1;
size_t alloc_size = new_alloc * sizeof(void *);
void **data;
// If the doubling overflowed, try to increment.
if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
new_alloc = sk->num_alloc + 1;
alloc_size = new_alloc * sizeof(void *);
}
// If the increment also overflowed, fail.
if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
return 0;
}
data = OPENSSL_realloc(sk->data, alloc_size);
if (data == NULL) {
return 0;
}
sk->data = data;
sk->num_alloc = new_alloc;
}
if (where >= sk->num) {
sk->data[sk->num] = p;
} else {
OPENSSL_memmove(&sk->data[where + 1], &sk->data[where],
sizeof(void *) * (sk->num - where));
sk->data[where] = p;
}
sk->num++;
sk->sorted = 0;
return sk->num;
}
void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) {
void *ret;
if (!sk || where >= sk->num) {
return NULL;
}
ret = sk->data[where];
if (where != sk->num - 1) {
OPENSSL_memmove(&sk->data[where], &sk->data[where + 1],
sizeof(void *) * (sk->num - where - 1));
}
sk->num--;
return ret;
}
void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) {
if (sk == NULL) {
return NULL;
}
for (size_t i = 0; i < sk->num; i++) {
if (sk->data[i] == p) {
return OPENSSL_sk_delete(sk, i);
}
}
return NULL;
}
void OPENSSL_sk_delete_if(OPENSSL_STACK *sk,
OPENSSL_sk_call_delete_if_func call_func,
OPENSSL_sk_delete_if_func func, void *data) {
if (sk == NULL) {
return;
}
size_t new_num = 0;
for (size_t i = 0; i < sk->num; i++) {
if (!call_func(func, sk->data[i], data)) {
sk->data[new_num] = sk->data[i];
new_num++;
}
}
sk->num = new_num;
}
int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p,
OPENSSL_sk_call_cmp_func call_cmp_func) {
if (sk == NULL) {
return 0;
}
if (sk->comp == NULL) {
// Use pointer equality when no comparison function has been set.
for (size_t i = 0; i < sk->num; i++) {
if (sk->data[i] == p) {
if (out_index) {
*out_index = i;
}
return 1;
}
}
return 0;
}
if (p == NULL) {
return 0;
}
if (!OPENSSL_sk_is_sorted(sk)) {
for (size_t i = 0; i < sk->num; i++) {
if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) {
if (out_index) {
*out_index = i;
}
return 1;
}
}
return 0;
}
// The stack is sorted, so binary search to find the element.
//
// |lo| and |hi| maintain a half-open interval of where the answer may be. All
// indices such that |lo <= idx < hi| are candidates.
size_t lo = 0, hi = sk->num;
while (lo < hi) {
// Bias |mid| towards |lo|. See the |r == 0| case below.
size_t mid = lo + (hi - lo - 1) / 2;
assert(lo <= mid && mid < hi);
int r = call_cmp_func(sk->comp, p, sk->data[mid]);
if (r > 0) {
lo = mid + 1; // |mid| is too low.
} else if (r < 0) {
hi = mid; // |mid| is too high.
} else {
// |mid| matches. However, this function returns the earliest match, so we
// can only return if the range has size one.
if (hi - lo == 1) {
if (out_index != NULL) {
*out_index = mid;
}
return 1;
}
// The sample is biased towards |lo|. |mid| can only be |hi - 1| if
// |hi - lo| was one, so this makes forward progress.
assert(mid + 1 < hi);
hi = mid + 1;
}
}
assert(lo == hi);
return 0; // Not found.
}
void *OPENSSL_sk_shift(OPENSSL_STACK *sk) {
if (sk == NULL) {
return NULL;
}
if (sk->num == 0) {
return NULL;
}
return OPENSSL_sk_delete(sk, 0);
}
size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) {
return OPENSSL_sk_insert(sk, p, sk->num);
}
void *OPENSSL_sk_pop(OPENSSL_STACK *sk) {
if (sk == NULL) {
return NULL;
}
if (sk->num == 0) {
return NULL;
}
return OPENSSL_sk_delete(sk, sk->num - 1);
}
OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) {
if (sk == NULL) {
return NULL;
}
OPENSSL_STACK *ret = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
if (ret == NULL) {
return NULL;
}
ret->data = OPENSSL_memdup(sk->data, sizeof(void *) * sk->num_alloc);
if (ret->data == NULL) {
goto err;
}
ret->num = sk->num;
ret->sorted = sk->sorted;
ret->num_alloc = sk->num_alloc;
ret->comp = sk->comp;
return ret;
err:
OPENSSL_sk_free(ret);
return NULL;
}
static size_t parent_idx(size_t idx) {
assert(idx > 0);
return (idx - 1) / 2;
}
static size_t left_idx(size_t idx) {
// The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If
// |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot
// overflow.
assert(idx <= PTRDIFF_MAX);
static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow");
return 2 * idx + 1;
}
// down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy
// the heap property. Only the first |num| elements of |sk| are considered.
static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func,
size_t i, size_t num) {
assert(i < num && num <= sk->num);
for (;;) {
size_t left = left_idx(i);
if (left >= num) {
break; // No left child.
}
// Swap |i| with the largest of its children.
size_t next = i;
if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) {
next = left;
}
size_t right = left + 1; // Cannot overflow because |left < num|.
if (right < num &&
call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) {
next = right;
}
if (i == next) {
break; // |i| is already larger than its children.
}
void *tmp = sk->data[i];
sk->data[i] = sk->data[next];
sk->data[next] = tmp;
i = next;
}
}
void OPENSSL_sk_sort(OPENSSL_STACK *sk,
OPENSSL_sk_call_cmp_func call_cmp_func) {
if (sk == NULL || sk->comp == NULL || sk->sorted) {
return;
}
if (sk->num >= 2) {
// |qsort| lacks a context parameter in the comparison function for us to
// pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to
// the expected type, it is undefined behavior in C can trip sanitizers.
// |qsort_r| and |qsort_s| avoid this, but using them is impractical. See
// https://stackoverflow.com/a/39561369
//
// Use our own heap sort instead. This is not performance-sensitive, so we
// optimize for simplicity and size. First, build a max-heap in place.
for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) {
down_heap(sk, call_cmp_func, i, sk->num);
}
// Iteratively remove the maximum element to populate the result in reverse.
for (size_t i = sk->num - 1; i > 0; i--) {
void *tmp = sk->data[0];
sk->data[0] = sk->data[i];
sk->data[i] = tmp;
down_heap(sk, call_cmp_func, 0, i);
}
}
sk->sorted = 1;
}
int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) {
if (!sk) {
return 1;
}
// Zero- and one-element lists are always sorted.
return sk->sorted || (sk->comp != NULL && sk->num < 2);
}
OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
OPENSSL_sk_cmp_func comp) {
OPENSSL_sk_cmp_func old = sk->comp;
if (sk->comp != comp) {
sk->sorted = 0;
}
sk->comp = comp;
return old;
}
OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
OPENSSL_sk_call_copy_func call_copy_func,
OPENSSL_sk_copy_func copy_func,
OPENSSL_sk_call_free_func call_free_func,
OPENSSL_sk_free_func free_func) {
OPENSSL_STACK *ret = OPENSSL_sk_dup(sk);
if (ret == NULL) {
return NULL;
}
for (size_t i = 0; i < ret->num; i++) {
if (ret->data[i] == NULL) {
continue;
}
ret->data[i] = call_copy_func(copy_func, ret->data[i]);
if (ret->data[i] == NULL) {
for (size_t j = 0; j < i; j++) {
if (ret->data[j] != NULL) {
call_free_func(free_func, ret->data[j]);
}
}
OPENSSL_sk_free(ret);
return NULL;
}
}
return ret;
}
OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); }
size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); }
void *sk_value(const OPENSSL_STACK *sk, size_t i) {
return OPENSSL_sk_value(sk, i);
}
void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); }
size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); }
void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); }
void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func,
OPENSSL_sk_free_func free_func) {
OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func);
}