| #! /usr/bin/env perl |
| # Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. |
| # |
| # Licensed under the OpenSSL license (the "License"). You may not use |
| # this file except in compliance with the License. You can obtain a copy |
| # in the file LICENSE in the source distribution or at |
| # https://www.openssl.org/source/license.html |
| |
| |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| |
| # October 2005 |
| # |
| # This is a "teaser" code, as it can be improved in several ways... |
| # First of all non-SSE2 path should be implemented (yes, for now it |
| # performs Montgomery multiplication/convolution only on SSE2-capable |
| # CPUs such as P4, others fall down to original code). Then inner loop |
| # can be unrolled and modulo-scheduled to improve ILP and possibly |
| # moved to 128-bit XMM register bank (though it would require input |
| # rearrangement and/or increase bus bandwidth utilization). Dedicated |
| # squaring procedure should give further performance improvement... |
| # Yet, for being draft, the code improves rsa512 *sign* benchmark by |
| # 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-) |
| |
| # December 2006 |
| # |
| # Modulo-scheduling SSE2 loops results in further 15-20% improvement. |
| # Integer-only code [being equipped with dedicated squaring procedure] |
| # gives ~40% on rsa512 sign benchmark... |
| |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| push(@INC,"${dir}","${dir}../../../perlasm"); |
| require "x86asm.pl"; |
| |
| $output = pop; |
| open STDOUT,">$output"; |
| |
| &asm_init($ARGV[0]); |
| |
| $sse2=1; |
| |
| &function_begin("bn_mul_mont"); |
| |
| $i="edx"; |
| $j="ecx"; |
| $ap="esi"; $tp="esi"; # overlapping variables!!! |
| $rp="edi"; $bp="edi"; # overlapping variables!!! |
| $np="ebp"; |
| $num="ebx"; |
| |
| $_num=&DWP(4*0,"esp"); # stack top layout |
| $_rp=&DWP(4*1,"esp"); |
| $_ap=&DWP(4*2,"esp"); |
| $_bp=&DWP(4*3,"esp"); |
| $_np=&DWP(4*4,"esp"); |
| $_n0=&DWP(4*5,"esp"); $_n0q=&QWP(4*5,"esp"); |
| $_sp=&DWP(4*6,"esp"); |
| $_bpend=&DWP(4*7,"esp"); |
| $frame=32; # size of above frame rounded up to 16n |
| |
| &xor ("eax","eax"); |
| &mov ("edi",&wparam(5)); # int num |
| &cmp ("edi",4); |
| &jl (&label("just_leave")); |
| |
| &lea ("esi",&wparam(0)); # put aside pointer to argument block |
| &lea ("edx",&wparam(1)); # load ap |
| &add ("edi",2); # extra two words on top of tp |
| &neg ("edi"); |
| &lea ("ebp",&DWP(-$frame,"esp","edi",4)); # future alloca($frame+4*(num+2)) |
| &neg ("edi"); |
| |
| # minimize cache contention by arranging 2K window between stack |
| # pointer and ap argument [np is also position sensitive vector, |
| # but it's assumed to be near ap, as it's allocated at ~same |
| # time]. |
| &mov ("eax","ebp"); |
| &sub ("eax","edx"); |
| &and ("eax",2047); |
| &sub ("ebp","eax"); # this aligns sp and ap modulo 2048 |
| |
| &xor ("edx","ebp"); |
| &and ("edx",2048); |
| &xor ("edx",2048); |
| &sub ("ebp","edx"); # this splits them apart modulo 4096 |
| |
| &and ("ebp",-64); # align to cache line |
| |
| # An OS-agnostic version of __chkstk. |
| # |
| # Some OSes (Windows) insist on stack being "wired" to |
| # physical memory in strictly sequential manner, i.e. if stack |
| # allocation spans two pages, then reference to farmost one can |
| # be punishable by SEGV. But page walking can do good even on |
| # other OSes, because it guarantees that villain thread hits |
| # the guard page before it can make damage to innocent one... |
| &mov ("eax","esp"); |
| &sub ("eax","ebp"); |
| &and ("eax",-4096); |
| &mov ("edx","esp"); # saved stack pointer! |
| &lea ("esp",&DWP(0,"ebp","eax")); |
| &mov ("eax",&DWP(0,"esp")); |
| &cmp ("esp","ebp"); |
| &ja (&label("page_walk")); |
| &jmp (&label("page_walk_done")); |
| |
| &set_label("page_walk",16); |
| &lea ("esp",&DWP(-4096,"esp")); |
| &mov ("eax",&DWP(0,"esp")); |
| &cmp ("esp","ebp"); |
| &ja (&label("page_walk")); |
| &set_label("page_walk_done"); |
| |
| ################################# load argument block... |
| &mov ("eax",&DWP(0*4,"esi"));# BN_ULONG *rp |
| &mov ("ebx",&DWP(1*4,"esi"));# const BN_ULONG *ap |
| &mov ("ecx",&DWP(2*4,"esi"));# const BN_ULONG *bp |
| &mov ("ebp",&DWP(3*4,"esi"));# const BN_ULONG *np |
| &mov ("esi",&DWP(4*4,"esi"));# const BN_ULONG *n0 |
| #&mov ("edi",&DWP(5*4,"esi"));# int num |
| |
| &mov ("esi",&DWP(0,"esi")); # pull n0[0] |
| &mov ($_rp,"eax"); # ... save a copy of argument block |
| &mov ($_ap,"ebx"); |
| &mov ($_bp,"ecx"); |
| &mov ($_np,"ebp"); |
| &mov ($_n0,"esi"); |
| &lea ($num,&DWP(-3,"edi")); # num=num-1 to assist modulo-scheduling |
| #&mov ($_num,$num); # redundant as $num is not reused |
| &mov ($_sp,"edx"); # saved stack pointer! |
| |
| if($sse2) { |
| $acc0="mm0"; # mmx register bank layout |
| $acc1="mm1"; |
| $car0="mm2"; |
| $car1="mm3"; |
| $mul0="mm4"; |
| $mul1="mm5"; |
| $temp="mm6"; |
| $mask="mm7"; |
| |
| &mov ("eax",-1); |
| &movd ($mask,"eax"); # mask 32 lower bits |
| |
| &mov ($ap,$_ap); # load input pointers |
| &mov ($bp,$_bp); |
| &mov ($np,$_np); |
| |
| &xor ($i,$i); # i=0 |
| &xor ($j,$j); # j=0 |
| |
| &movd ($mul0,&DWP(0,$bp)); # bp[0] |
| &movd ($mul1,&DWP(0,$ap)); # ap[0] |
| &movd ($car1,&DWP(0,$np)); # np[0] |
| |
| &pmuludq($mul1,$mul0); # ap[0]*bp[0] |
| &movq ($car0,$mul1); |
| &movq ($acc0,$mul1); # I wish movd worked for |
| &pand ($acc0,$mask); # inter-register transfers |
| |
| &pmuludq($mul1,$_n0q); # *=n0 |
| |
| &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0 |
| &paddq ($car1,$acc0); |
| |
| &movd ($acc1,&DWP(4,$np)); # np[1] |
| &movd ($acc0,&DWP(4,$ap)); # ap[1] |
| |
| &psrlq ($car0,32); |
| &psrlq ($car1,32); |
| |
| &inc ($j); # j++ |
| &set_label("1st",16); |
| &pmuludq($acc0,$mul0); # ap[j]*bp[0] |
| &pmuludq($acc1,$mul1); # np[j]*m1 |
| &paddq ($car0,$acc0); # +=c0 |
| &paddq ($car1,$acc1); # +=c1 |
| |
| &movq ($acc0,$car0); |
| &pand ($acc0,$mask); |
| &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] |
| &paddq ($car1,$acc0); # +=ap[j]*bp[0]; |
| &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] |
| &psrlq ($car0,32); |
| &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]= |
| &psrlq ($car1,32); |
| |
| &lea ($j,&DWP(1,$j)); |
| &cmp ($j,$num); |
| &jl (&label("1st")); |
| |
| &pmuludq($acc0,$mul0); # ap[num-1]*bp[0] |
| &pmuludq($acc1,$mul1); # np[num-1]*m1 |
| &paddq ($car0,$acc0); # +=c0 |
| &paddq ($car1,$acc1); # +=c1 |
| |
| &movq ($acc0,$car0); |
| &pand ($acc0,$mask); |
| &paddq ($car1,$acc0); # +=ap[num-1]*bp[0]; |
| &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= |
| |
| &psrlq ($car0,32); |
| &psrlq ($car1,32); |
| |
| &paddq ($car1,$car0); |
| &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] |
| |
| &inc ($i); # i++ |
| &set_label("outer"); |
| &xor ($j,$j); # j=0 |
| |
| &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i] |
| &movd ($mul1,&DWP(0,$ap)); # ap[0] |
| &movd ($temp,&DWP($frame,"esp")); # tp[0] |
| &movd ($car1,&DWP(0,$np)); # np[0] |
| &pmuludq($mul1,$mul0); # ap[0]*bp[i] |
| |
| &paddq ($mul1,$temp); # +=tp[0] |
| &movq ($acc0,$mul1); |
| &movq ($car0,$mul1); |
| &pand ($acc0,$mask); |
| |
| &pmuludq($mul1,$_n0q); # *=n0 |
| |
| &pmuludq($car1,$mul1); |
| &paddq ($car1,$acc0); |
| |
| &movd ($temp,&DWP($frame+4,"esp")); # tp[1] |
| &movd ($acc1,&DWP(4,$np)); # np[1] |
| &movd ($acc0,&DWP(4,$ap)); # ap[1] |
| |
| &psrlq ($car0,32); |
| &psrlq ($car1,32); |
| &paddq ($car0,$temp); # +=tp[1] |
| |
| &inc ($j); # j++ |
| &dec ($num); |
| &set_label("inner"); |
| &pmuludq($acc0,$mul0); # ap[j]*bp[i] |
| &pmuludq($acc1,$mul1); # np[j]*m1 |
| &paddq ($car0,$acc0); # +=c0 |
| &paddq ($car1,$acc1); # +=c1 |
| |
| &movq ($acc0,$car0); |
| &movd ($temp,&DWP($frame+4,"esp",$j,4));# tp[j+1] |
| &pand ($acc0,$mask); |
| &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] |
| &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j] |
| &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] |
| &psrlq ($car0,32); |
| &movd (&DWP($frame-4,"esp",$j,4),$car1);# tp[j-1]= |
| &psrlq ($car1,32); |
| &paddq ($car0,$temp); # +=tp[j+1] |
| |
| &dec ($num); |
| &lea ($j,&DWP(1,$j)); # j++ |
| &jnz (&label("inner")); |
| |
| &mov ($num,$j); |
| &pmuludq($acc0,$mul0); # ap[num-1]*bp[i] |
| &pmuludq($acc1,$mul1); # np[num-1]*m1 |
| &paddq ($car0,$acc0); # +=c0 |
| &paddq ($car1,$acc1); # +=c1 |
| |
| &movq ($acc0,$car0); |
| &pand ($acc0,$mask); |
| &paddq ($car1,$acc0); # +=ap[num-1]*bp[i]+tp[num-1] |
| &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= |
| &psrlq ($car0,32); |
| &psrlq ($car1,32); |
| |
| &movd ($temp,&DWP($frame+4,"esp",$num,4)); # += tp[num] |
| &paddq ($car1,$car0); |
| &paddq ($car1,$temp); |
| &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] |
| |
| &lea ($i,&DWP(1,$i)); # i++ |
| &cmp ($i,$num); |
| &jle (&label("outer")); |
| |
| &emms (); # done with mmx bank |
| &jmp (&label("common_tail")); |
| } |
| |
| &set_label("common_tail",16); |
| &mov ($np,$_np); # load modulus pointer |
| &mov ($rp,$_rp); # load result pointer |
| &lea ($tp,&DWP($frame,"esp")); # [$ap and $bp are zapped] |
| |
| &mov ("eax",&DWP(0,$tp)); # tp[0] |
| &mov ($j,$num); # j=num-1 |
| &xor ($i,$i); # i=0 and clear CF! |
| |
| &set_label("sub",16); |
| &sbb ("eax",&DWP(0,$np,$i,4)); |
| &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i] |
| &dec ($j); # doesn't affect CF! |
| &mov ("eax",&DWP(4,$tp,$i,4)); # tp[i+1] |
| &lea ($i,&DWP(1,$i)); # i++ |
| &jge (&label("sub")); |
| |
| &sbb ("eax",0); # handle upmost overflow bit |
| &mov ("edx",-1); |
| &xor ("edx","eax"); |
| &jmp (&label("copy")); |
| |
| &set_label("copy",16); # conditional copy |
| &mov ($tp,&DWP($frame,"esp",$num,4)); |
| &mov ($np,&DWP(0,$rp,$num,4)); |
| &mov (&DWP($frame,"esp",$num,4),$j); # zap temporary vector |
| &and ($tp,"eax"); |
| &and ($np,"edx"); |
| &or ($np,$tp); |
| &mov (&DWP(0,$rp,$num,4),$np); |
| &dec ($num); |
| &jge (&label("copy")); |
| |
| &mov ("esp",$_sp); # pull saved stack pointer |
| &mov ("eax",1); |
| &set_label("just_leave"); |
| &function_end("bn_mul_mont"); |
| |
| &asciz("Montgomery Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>"); |
| |
| &asm_finish(); |
| |
| close STDOUT or die "error closing STDOUT: $!"; |