blob: ff95cca9c063192daf85ac8a1d40fb5442c3b5a7 [file] [log] [blame]
/* Copyright (c) 2022, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
// Time conversion to/from POSIX time_t and struct tm, with no support
// for time zones other than UTC
#include <openssl/posix_time.h>
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <string.h>
#include <time.h>
#include "internal.h"
#define SECS_PER_HOUR (60 * 60)
#define SECS_PER_DAY (INT64_C(24) * SECS_PER_HOUR)
// Is a year/month/day combination valid, in the range from year 0000
// to 9999?
static int is_valid_date(int64_t year, int64_t month, int64_t day) {
if (day < 1 || month < 1 || year < 0 || year > 9999) {
return 0;
}
switch (month) {
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:
return day > 0 && day <= 31;
case 4:
case 6:
case 9:
case 11:
return day > 0 && day <= 30;
case 2:
if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) {
return day > 0 && day <= 29;
} else {
return day > 0 && day <= 28;
}
default:
return 0;
}
}
// Is a time valid? Leap seconds of 60 are not considered valid, as
// the POSIX time in seconds does not include them.
static int is_valid_time(int64_t hours, int64_t minutes, int64_t seconds) {
if (hours < 0 || minutes < 0 || seconds < 0 || hours > 23 || minutes > 59 ||
seconds > 59) {
return 0;
}
return 1;
}
// 0000-01-01 00:00:00 UTC
#define MIN_POSIX_TIME INT64_C(-62167219200)
// 9999-12-31 23:59:59 UTC
#define MAX_POSIX_TIME INT64_C(253402300799)
// Is an int64 time within our expected range?
static int is_valid_posix_time(int64_t time) {
return MIN_POSIX_TIME <= time && time <= MAX_POSIX_TIME;
}
// Inspired by algorithms presented in
// https://howardhinnant.github.io/date_algorithms.html
// (Public Domain)
static int posix_time_from_utc(int64_t year, int64_t month, int64_t day,
int64_t hours, int64_t minutes, int64_t seconds,
int64_t *out_time) {
if (!is_valid_date(year, month, day) ||
!is_valid_time(hours, minutes, seconds)) {
return 0;
}
if (month <= 2) {
year--; // Start years on Mar 1, so leap days always finish a year.
}
// At this point year will be in the range -1 and 9999.
assert(-1 <= year && year <= 9999);
int64_t era = (year >= 0 ? year : year - 399) / 400;
int64_t year_of_era = year - era * 400;
int64_t day_of_year =
(153 * (month > 2 ? month - 3 : month + 9) + 2) / 5 + day - 1;
int64_t day_of_era =
year_of_era * 365 + year_of_era / 4 - year_of_era / 100 + day_of_year;
int64_t posix_days = era * 146097 + day_of_era - 719468;
*out_time = posix_days * SECS_PER_DAY + hours * SECS_PER_HOUR + minutes * 60 +
seconds;
return 1;
}
// Inspired by algorithms presented in
// https://howardhinnant.github.io/date_algorithms.html
// (Public Domain)
static int utc_from_posix_time(int64_t time, int *out_year, int *out_month,
int *out_day, int *out_hours, int *out_minutes,
int *out_seconds) {
if (!is_valid_posix_time(time)) {
return 0;
}
int64_t days = time / SECS_PER_DAY;
int64_t leftover_seconds = time % SECS_PER_DAY;
if (leftover_seconds < 0) {
days--;
leftover_seconds += SECS_PER_DAY;
}
days += 719468; // Shift to starting epoch of Mar 1 0000.
// At this point, days will be in the range -61 and 3652364.
assert(-61 <= days && days <= 3652364);
int64_t era = (days > 0 ? days : days - 146096) / 146097;
int64_t day_of_era = days - era * 146097;
int64_t year_of_era = (day_of_era - day_of_era / 1460 + day_of_era / 36524 -
day_of_era / 146096) /
365;
*out_year = (int)(year_of_era + era * 400); // Year starting on Mar 1.
int64_t day_of_year =
day_of_era - (365 * year_of_era + year_of_era / 4 - year_of_era / 100);
int64_t month_of_year = (5 * day_of_year + 2) / 153;
*out_month =
(int)(month_of_year < 10 ? month_of_year + 3 : month_of_year - 9);
if (*out_month <= 2) {
(*out_year)++; // Adjust year back to Jan 1 start of year.
}
*out_day = (int)(day_of_year - (153 * month_of_year + 2) / 5 + 1);
*out_hours = (int)(leftover_seconds / SECS_PER_HOUR);
leftover_seconds %= SECS_PER_HOUR;
*out_minutes = (int)(leftover_seconds / 60);
*out_seconds = (int)(leftover_seconds % 60);
return 1;
}
int OPENSSL_tm_to_posix(const struct tm *tm, int64_t *out) {
return posix_time_from_utc(tm->tm_year + INT64_C(1900),
tm->tm_mon + INT64_C(1), tm->tm_mday, tm->tm_hour,
tm->tm_min, tm->tm_sec, out);
}
int OPENSSL_posix_to_tm(int64_t time, struct tm *out_tm) {
struct tm tmp_tm = {0};
if (!utc_from_posix_time(time, &tmp_tm.tm_year, &tmp_tm.tm_mon,
&tmp_tm.tm_mday, &tmp_tm.tm_hour, &tmp_tm.tm_min,
&tmp_tm.tm_sec)) {
return 0;
}
tmp_tm.tm_year -= 1900;
tmp_tm.tm_mon -= 1;
*out_tm = tmp_tm;
return 1;
}
int OPENSSL_timegm(const struct tm *tm, time_t *out) {
static_assert(
sizeof(time_t) == sizeof(int32_t) || sizeof(time_t) == sizeof(int64_t),
"time_t is broken");
int64_t posix_time;
if (!OPENSSL_tm_to_posix(tm, &posix_time)) {
return 0;
}
if (sizeof(time_t) == sizeof(int32_t) &&
(posix_time > INT32_MAX || posix_time < INT32_MIN)) {
return 0;
}
*out = (time_t)posix_time;
return 1;
}
struct tm *OPENSSL_gmtime(const time_t *time, struct tm *out_tm) {
static_assert(
sizeof(time_t) == sizeof(int32_t) || sizeof(time_t) == sizeof(int64_t),
"time_t is broken");
int64_t posix_time = *time;
if (!OPENSSL_posix_to_tm(posix_time, out_tm)) {
return NULL;
}
return out_tm;
}
int OPENSSL_gmtime_adj(struct tm *tm, int offset_day, int64_t offset_sec) {
int64_t posix_time;
if (!OPENSSL_tm_to_posix(tm, &posix_time)) {
return 0;
}
static_assert(INT_MAX <= INT64_MAX / SECS_PER_DAY,
"day offset in seconds cannot overflow");
static_assert(MAX_POSIX_TIME <= INT64_MAX - INT_MAX * SECS_PER_DAY,
"addition cannot overflow");
static_assert(MIN_POSIX_TIME >= INT64_MIN - INT_MIN * SECS_PER_DAY,
"addition cannot underflow");
posix_time += offset_day * SECS_PER_DAY;
if (posix_time > 0 && offset_sec > INT64_MAX - posix_time) {
return 0;
}
if (posix_time < 0 && offset_sec < INT64_MIN - posix_time) {
return 0;
}
posix_time += offset_sec;
if (!OPENSSL_posix_to_tm(posix_time, tm)) {
return 0;
}
return 1;
}
int OPENSSL_gmtime_diff(int *out_days, int *out_secs, const struct tm *from,
const struct tm *to) {
int64_t time_to, time_from;
if (!OPENSSL_tm_to_posix(to, &time_to) ||
!OPENSSL_tm_to_posix(from, &time_from)) {
return 0;
}
// Times are in range, so these calculations can not overflow.
static_assert(SECS_PER_DAY <= INT_MAX, "seconds per day does not fit in int");
static_assert((MAX_POSIX_TIME - MIN_POSIX_TIME) / SECS_PER_DAY <= INT_MAX,
"range of valid POSIX times, in days, does not fit in int");
int64_t timediff = time_to - time_from;
int64_t daydiff = timediff / SECS_PER_DAY;
timediff %= SECS_PER_DAY;
*out_secs = (int)timediff;
*out_days = (int)daydiff;
return 1;
}