| /* |
| * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <openssl/mem.h> |
| |
| #include <assert.h> |
| #include <errno.h> |
| #include <limits.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include <openssl/err.h> |
| |
| #if defined(OPENSSL_WINDOWS) |
| OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| #include <windows.h> |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| #endif |
| |
| #if defined(BORINGSSL_MALLOC_FAILURE_TESTING) |
| #include <errno.h> |
| #include <signal.h> |
| #include <unistd.h> |
| #endif |
| |
| #include "internal.h" |
| |
| |
| #define OPENSSL_MALLOC_PREFIX 8 |
| static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large"); |
| |
| #if defined(OPENSSL_ASAN) |
| extern "C" { |
| void __asan_poison_memory_region(const volatile void *addr, size_t size); |
| void __asan_unpoison_memory_region(const volatile void *addr, size_t size); |
| } |
| #else |
| static void __asan_poison_memory_region(const void *addr, size_t size) {} |
| static void __asan_unpoison_memory_region(const void *addr, size_t size) {} |
| #endif |
| |
| // Windows doesn't really support weak symbols as of May 2019, and Clang on |
| // Windows will emit strong symbols instead. See |
| // https://bugs.llvm.org/show_bug.cgi?id=37598 |
| // |
| // EDK2 targets UEFI but builds as ELF and then translates the binary to |
| // COFF(!). Thus it builds with __ELF__ defined but cannot actually cope with |
| // weak symbols. |
| #if !defined(__EDK2_BORINGSSL__) && defined(__ELF__) && defined(__GNUC__) |
| #define WEAK_SYMBOL_FUNC(rettype, name, args) \ |
| extern "C" { \ |
| rettype name args __attribute__((weak)); \ |
| } |
| #else |
| #define WEAK_SYMBOL_FUNC(rettype, name, args) \ |
| static rettype(*const name) args = NULL; |
| #endif |
| |
| #if defined(BORINGSSL_DETECT_SDALLOCX) |
| // sdallocx is a sized |free| function. By passing the size (which we happen to |
| // always know in BoringSSL), the malloc implementation can save work. We cannot |
| // depend on |sdallocx| being available, however, so it's a weak symbol. |
| // |
| // This mechanism is kept opt-in because it assumes that, when |sdallocx| is |
| // defined, it is part of the same allocator as |malloc|. This is usually true |
| // but may break if |malloc| does not implement |sdallocx|, but some other |
| // allocator with |sdallocx| is imported which does. |
| WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags)) |
| #else |
| static void (*const sdallocx)(void *ptr, size_t size, int flags) = NULL; |
| #endif |
| |
| // The following three functions can be defined to override default heap |
| // allocation and freeing. If defined, it is the responsibility of |
| // |OPENSSL_memory_free| to zero out the memory before returning it to the |
| // system. |OPENSSL_memory_free| will not be passed NULL pointers. |
| // |
| // WARNING: These functions are called on every allocation and free in |
| // BoringSSL across the entire process. They may be called by any code in the |
| // process which calls BoringSSL, including in process initializers and thread |
| // destructors. When called, BoringSSL may hold pthreads locks. Any other code |
| // in the process which, directly or indirectly, calls BoringSSL may be on the |
| // call stack and may itself be using arbitrary synchronization primitives. |
| // |
| // As a result, these functions may not have the usual programming environment |
| // available to most C or C++ code. In particular, they may not call into |
| // BoringSSL, or any library which depends on BoringSSL. Any synchronization |
| // primitives used must tolerate every other synchronization primitive linked |
| // into the process, including pthreads locks. Failing to meet these constraints |
| // may result in deadlocks, crashes, or memory corruption. |
| WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size)) |
| WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr)) |
| WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr)) |
| |
| #if defined(BORINGSSL_MALLOC_FAILURE_TESTING) |
| static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT; |
| static uint64_t current_malloc_count = 0; |
| static uint64_t malloc_number_to_fail = 0; |
| static int malloc_failure_enabled = 0, break_on_malloc_fail = 0, |
| any_malloc_failed = 0, disable_malloc_failures = 0; |
| |
| static void malloc_exit_handler(void) { |
| CRYPTO_MUTEX_lock_read(&malloc_failure_lock); |
| if (any_malloc_failed) { |
| // Signal to the test driver that some allocation failed, so it knows to |
| // increment the counter and continue. |
| _exit(88); |
| } |
| CRYPTO_MUTEX_unlock_read(&malloc_failure_lock); |
| } |
| |
| static void init_malloc_failure(void) { |
| const char *env = getenv("MALLOC_NUMBER_TO_FAIL"); |
| if (env != NULL && env[0] != 0) { |
| char *endptr; |
| malloc_number_to_fail = strtoull(env, &endptr, 10); |
| if (*endptr == 0) { |
| malloc_failure_enabled = 1; |
| atexit(malloc_exit_handler); |
| } |
| } |
| break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL; |
| } |
| |
| // should_fail_allocation returns one if the current allocation should fail and |
| // zero otherwise. |
| static int should_fail_allocation() { |
| static CRYPTO_once_t once = CRYPTO_ONCE_INIT; |
| CRYPTO_once(&once, init_malloc_failure); |
| if (!malloc_failure_enabled || disable_malloc_failures) { |
| return 0; |
| } |
| |
| // We lock just so multi-threaded tests are still correct, but we won't test |
| // every malloc exhaustively. |
| CRYPTO_MUTEX_lock_write(&malloc_failure_lock); |
| int should_fail = current_malloc_count == malloc_number_to_fail; |
| current_malloc_count++; |
| any_malloc_failed = any_malloc_failed || should_fail; |
| CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); |
| |
| if (should_fail && break_on_malloc_fail) { |
| raise(SIGTRAP); |
| } |
| if (should_fail) { |
| errno = ENOMEM; |
| } |
| return should_fail; |
| } |
| |
| void OPENSSL_reset_malloc_counter_for_testing(void) { |
| CRYPTO_MUTEX_lock_write(&malloc_failure_lock); |
| current_malloc_count = 0; |
| CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); |
| } |
| |
| void OPENSSL_disable_malloc_failures_for_testing(void) { |
| CRYPTO_MUTEX_lock_write(&malloc_failure_lock); |
| BSSL_CHECK(!disable_malloc_failures); |
| disable_malloc_failures = 1; |
| CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); |
| } |
| |
| void OPENSSL_enable_malloc_failures_for_testing(void) { |
| CRYPTO_MUTEX_lock_write(&malloc_failure_lock); |
| BSSL_CHECK(disable_malloc_failures); |
| disable_malloc_failures = 0; |
| CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); |
| } |
| |
| #else |
| static int should_fail_allocation(void) { return 0; } |
| #endif |
| |
| void *OPENSSL_malloc(size_t size) { |
| void *ptr = nullptr; |
| if (should_fail_allocation()) { |
| goto err; |
| } |
| |
| if (OPENSSL_memory_alloc != NULL) { |
| assert(OPENSSL_memory_free != NULL); |
| assert(OPENSSL_memory_get_size != NULL); |
| void *ptr2 = OPENSSL_memory_alloc(size); |
| if (ptr2 == NULL && size != 0) { |
| goto err; |
| } |
| return ptr2; |
| } |
| |
| if (size + OPENSSL_MALLOC_PREFIX < size) { |
| goto err; |
| } |
| |
| ptr = malloc(size + OPENSSL_MALLOC_PREFIX); |
| if (ptr == NULL) { |
| goto err; |
| } |
| |
| *(size_t *)ptr = size; |
| |
| __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
| return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX; |
| |
| err: |
| // This only works because ERR does not call OPENSSL_malloc. |
| OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| |
| void *OPENSSL_zalloc(size_t size) { |
| void *ret = OPENSSL_malloc(size); |
| if (ret != NULL) { |
| OPENSSL_memset(ret, 0, size); |
| } |
| return ret; |
| } |
| |
| void *OPENSSL_calloc(size_t num, size_t size) { |
| if (size != 0 && num > SIZE_MAX / size) { |
| OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); |
| return NULL; |
| } |
| |
| return OPENSSL_zalloc(num * size); |
| } |
| |
| void OPENSSL_free(void *orig_ptr) { |
| if (orig_ptr == NULL) { |
| return; |
| } |
| |
| if (OPENSSL_memory_free != NULL) { |
| OPENSSL_memory_free(orig_ptr); |
| return; |
| } |
| |
| void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; |
| __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
| |
| size_t size = *(size_t *)ptr; |
| OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX); |
| |
| // ASan knows to intercept malloc and free, but not sdallocx. |
| #if defined(OPENSSL_ASAN) |
| (void)sdallocx; |
| free(ptr); |
| #else |
| if (sdallocx) { |
| sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */); |
| } else { |
| free(ptr); |
| } |
| #endif |
| } |
| |
| void *OPENSSL_realloc(void *orig_ptr, size_t new_size) { |
| if (orig_ptr == NULL) { |
| return OPENSSL_malloc(new_size); |
| } |
| |
| size_t old_size; |
| if (OPENSSL_memory_get_size != NULL) { |
| old_size = OPENSSL_memory_get_size(orig_ptr); |
| } else { |
| void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; |
| __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
| old_size = *(size_t *)ptr; |
| __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); |
| } |
| |
| void *ret = OPENSSL_malloc(new_size); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| size_t to_copy = new_size; |
| if (old_size < to_copy) { |
| to_copy = old_size; |
| } |
| |
| memcpy(ret, orig_ptr, to_copy); |
| OPENSSL_free(orig_ptr); |
| |
| return ret; |
| } |
| |
| void OPENSSL_cleanse(void *ptr, size_t len) { |
| #if defined(OPENSSL_WINDOWS) |
| SecureZeroMemory(ptr, len); |
| #else |
| OPENSSL_memset(ptr, 0, len); |
| |
| #if !defined(OPENSSL_NO_ASM) |
| /* As best as we can tell, this is sufficient to break any optimisations that |
| might try to eliminate "superfluous" memsets. If there's an easy way to |
| detect memset_s, it would be better to use that. */ |
| __asm__ __volatile__("" : : "r"(ptr) : "memory"); |
| #endif |
| #endif // !OPENSSL_NO_ASM |
| } |
| |
| void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); } |
| |
| int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; } |
| |
| int CRYPTO_secure_malloc_initialized(void) { return 0; } |
| |
| size_t CRYPTO_secure_used(void) { return 0; } |
| |
| void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); } |
| |
| void OPENSSL_secure_clear_free(void *ptr, size_t len) { |
| OPENSSL_clear_free(ptr, len); |
| } |
| |
| int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) { |
| const uint8_t *a = reinterpret_cast<const uint8_t *>(in_a); |
| const uint8_t *b = reinterpret_cast<const uint8_t *>(in_b); |
| uint8_t x = 0; |
| |
| for (size_t i = 0; i < len; i++) { |
| x |= a[i] ^ b[i]; |
| } |
| |
| return x; |
| } |
| |
| uint32_t OPENSSL_hash32(const void *ptr, size_t len) { |
| // These are the FNV-1a parameters for 32 bits. |
| static const uint32_t kPrime = 16777619u; |
| static const uint32_t kOffsetBasis = 2166136261u; |
| |
| const uint8_t *in = reinterpret_cast<const uint8_t *>(ptr); |
| uint32_t h = kOffsetBasis; |
| |
| for (size_t i = 0; i < len; i++) { |
| h ^= in[i]; |
| h *= kPrime; |
| } |
| |
| return h; |
| } |
| |
| uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); } |
| |
| size_t OPENSSL_strnlen(const char *s, size_t len) { |
| for (size_t i = 0; i < len; i++) { |
| if (s[i] == 0) { |
| return i; |
| } |
| } |
| |
| return len; |
| } |
| |
| char *OPENSSL_strdup(const char *s) { |
| if (s == NULL) { |
| return NULL; |
| } |
| // Copy the NUL terminator. |
| return reinterpret_cast<char *>(OPENSSL_memdup(s, strlen(s) + 1)); |
| } |
| |
| int OPENSSL_isalpha(int c) { |
| return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); |
| } |
| |
| int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; } |
| |
| int OPENSSL_isxdigit(int c) { |
| return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F'); |
| } |
| |
| int OPENSSL_fromxdigit(uint8_t *out, int c) { |
| if (OPENSSL_isdigit(c)) { |
| *out = c - '0'; |
| return 1; |
| } |
| if ('a' <= c && c <= 'f') { |
| *out = c - 'a' + 10; |
| return 1; |
| } |
| if ('A' <= c && c <= 'F') { |
| *out = c - 'A' + 10; |
| return 1; |
| } |
| return 0; |
| } |
| |
| int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); } |
| |
| int OPENSSL_tolower(int c) { |
| if (c >= 'A' && c <= 'Z') { |
| return c + ('a' - 'A'); |
| } |
| return c; |
| } |
| |
| int OPENSSL_isspace(int c) { |
| return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' || |
| c == ' '; |
| } |
| |
| int OPENSSL_strcasecmp(const char *a, const char *b) { |
| for (size_t i = 0;; i++) { |
| const int aa = OPENSSL_tolower(a[i]); |
| const int bb = OPENSSL_tolower(b[i]); |
| |
| if (aa < bb) { |
| return -1; |
| } else if (aa > bb) { |
| return 1; |
| } else if (aa == 0) { |
| return 0; |
| } |
| } |
| } |
| |
| int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) { |
| for (size_t i = 0; i < n; i++) { |
| const int aa = OPENSSL_tolower(a[i]); |
| const int bb = OPENSSL_tolower(b[i]); |
| |
| if (aa < bb) { |
| return -1; |
| } else if (aa > bb) { |
| return 1; |
| } else if (aa == 0) { |
| return 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int BIO_snprintf(char *buf, size_t n, const char *format, ...) { |
| va_list args; |
| va_start(args, format); |
| int ret = BIO_vsnprintf(buf, n, format, args); |
| va_end(args); |
| return ret; |
| } |
| |
| int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) { |
| return vsnprintf(buf, n, format, args); |
| } |
| |
| int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args, |
| int system_malloc) { |
| void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc; |
| void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free; |
| void *(*reallocate)(void *, size_t) = |
| system_malloc ? realloc : OPENSSL_realloc; |
| char *candidate = NULL; |
| size_t candidate_len = 64; // TODO(bbe) what's the best initial size? |
| int ret; |
| |
| if ((candidate = reinterpret_cast<char *>(allocate(candidate_len))) == NULL) { |
| goto err; |
| } |
| va_list args_copy; |
| va_copy(args_copy, args); |
| ret = vsnprintf(candidate, candidate_len, format, args_copy); |
| va_end(args_copy); |
| if (ret < 0) { |
| goto err; |
| } |
| if ((size_t)ret >= candidate_len) { |
| // Too big to fit in allocation. |
| char *tmp; |
| |
| candidate_len = (size_t)ret + 1; |
| if ((tmp = reinterpret_cast<char *>( |
| reallocate(candidate, candidate_len))) == NULL) { |
| goto err; |
| } |
| candidate = tmp; |
| ret = vsnprintf(candidate, candidate_len, format, args); |
| } |
| // At this point this should not happen unless vsnprintf is insane. |
| if (ret < 0 || (size_t)ret >= candidate_len) { |
| goto err; |
| } |
| *str = candidate; |
| return ret; |
| |
| err: |
| deallocate(candidate); |
| *str = NULL; |
| errno = ENOMEM; |
| return -1; |
| } |
| |
| int OPENSSL_vasprintf(char **str, const char *format, va_list args) { |
| return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0); |
| } |
| |
| int OPENSSL_asprintf(char **str, const char *format, ...) { |
| va_list args; |
| va_start(args, format); |
| int ret = OPENSSL_vasprintf(str, format, args); |
| va_end(args); |
| return ret; |
| } |
| |
| char *OPENSSL_strndup(const char *str, size_t size) { |
| size = OPENSSL_strnlen(str, size); |
| |
| size_t alloc_size = size + 1; |
| if (alloc_size < size) { |
| // overflow |
| OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| char *ret = reinterpret_cast<char *>(OPENSSL_malloc(alloc_size)); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| OPENSSL_memcpy(ret, str, size); |
| ret[size] = '\0'; |
| return ret; |
| } |
| |
| size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) { |
| size_t l = 0; |
| |
| for (; dst_size > 1 && *src; dst_size--) { |
| *dst++ = *src++; |
| l++; |
| } |
| |
| if (dst_size) { |
| *dst = 0; |
| } |
| |
| return l + strlen(src); |
| } |
| |
| size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) { |
| size_t l = 0; |
| for (; dst_size > 0 && *dst; dst_size--, dst++) { |
| l++; |
| } |
| return l + OPENSSL_strlcpy(dst, src, dst_size); |
| } |
| |
| void *OPENSSL_memdup(const void *data, size_t size) { |
| if (size == 0) { |
| return NULL; |
| } |
| |
| void *ret = OPENSSL_malloc(size); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| OPENSSL_memcpy(ret, data, size); |
| return ret; |
| } |
| |
| void *CRYPTO_malloc(size_t size, const char *file, int line) { |
| return OPENSSL_malloc(size); |
| } |
| |
| void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) { |
| return OPENSSL_realloc(ptr, new_size); |
| } |
| |
| void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); } |