|  | // Copyright 2014 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  | #include <time.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include <gmock/gmock.h> | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  | #include <openssl/base64.h> | 
|  | #include <openssl/bio.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/cipher.h> | 
|  | #include <openssl/crypto.h> | 
|  | #include <openssl/curve25519.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/hmac.h> | 
|  | #include <openssl/hpke.h> | 
|  | #include <openssl/pem.h> | 
|  | #include <openssl/rand.h> | 
|  | #include <openssl/sha.h> | 
|  | #include <openssl/ssl.h> | 
|  | #include <openssl/x509.h> | 
|  |  | 
|  | #include "../crypto/internal.h" | 
|  | #include "../crypto/test/file_util.h" | 
|  | #include "../crypto/test/test_util.h" | 
|  | #include "internal.h" | 
|  |  | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | // Windows defines struct timeval in winsock2.h. | 
|  | #include <winsock2.h> | 
|  | #else | 
|  | #include <sys/time.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(OPENSSL_THREADS) | 
|  | #include <thread> | 
|  | #endif | 
|  |  | 
|  |  | 
|  | using testing::ElementsAre; | 
|  | using testing::ElementsAreArray; | 
|  | using testing::Key; | 
|  | using testing::Not; | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | #define TRACED_CALL(code)                     \ | 
|  | do {                                        \ | 
|  | SCOPED_TRACE("<- called from here");      \ | 
|  | code;                                     \ | 
|  | if (::testing::Test::HasFatalFailure()) { \ | 
|  | return;                                 \ | 
|  | }                                         \ | 
|  | } while (false) | 
|  |  | 
|  | struct VersionParam { | 
|  | uint16_t version; | 
|  | enum { is_tls, is_dtls } ssl_method; | 
|  | const char name[8]; | 
|  | }; | 
|  |  | 
|  | static const size_t kTicketKeyLen = 48; | 
|  |  | 
|  | static const VersionParam kAllVersions[] = { | 
|  | {TLS1_VERSION, VersionParam::is_tls, "TLS1"}, | 
|  | {TLS1_1_VERSION, VersionParam::is_tls, "TLS1_1"}, | 
|  | {TLS1_2_VERSION, VersionParam::is_tls, "TLS1_2"}, | 
|  | {TLS1_3_VERSION, VersionParam::is_tls, "TLS1_3"}, | 
|  | {DTLS1_VERSION, VersionParam::is_dtls, "DTLS1"}, | 
|  | {DTLS1_2_VERSION, VersionParam::is_dtls, "DTLS1_2"}, | 
|  | {DTLS1_3_VERSION, VersionParam::is_dtls, "DTLS1_3"}, | 
|  | }; | 
|  |  | 
|  | struct ExpectedCipher { | 
|  | uint16_t protocol_id; | 
|  | int in_group_flag; | 
|  | }; | 
|  |  | 
|  | struct CipherTest { | 
|  | // The rule string to apply. | 
|  | const char *rule; | 
|  | // The list of expected ciphers, in order. | 
|  | std::vector<ExpectedCipher> expected; | 
|  | // True if this cipher list should fail in strict mode. | 
|  | bool strict_fail; | 
|  | }; | 
|  |  | 
|  | struct CurveTest { | 
|  | // The rule string to apply. | 
|  | const char *rule; | 
|  | // The list of expected curves, in order. | 
|  | std::vector<uint16_t> expected; | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | class UnownedSSLExData { | 
|  | public: | 
|  | UnownedSSLExData() { | 
|  | index_ = SSL_get_ex_new_index(0, nullptr, nullptr, nullptr, nullptr); | 
|  | } | 
|  |  | 
|  | T *Get(const SSL *ssl) { | 
|  | return index_ < 0 ? nullptr | 
|  | : static_cast<T *>(SSL_get_ex_data(ssl, index_)); | 
|  | } | 
|  |  | 
|  | bool Set(SSL *ssl, T *t) { | 
|  | return index_ >= 0 && SSL_set_ex_data(ssl, index_, t); | 
|  | } | 
|  |  | 
|  | private: | 
|  | int index_; | 
|  | }; | 
|  |  | 
|  | static timeval g_current_time; | 
|  |  | 
|  | static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) { | 
|  | *out_clock = g_current_time; | 
|  | } | 
|  |  | 
|  | static void FrozenTimeCallback(const SSL *ssl, timeval *out_clock) { | 
|  | out_clock->tv_sec = 1000; | 
|  | out_clock->tv_usec = 0; | 
|  | } | 
|  |  | 
|  | static const CipherTest kCipherTests[] = { | 
|  | // Selecting individual ciphers should work. | 
|  | { | 
|  | "ECDHE-ECDSA-CHACHA20-POLY1305:" | 
|  | "ECDHE-RSA-CHACHA20-POLY1305:" | 
|  | "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
|  | "ECDHE-RSA-AES128-GCM-SHA256", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // + reorders selected ciphers to the end, keeping their relative order. | 
|  | { | 
|  | "ECDHE-ECDSA-CHACHA20-POLY1305:" | 
|  | "ECDHE-RSA-CHACHA20-POLY1305:" | 
|  | "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
|  | "ECDHE-RSA-AES128-GCM-SHA256:" | 
|  | "+aRSA", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // ! banishes ciphers from future selections. | 
|  | { | 
|  | "!aRSA:" | 
|  | "ECDHE-ECDSA-CHACHA20-POLY1305:" | 
|  | "ECDHE-RSA-CHACHA20-POLY1305:" | 
|  | "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
|  | "ECDHE-RSA-AES128-GCM-SHA256", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // Multiple masks can be ANDed in a single rule. | 
|  | { | 
|  | "kRSA+AESGCM+AES128", | 
|  | { | 
|  | {SSL_CIPHER_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // - removes selected ciphers, but preserves their order for future | 
|  | // selections. Select AES_128_GCM, but order the key exchanges RSA, | 
|  | // ECDHE_RSA. | 
|  | { | 
|  | "ALL:-kECDHE:" | 
|  | "-kRSA:-ALL:" | 
|  | "AESGCM+AES128+aRSA", | 
|  | { | 
|  | {SSL_CIPHER_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // Unknown selectors are no-ops, except in strict mode. | 
|  | { | 
|  | "ECDHE-ECDSA-CHACHA20-POLY1305:" | 
|  | "ECDHE-RSA-CHACHA20-POLY1305:" | 
|  | "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
|  | "ECDHE-RSA-AES128-GCM-SHA256:" | 
|  | "BOGUS1", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | true, | 
|  | }, | 
|  | // Unknown selectors are no-ops, except in strict mode. | 
|  | { | 
|  | "ECDHE-ECDSA-CHACHA20-POLY1305:" | 
|  | "ECDHE-RSA-CHACHA20-POLY1305:" | 
|  | "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
|  | "ECDHE-RSA-AES128-GCM-SHA256:" | 
|  | "-BOGUS2:+BOGUS3:!BOGUS4", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | true, | 
|  | }, | 
|  | // Square brackets specify equi-preference groups. | 
|  | { | 
|  | "[ECDHE-ECDSA-CHACHA20-POLY1305|ECDHE-ECDSA-AES128-GCM-SHA256]:" | 
|  | "[ECDHE-RSA-CHACHA20-POLY1305]:" | 
|  | "ECDHE-RSA-AES128-GCM-SHA256", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1}, | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // Standard names may be used instead of OpenSSL names. | 
|  | { | 
|  | "[TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256|" | 
|  | "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256]:" | 
|  | "[TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256]:" | 
|  | "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1}, | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // @STRENGTH performs a stable strength-sort of the selected ciphers and | 
|  | // only the selected ciphers. | 
|  | { | 
|  | // To simplify things, banish all but {ECDHE_RSA,RSA} x | 
|  | // {CHACHA20,AES_256_CBC,AES_128_CBC} x SHA1. | 
|  | "!AESGCM:!3DES:" | 
|  | // Order some ciphers backwards by strength. | 
|  | "ALL:-CHACHA20:-AES256:-AES128:-ALL:" | 
|  | // Select ECDHE ones and sort them by strength. Ties should resolve | 
|  | // based on the order above. | 
|  | "kECDHE:@STRENGTH:-ALL:" | 
|  | // Now bring back everything uses RSA. ECDHE_RSA should be first, sorted | 
|  | // by strength. Then RSA, backwards by strength. | 
|  | "aRSA", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_256_CBC_SHA, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_CBC_SHA, 0}, | 
|  | {SSL_CIPHER_RSA_WITH_AES_128_CBC_SHA, 0}, | 
|  | {SSL_CIPHER_RSA_WITH_AES_256_CBC_SHA, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // Additional masks after @STRENGTH get silently discarded. | 
|  | // | 
|  | // TODO(davidben): Make this an error. If not silently discarded, they get | 
|  | // interpreted as + opcodes which are very different. | 
|  | { | 
|  | "ECDHE-RSA-AES128-GCM-SHA256:" | 
|  | "ECDHE-RSA-AES256-GCM-SHA384:" | 
|  | "@STRENGTH+AES256", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | { | 
|  | "ECDHE-RSA-AES128-GCM-SHA256:" | 
|  | "ECDHE-RSA-AES256-GCM-SHA384:" | 
|  | "@STRENGTH+AES256:" | 
|  | "ECDHE-RSA-CHACHA20-POLY1305", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // Exact ciphers may not be used in multi-part rules; they are treated | 
|  | // as unknown aliases. | 
|  | { | 
|  | "ECDHE-ECDSA-AES128-GCM-SHA256:" | 
|  | "ECDHE-RSA-AES128-GCM-SHA256:" | 
|  | "!ECDHE-RSA-AES128-GCM-SHA256+RSA:" | 
|  | "!ECDSA+ECDHE-ECDSA-AES128-GCM-SHA256", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | true, | 
|  | }, | 
|  | // SSLv3 matches everything that existed before TLS 1.2. | 
|  | { | 
|  | "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!SSLv3", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // TLSv1.2 matches everything added in TLS 1.2. | 
|  | { | 
|  | "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2", | 
|  | { | 
|  | {SSL_CIPHER_RSA_WITH_AES_128_CBC_SHA, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // The two directives have no intersection.  But each component is valid, so | 
|  | // even in strict mode it is accepted. | 
|  | { | 
|  | "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2+SSLv3", | 
|  | { | 
|  | {SSL_CIPHER_RSA_WITH_AES_128_CBC_SHA, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // Spaces, semi-colons and commas are separators. | 
|  | { | 
|  | "AES128-SHA: ECDHE-RSA-AES128-GCM-SHA256 AES256-SHA " | 
|  | ",ECDHE-ECDSA-AES128-GCM-SHA256 ; AES128-GCM-SHA256", | 
|  | { | 
|  | {SSL_CIPHER_RSA_WITH_AES_128_CBC_SHA, 0}, | 
|  | {SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_RSA_WITH_AES_256_CBC_SHA, 0}, | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | // …but not in strict mode. | 
|  | true, | 
|  | }, | 
|  | // 3DES ciphers are disabled by default. | 
|  | { | 
|  | "RSA", | 
|  | { | 
|  | {SSL_CIPHER_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_RSA_WITH_AES_256_GCM_SHA384, 0}, | 
|  | {SSL_CIPHER_RSA_WITH_AES_128_CBC_SHA, 0}, | 
|  | {SSL_CIPHER_RSA_WITH_AES_256_CBC_SHA, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // But 3DES ciphers may be specified by name. | 
|  | { | 
|  | "TLS_RSA_WITH_3DES_EDE_CBC_SHA", | 
|  | { | 
|  | {SSL_CIPHER_RSA_WITH_3DES_EDE_CBC_SHA, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | { | 
|  | "DES-CBC3-SHA", | 
|  | { | 
|  | {SSL_CIPHER_RSA_WITH_3DES_EDE_CBC_SHA, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // Or by a selector that specifically includes deprecated ciphers. | 
|  | { | 
|  | "3DES", | 
|  | { | 
|  | {SSL_CIPHER_RSA_WITH_3DES_EDE_CBC_SHA, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // Such selectors may be combined with other selectors that would otherwise | 
|  | // not allow deprecated ciphers. | 
|  | { | 
|  | "RSA+3DES", | 
|  | { | 
|  | {SSL_CIPHER_RSA_WITH_3DES_EDE_CBC_SHA, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // The cipher must still match all combined selectors, however. "ECDHE+3DES" | 
|  | // matches nothing because we do not implement | 
|  | // TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA. (The test includes | 
|  | // TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 so the final list is not empty.) | 
|  | { | 
|  | "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:ECDHE+3DES", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // Although alises like "RSA" do not match 3DES when adding ciphers, they do | 
|  | // match it when removing ciphers. | 
|  | { | 
|  | "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:RSA:RSA+3DES:!RSA", | 
|  | { | 
|  | {SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | // 3DES still participates in strength sorting. | 
|  | { | 
|  | "RSA:3DES:@STRENGTH", | 
|  | { | 
|  | {SSL_CIPHER_RSA_WITH_AES_256_GCM_SHA384, 0}, | 
|  | {SSL_CIPHER_RSA_WITH_AES_256_CBC_SHA, 0}, | 
|  | {SSL_CIPHER_RSA_WITH_AES_128_GCM_SHA256, 0}, | 
|  | {SSL_CIPHER_RSA_WITH_AES_128_CBC_SHA, 0}, | 
|  | {SSL_CIPHER_RSA_WITH_3DES_EDE_CBC_SHA, 0}, | 
|  | }, | 
|  | false, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const char *kBadRules[] = { | 
|  | // Invalid brackets. | 
|  | "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256", | 
|  | "RSA]", | 
|  | "[[RSA]]", | 
|  | // Operators inside brackets. | 
|  | "[+RSA]", | 
|  | // Unknown directive. | 
|  | "@BOGUS", | 
|  | // Empty cipher lists error at SSL_CTX_set_cipher_list. | 
|  | "", | 
|  | "BOGUS", | 
|  | // COMPLEMENTOFDEFAULT is empty. | 
|  | "COMPLEMENTOFDEFAULT", | 
|  | // Invalid command. | 
|  | "?BAR", | 
|  | // Special operators are not allowed if equi-preference groups are used. | 
|  | "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:+FOO", | 
|  | "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:!FOO", | 
|  | "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:-FOO", | 
|  | "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:@STRENGTH", | 
|  | // Opcode supplied, but missing selector. | 
|  | "+", | 
|  | // Spaces are forbidden in equal-preference groups. | 
|  | "[AES128-SHA | AES128-SHA256]", | 
|  | }; | 
|  |  | 
|  | static const char *kMustNotIncludeDeprecated[] = { | 
|  | "ALL",  "DEFAULT", "HIGH",  "FIPS",  "SHA", | 
|  | "SHA1", "RSA",     "SSLv3", "TLSv1", "TLSv1.2", | 
|  | }; | 
|  |  | 
|  | static const char *kShouldIncludeCBCSHA256[] = { | 
|  | "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256", | 
|  | "ALL:TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256", | 
|  | }; | 
|  |  | 
|  | static const CurveTest kCurveTests[] = { | 
|  | { | 
|  | "P-256", | 
|  | {SSL_GROUP_SECP256R1}, | 
|  | }, | 
|  | { | 
|  | "P-256:X25519Kyber768Draft00", | 
|  | {SSL_GROUP_SECP256R1, SSL_GROUP_X25519_KYBER768_DRAFT00}, | 
|  | }, | 
|  | { | 
|  | "P-256:X25519MLKEM768", | 
|  | {SSL_GROUP_SECP256R1, SSL_GROUP_X25519_MLKEM768}, | 
|  | }, | 
|  | { | 
|  | "P-256:MLKEM1024", | 
|  | {SSL_GROUP_SECP256R1, SSL_GROUP_MLKEM1024}, | 
|  | }, | 
|  | { | 
|  | "MLKEM1024:X25519MLKEM768", | 
|  | {SSL_GROUP_MLKEM1024, SSL_GROUP_X25519_MLKEM768}, | 
|  | }, | 
|  |  | 
|  | { | 
|  | "P-256:P-384:P-521:X25519", | 
|  | { | 
|  | SSL_GROUP_SECP256R1, | 
|  | SSL_GROUP_SECP384R1, | 
|  | SSL_GROUP_SECP521R1, | 
|  | SSL_GROUP_X25519, | 
|  | }, | 
|  | }, | 
|  | { | 
|  | "prime256v1:secp384r1:secp521r1:x25519", | 
|  | { | 
|  | SSL_GROUP_SECP256R1, | 
|  | SSL_GROUP_SECP384R1, | 
|  | SSL_GROUP_SECP521R1, | 
|  | SSL_GROUP_X25519, | 
|  | }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const char *kBadCurvesLists[] = { | 
|  | "", | 
|  | ":", | 
|  | "::", | 
|  | "P-256::X25519", | 
|  | "RSA:P-256", | 
|  | "P-256:RSA", | 
|  | "X25519:P-256:", | 
|  | ":X25519:P-256", | 
|  | "X25519:X25519", | 
|  | }; | 
|  |  | 
|  | static std::string CipherListToString(SSL_CTX *ctx) { | 
|  | bool in_group = false; | 
|  | std::string ret; | 
|  | const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx); | 
|  | for (size_t i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { | 
|  | const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i); | 
|  | if (!in_group && SSL_CTX_cipher_in_group(ctx, i)) { | 
|  | ret += "\t[\n"; | 
|  | in_group = true; | 
|  | } | 
|  | ret += "\t"; | 
|  | if (in_group) { | 
|  | ret += "  "; | 
|  | } | 
|  | ret += SSL_CIPHER_get_name(cipher); | 
|  | ret += "\n"; | 
|  | if (in_group && !SSL_CTX_cipher_in_group(ctx, i)) { | 
|  | ret += "\t]\n"; | 
|  | in_group = false; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool CipherListsEqual(SSL_CTX *ctx, | 
|  | const std::vector<ExpectedCipher> &expected) { | 
|  | const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx); | 
|  | if (sk_SSL_CIPHER_num(ciphers) != expected.size()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < expected.size(); i++) { | 
|  | const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i); | 
|  | if (expected[i].protocol_id != SSL_CIPHER_get_protocol_id(cipher) || | 
|  | expected[i].in_group_flag != !!SSL_CTX_cipher_in_group(ctx, i)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, CipherRules) { | 
|  | for (const CipherTest &t : kCipherTests) { | 
|  | SCOPED_TRACE(t.rule); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | // Test lax mode. | 
|  | ASSERT_TRUE(SSL_CTX_set_cipher_list(ctx.get(), t.rule)); | 
|  | EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected)) | 
|  | << "Cipher rule evaluated to:\n" | 
|  | << CipherListToString(ctx.get()); | 
|  |  | 
|  | // Test strict mode. | 
|  | if (t.strict_fail) { | 
|  | EXPECT_FALSE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule)); | 
|  | } else { | 
|  | ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule)); | 
|  | EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected)) | 
|  | << "Cipher rule evaluated to:\n" | 
|  | << CipherListToString(ctx.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const char *rule : kBadRules) { | 
|  | SCOPED_TRACE(rule); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), rule)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | for (const char *rule : kMustNotIncludeDeprecated) { | 
|  | SCOPED_TRACE(rule); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule)); | 
|  | for (const SSL_CIPHER *cipher : SSL_CTX_get_ciphers(ctx.get())) { | 
|  | EXPECT_NE(NID_undef, SSL_CIPHER_get_cipher_nid(cipher)); | 
|  | EXPECT_FALSE(ssl_cipher_is_deprecated(cipher)); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | for (const char *rule : kShouldIncludeCBCSHA256) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule)); | 
|  |  | 
|  | bool found = false; | 
|  | for (const SSL_CIPHER *cipher : SSL_CTX_get_ciphers(ctx.get())) { | 
|  | if (SSL_CIPHER_ECDHE_RSA_WITH_AES_128_CBC_SHA256 == | 
|  | SSL_CIPHER_get_protocol_id(cipher)) { | 
|  | found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPECT_TRUE(found); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, CurveRules) { | 
|  | for (const CurveTest &t : kCurveTests) { | 
|  | SCOPED_TRACE(t.rule); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set1_groups_list(ctx.get(), t.rule)); | 
|  | ASSERT_EQ(t.expected.size(), ctx->supported_group_list.size()); | 
|  | for (size_t i = 0; i < t.expected.size(); i++) { | 
|  | EXPECT_EQ(t.expected[i], ctx->supported_group_list[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const char *rule : kBadCurvesLists) { | 
|  | SCOPED_TRACE(rule); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | EXPECT_FALSE(SSL_CTX_set1_groups_list(ctx.get(), rule)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, DefaultCurves) { | 
|  | const uint16_t kDefaults[] = {SSL_GROUP_X25519, SSL_GROUP_SECP256R1, | 
|  | SSL_GROUP_SECP384R1}; | 
|  |  | 
|  | // Test the group ID APIs. | 
|  | { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | // The new context is populated with the default group list. | 
|  | EXPECT_THAT(ctx->supported_group_list, ElementsAreArray(kDefaults)); | 
|  |  | 
|  | // Set some other list to check that it is set away from the default. | 
|  | const uint16_t kArbitraryGroupIds[] = {SSL_GROUP_X25519}; | 
|  | ASSERT_TRUE(SSL_CTX_set1_group_ids(ctx.get(), kArbitraryGroupIds, | 
|  | std::size(kArbitraryGroupIds))); | 
|  | EXPECT_THAT(ctx->supported_group_list, Not(ElementsAreArray(kDefaults))); | 
|  |  | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | EXPECT_THAT(ssl->config->supported_group_list, | 
|  | Not(ElementsAreArray(kDefaults))); | 
|  |  | 
|  | // Setting an empty list restores the defaults. | 
|  | ASSERT_TRUE(SSL_set1_group_ids(ssl.get(), nullptr, 0)); | 
|  | EXPECT_THAT(ssl->config->supported_group_list, ElementsAreArray(kDefaults)); | 
|  | ASSERT_TRUE(SSL_CTX_set1_group_ids(ctx.get(), nullptr, 0)); | 
|  | EXPECT_THAT(ctx->supported_group_list, ElementsAreArray(kDefaults)); | 
|  | } | 
|  |  | 
|  | // Test the NID APIs. | 
|  | { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | // The new context is populated with the default group list. | 
|  | EXPECT_THAT(ctx->supported_group_list, ElementsAreArray(kDefaults)); | 
|  |  | 
|  | // Set some other list to check that it is set away from the default. | 
|  | const int kArbitraryNids[] = {NID_X9_62_prime256v1}; | 
|  | ASSERT_TRUE(SSL_CTX_set1_groups(ctx.get(), kArbitraryNids, | 
|  | std::size(kArbitraryNids))); | 
|  | EXPECT_THAT(ctx->supported_group_list, Not(ElementsAreArray(kDefaults))); | 
|  |  | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | EXPECT_THAT(ssl->config->supported_group_list, | 
|  | Not(ElementsAreArray(kDefaults))); | 
|  |  | 
|  | // Setting an empty list restores the defaults. | 
|  | ASSERT_TRUE(SSL_set1_groups(ssl.get(), nullptr, 0)); | 
|  | EXPECT_THAT(ssl->config->supported_group_list, ElementsAreArray(kDefaults)); | 
|  | ASSERT_TRUE(SSL_CTX_set1_groups(ctx.get(), nullptr, 0)); | 
|  | EXPECT_THAT(ctx->supported_group_list, ElementsAreArray(kDefaults)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SetClientKeyShares) { | 
|  | const struct { | 
|  | const char *description; | 
|  | std::vector<uint16_t> supported_groups; | 
|  | std::vector<uint16_t> key_shares; | 
|  | bool expected_success; | 
|  | } kTests[] = { | 
|  | { | 
|  | "Empty key shares with default supported groups", | 
|  | {}, | 
|  | {}, | 
|  | true, | 
|  | }, | 
|  | { | 
|  | "Empty key shares with custom supported groups", | 
|  | {SSL_GROUP_X25519, SSL_GROUP_X25519_MLKEM768}, | 
|  | {}, | 
|  | true, | 
|  | }, | 
|  | { | 
|  | "One key share matching default supported groups", | 
|  | {}, | 
|  | {SSL_GROUP_X25519}, | 
|  | true, | 
|  | }, | 
|  | { | 
|  | "One key share matching custom supported groups", | 
|  | {SSL_GROUP_X25519, SSL_GROUP_X25519_MLKEM768}, | 
|  | {SSL_GROUP_X25519}, | 
|  | true, | 
|  | }, | 
|  | { | 
|  | "Key share not in supported default groups", | 
|  | {}, | 
|  | {SSL_GROUP_MLKEM1024}, | 
|  | false, | 
|  | }, | 
|  | { | 
|  | "Key share not in supported custom groups", | 
|  | {SSL_GROUP_X25519, SSL_GROUP_SECP256R1}, | 
|  | {SSL_GROUP_X25519_MLKEM768}, | 
|  | false, | 
|  | }, | 
|  | { | 
|  | "Multiple key shares, in correct order", | 
|  | {SSL_GROUP_X25519, SSL_GROUP_SECP256R1, SSL_GROUP_X25519_MLKEM768}, | 
|  | {SSL_GROUP_X25519, SSL_GROUP_X25519_MLKEM768}, | 
|  | true, | 
|  | }, | 
|  | { | 
|  | "Multiple key shares, out of order", | 
|  | {SSL_GROUP_X25519, SSL_GROUP_SECP256R1, SSL_GROUP_X25519_MLKEM768}, | 
|  | {SSL_GROUP_X25519_MLKEM768, SSL_GROUP_X25519}, | 
|  | false, | 
|  | }, | 
|  | { | 
|  | "More than two key shares", | 
|  | {SSL_GROUP_X25519, SSL_GROUP_SECP256R1, SSL_GROUP_X25519_MLKEM768, | 
|  | SSL_GROUP_MLKEM1024}, | 
|  | {SSL_GROUP_X25519, SSL_GROUP_SECP256R1, SSL_GROUP_X25519_MLKEM768}, | 
|  | true, | 
|  | }, | 
|  | { | 
|  | "Key shares cover all supported groups", | 
|  | {SSL_GROUP_X25519, SSL_GROUP_SECP256R1, SSL_GROUP_X25519_MLKEM768}, | 
|  | {SSL_GROUP_X25519, SSL_GROUP_SECP256R1, SSL_GROUP_X25519_MLKEM768}, | 
|  | true, | 
|  | }, | 
|  | { | 
|  | "Multiple key shares, not all valid", | 
|  | {SSL_GROUP_X25519, SSL_GROUP_X25519_MLKEM768}, | 
|  | {SSL_GROUP_X25519, SSL_GROUP_SECP256R1, SSL_GROUP_X25519_MLKEM768}, | 
|  | false, | 
|  | }, | 
|  | { | 
|  | "Key shares contain duplicates", | 
|  | {}, | 
|  | {SSL_GROUP_X25519, SSL_GROUP_X25519}, | 
|  | false, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | for (const auto &t : kTests) { | 
|  | SCOPED_TRACE(t.description); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | ASSERT_FALSE(ssl->config->client_key_share_selections.has_value()); | 
|  |  | 
|  | ASSERT_TRUE(SSL_set1_group_ids(ssl.get(), t.supported_groups.data(), | 
|  | t.supported_groups.size())); | 
|  | EXPECT_EQ(SSL_set1_client_key_shares(ssl.get(), t.key_shares.data(), | 
|  | t.key_shares.size()), | 
|  | t.expected_success); | 
|  | if (t.expected_success) { | 
|  | ASSERT_TRUE(ssl->config->client_key_share_selections.has_value()); | 
|  | EXPECT_THAT(ssl->config->client_key_share_selections.value(), | 
|  | ElementsAreArray(t.key_shares)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test the behavior that modifying the SSL's supported groups results in | 
|  | // clearing the previously set client key shares, iff the supported groups | 
|  | // become incompatible with the key shares. | 
|  | TEST(SSLTest, ClientKeySharesResetAfterChangingGroups) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | ASSERT_FALSE(ssl->config->client_key_share_selections.has_value()); | 
|  |  | 
|  | // An initial groups list and key shares that are compatible. | 
|  | const uint16_t kGroups1[] = {SSL_GROUP_X25519_MLKEM768, SSL_GROUP_X25519}; | 
|  | const uint16_t kKeyShares[] = {SSL_GROUP_X25519_MLKEM768, SSL_GROUP_X25519}; | 
|  | ASSERT_TRUE( | 
|  | SSL_set1_group_ids(ssl.get(), kGroups1, std::size(kGroups1))); | 
|  | ASSERT_TRUE(SSL_set1_client_key_shares(ssl.get(), kKeyShares, | 
|  | std::size(kKeyShares))); | 
|  | ASSERT_TRUE(ssl->config->client_key_share_selections.has_value()); | 
|  | EXPECT_EQ(ssl->config->client_key_share_selections->size(), 2u); | 
|  |  | 
|  | // A new groups list that is still compatible with the previously set key | 
|  | // shares. | 
|  | const uint16_t kGroups2[] = {SSL_GROUP_MLKEM1024, SSL_GROUP_X25519_MLKEM768, | 
|  | SSL_GROUP_X25519}; | 
|  | ASSERT_TRUE( | 
|  | SSL_set1_group_ids(ssl.get(), kGroups2, std::size(kGroups2))); | 
|  | ASSERT_TRUE(ssl->config->client_key_share_selections.has_value()); | 
|  | EXPECT_EQ(ssl->config->client_key_share_selections->size(), 2u); | 
|  |  | 
|  | // A new groups list that is no longer compatible with the previously set key | 
|  | // shares. | 
|  | const uint16_t kGroups3[] = {SSL_GROUP_MLKEM1024, SSL_GROUP_X25519}; | 
|  | ASSERT_TRUE( | 
|  | SSL_set1_group_ids(ssl.get(), kGroups3, std::size(kGroups3))); | 
|  | EXPECT_FALSE(ssl->config->client_key_share_selections.has_value()); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ServerSupportedGroupsHint) { | 
|  | // List of client's supported groups used for these test cases. | 
|  | const uint16_t kSupportedGroups[] = { | 
|  | SSL_GROUP_X25519_MLKEM768,  // | 
|  | SSL_GROUP_MLKEM1024,        // | 
|  | SSL_GROUP_X25519,           // | 
|  | SSL_GROUP_SECP256R1,        // | 
|  | }; | 
|  |  | 
|  | // By default, the first post-quantum and first classical groups are chosen. | 
|  | std::vector<uint16_t> kDefaultKeyShares = {SSL_GROUP_X25519_MLKEM768, | 
|  | SSL_GROUP_X25519}; | 
|  |  | 
|  | const struct { | 
|  | const char *description; | 
|  | std::vector<uint16_t> server_hinted_groups; | 
|  | std::vector<uint16_t> expected_key_shares; | 
|  | } kTests[] = { | 
|  | { | 
|  | "Empty hint (defaults chosen)", | 
|  | {}, | 
|  | kDefaultKeyShares, | 
|  | }, | 
|  | { | 
|  | "Hint one group, supported by client", | 
|  | {SSL_GROUP_SECP256R1}, | 
|  | {SSL_GROUP_SECP256R1}, | 
|  | }, | 
|  | { | 
|  | "Hint one group, not supported by client", | 
|  | {SSL_GROUP_X25519_KYBER768_DRAFT00}, | 
|  | kDefaultKeyShares, | 
|  | }, | 
|  | { | 
|  | "Hint two groups, both supported by client in same order", | 
|  | {SSL_GROUP_X25519_MLKEM768, SSL_GROUP_MLKEM1024}, | 
|  | {SSL_GROUP_X25519_MLKEM768}, | 
|  | }, | 
|  | { | 
|  | "Hint two groups, both supported by client in different order", | 
|  | {SSL_GROUP_X25519, SSL_GROUP_X25519_MLKEM768}, | 
|  | // The key share will be determined by the client's preference order, | 
|  | // not the server hint's order. | 
|  | {SSL_GROUP_X25519_MLKEM768}, | 
|  | }, | 
|  | { | 
|  | "Hint two groups, supported and non-supported by client", | 
|  | {SSL_GROUP_MLKEM1024, SSL_GROUP_SECP384R1}, | 
|  | {SSL_GROUP_MLKEM1024}, | 
|  | }, | 
|  | { | 
|  | "Hint two groups, non-supported and supported by client", | 
|  | {SSL_GROUP_SECP384R1, SSL_GROUP_MLKEM1024}, | 
|  | {SSL_GROUP_MLKEM1024}, | 
|  | }, | 
|  | { | 
|  | "Hint unrecognized group", | 
|  | {0x1234}, | 
|  | kDefaultKeyShares, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | for (const auto &t : kTests) { | 
|  | SCOPED_TRACE(t.description); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | ASSERT_TRUE(SSL_CTX_set1_group_ids(ctx.get(), kSupportedGroups, | 
|  | std::size(kSupportedGroups))); | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | ASSERT_TRUE(SSL_set1_server_supported_groups_hint( | 
|  | ssl.get(), t.server_hinted_groups.data(), | 
|  | t.server_hinted_groups.size())); | 
|  | ASSERT_TRUE(SSL_connect(ssl.get())); | 
|  |  | 
|  | std::vector<uint16_t> key_shares; | 
|  | for (const auto &key_share : ssl->s3->hs->key_shares) { | 
|  | key_shares.push_back(key_share->GroupID()); | 
|  | } | 
|  | EXPECT_THAT(key_shares, ElementsAreArray(t.expected_key_shares)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ServerHintOverridesClientKeyShareSelections) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  |  | 
|  | const uint16_t kGroups[] = {SSL_GROUP_SECP256R1, SSL_GROUP_X25519}; | 
|  | ASSERT_TRUE(SSL_set1_group_ids(ssl.get(), kGroups, std::size(kGroups))); | 
|  |  | 
|  | const uint16_t kKeyShares[] = {SSL_GROUP_SECP256R1}; | 
|  | ASSERT_TRUE( | 
|  | SSL_set1_client_key_shares(ssl.get(), kKeyShares, std::size(kKeyShares))); | 
|  | ASSERT_TRUE(ssl->config->client_key_share_selections.has_value()); | 
|  | EXPECT_THAT(ssl->config->client_key_share_selections.value(), | 
|  | ElementsAreArray(kKeyShares)); | 
|  | const uint16_t kServerHint[] = {SSL_GROUP_X25519}; | 
|  | ASSERT_TRUE(SSL_set1_server_supported_groups_hint(ssl.get(), kServerHint, | 
|  | std::size(kServerHint))); | 
|  | EXPECT_THAT(ssl->config->server_supported_groups_hint, | 
|  | ElementsAreArray(kServerHint)); | 
|  |  | 
|  | // The group predicted based on the server hint should win. | 
|  | ASSERT_TRUE(SSL_connect(ssl.get())); | 
|  | ASSERT_EQ(ssl->s3->hs->key_shares.size(), 1u); | 
|  | EXPECT_EQ(kServerHint[0], ssl->s3->hs->key_shares[0]->GroupID()); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ServerHintOverridesEmptyClientKeyShareSelections) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  |  | 
|  | const uint16_t kGroups[] = {SSL_GROUP_SECP256R1, SSL_GROUP_X25519}; | 
|  | ASSERT_TRUE(SSL_set1_group_ids(ssl.get(), kGroups, std::size(kGroups))); | 
|  |  | 
|  | ASSERT_TRUE(SSL_set1_client_key_shares(ssl.get(), nullptr, 0)); | 
|  | EXPECT_TRUE(ssl->config->client_key_share_selections->empty()); | 
|  | const uint16_t kServerHint[] = {SSL_GROUP_X25519}; | 
|  | ASSERT_TRUE(SSL_set1_server_supported_groups_hint(ssl.get(), kServerHint, | 
|  | std::size(kServerHint))); | 
|  | EXPECT_THAT(ssl->config->server_supported_groups_hint, | 
|  | ElementsAreArray(kServerHint)); | 
|  |  | 
|  | // The group predicted based on the server hint should win. | 
|  | ASSERT_TRUE(SSL_connect(ssl.get())); | 
|  | ASSERT_EQ(ssl->s3->hs->key_shares.size(), 1u); | 
|  | EXPECT_EQ(kServerHint[0], ssl->s3->hs->key_shares[0]->GroupID()); | 
|  | } | 
|  |  | 
|  | // kOpenSSLSession is a serialized SSL_SESSION. | 
|  | static const char kOpenSSLSession[] = | 
|  | "MIIFqgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" | 
|  | "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" | 
|  | "IWoJoQYCBFRDO46iBAICASyjggR6MIIEdjCCA16gAwIBAgIIK9dUvsPWSlUwDQYJ" | 
|  | "KoZIhvcNAQEFBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx" | 
|  | "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTQxMDA4" | 
|  | "MTIwNzU3WhcNMTUwMTA2MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK" | 
|  | "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v" | 
|  | "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB" | 
|  | "AQUAA4IBDwAwggEKAoIBAQCcKeLrplAC+Lofy8t/wDwtB6eu72CVp0cJ4V3lknN6" | 
|  | "huH9ct6FFk70oRIh/VBNBBz900jYy+7111Jm1b8iqOTQ9aT5C7SEhNcQFJvqzH3e" | 
|  | "MPkb6ZSWGm1yGF7MCQTGQXF20Sk/O16FSjAynU/b3oJmOctcycWYkY0ytS/k3LBu" | 
|  | "Id45PJaoMqjB0WypqvNeJHC3q5JjCB4RP7Nfx5jjHSrCMhw8lUMW4EaDxjaR9KDh" | 
|  | "PLgjsk+LDIySRSRDaCQGhEOWLJZVLzLo4N6/UlctCHEllpBUSvEOyFga52qroGjg" | 
|  | "rf3WOQ925MFwzd6AK+Ich0gDRg8sQfdLH5OuP1cfLfU1AgMBAAGjggFBMIIBPTAd" | 
|  | "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv" | 
|  | "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp" | 
|  | "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50" | 
|  | "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBQ7a+CcxsZByOpc+xpYFcIbnUMZ" | 
|  | "hTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv" | 
|  | "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw" | 
|  | "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQCa" | 
|  | "OXCBdoqUy5bxyq+Wrh1zsyyCFim1PH5VU2+yvDSWrgDY8ibRGJmfff3r4Lud5kal" | 
|  | "dKs9k8YlKD3ITG7P0YT/Rk8hLgfEuLcq5cc0xqmE42xJ+Eo2uzq9rYorc5emMCxf" | 
|  | "5L0TJOXZqHQpOEcuptZQ4OjdYMfSxk5UzueUhA3ogZKRcRkdB3WeWRp+nYRhx4St" | 
|  | "o2rt2A0MKmY9165GHUqMK9YaaXHDXqBu7Sefr1uSoAP9gyIJKeihMivsGqJ1TD6Z" | 
|  | "cc6LMe+dN2P8cZEQHtD1y296ul4Mivqk3jatUVL8/hCwgch9A8O4PGZq9WqBfEWm" | 
|  | "IyHh1dPtbg1lOXdYCWtjpAIEAKUDAgEUqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36S" | 
|  | "YTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9B" | 
|  | "sNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yE" | 
|  | "OTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdA" | 
|  | "i4gv7Y5oliyntgMBAQA="; | 
|  |  | 
|  | // kCustomSession is a custom serialized SSL_SESSION generated by | 
|  | // filling in missing fields from |kOpenSSLSession|. This includes | 
|  | // providing |peer_sha256|, so |peer| is not serialized. | 
|  | static const char kCustomSession[] = | 
|  | "MIIBZAIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" | 
|  | "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" | 
|  | "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUqAcEBXdvcmxkqQUCAwGJwKqBpwSB" | 
|  | "pBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38" | 
|  | "VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd" | 
|  | "3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hg" | 
|  | "b+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYGBgYGBgYGBgYGBgYGBgYGBgYG" | 
|  | "BgYGBgYGBgYGrgMEAQevAwQBBLADBAEF"; | 
|  |  | 
|  | // kBoringSSLSession is a serialized SSL_SESSION generated from bssl client. | 
|  | static const char kBoringSSLSession[] = | 
|  | "MIIRwQIBAQICAwMEAsAvBCDdoGxGK26mR+8lM0uq6+k9xYuxPnwAjpcF9n0Yli9R" | 
|  | "kQQwbyshfWhdi5XQ1++7n2L1qqrcVlmHBPpr6yknT/u4pUrpQB5FZ7vqvNn8MdHf" | 
|  | "9rWgoQYCBFXgs7uiBAICHCCjggR6MIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJ" | 
|  | "KoZIhvcNAQELBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx" | 
|  | "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEy" | 
|  | "MTQ1MzE1WhcNMTUxMTEwMDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK" | 
|  | "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v" | 
|  | "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB" | 
|  | "AQUAA4IBDwAwggEKAoIBAQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpo" | 
|  | "PLuBinvhkXZo3DC133NpCBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU" | 
|  | "792c7hFyNXSUCG7At8Ifi3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mce" | 
|  | "Tv9iGKqSkSTlp8puy/9SZ/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/" | 
|  | "RCh8/UKc8PaL+cxlt531qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eL" | 
|  | "EucWQ72YZU8mUzXBoXGn0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAd" | 
|  | "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv" | 
|  | "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp" | 
|  | "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50" | 
|  | "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjG" | 
|  | "GjAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv" | 
|  | "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw" | 
|  | "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAb" | 
|  | "qdWPZEHk0X7iKPCTHL6S3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovE" | 
|  | "kQZSHwT+pyOPWQhsSjO+1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXd" | 
|  | "X+s0WdbOpn6MStKAiBVloPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+" | 
|  | "n0OTucD9sHV7EVj9XUxi51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779a" | 
|  | "f07vR03r349Iz/KTzk95rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1y" | 
|  | "TTlM80jBMOwyjZXmjRAhpAIEAKUDAgEUqQUCAwGJwKqBpwSBpOgebbmn9NRUtMWH" | 
|  | "+eJpqA5JLMFSMCChOsvKey3toBaCNGU7HfAEiiXNuuAdCBoK262BjQc2YYfqFzqH" | 
|  | "zuppopXCvhohx7j/tnCNZIMgLYt/O9SXK2RYI5z8FhCCHvB4CbD5G0LGl5EFP27s" | 
|  | "Jb6S3aTTYPkQe8yZSlxevg6NDwmTogLO9F7UUkaYmVcMQhzssEE2ZRYNwSOU6KjE" | 
|  | "0Yj+8fAiBtbQriIEIN2L8ZlpaVrdN5KFNdvcmOxJu81P8q53X55xQyGTnGWwsgMC" | 
|  | "ARezggvvMIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJKoZIhvcNAQELBQAwSTEL" | 
|  | "MAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2ds" | 
|  | "ZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEyMTQ1MzE1WhcNMTUxMTEw" | 
|  | "MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQG" | 
|  | "A1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UE" | 
|  | "AwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB" | 
|  | "AQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpoPLuBinvhkXZo3DC133Np" | 
|  | "CBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU792c7hFyNXSUCG7At8If" | 
|  | "i3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mceTv9iGKqSkSTlp8puy/9S" | 
|  | "Z/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/RCh8/UKc8PaL+cxlt531" | 
|  | "qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eLEucWQ72YZU8mUzXBoXGn" | 
|  | "0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEF" | 
|  | "BQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYB" | 
|  | "BQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB" | 
|  | "RzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9v" | 
|  | "Y3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjGGjAMBgNVHRMBAf8EAjAA" | 
|  | "MB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYK" | 
|  | "KwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5j" | 
|  | "b20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAbqdWPZEHk0X7iKPCTHL6S" | 
|  | "3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovEkQZSHwT+pyOPWQhsSjO+" | 
|  | "1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXdX+s0WdbOpn6MStKAiBVl" | 
|  | "oPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+n0OTucD9sHV7EVj9XUxi" | 
|  | "51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779af07vR03r349Iz/KTzk95" | 
|  | "rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1yTTlM80jBMOwyjZXmjRAh" | 
|  | "MIID8DCCAtigAwIBAgIDAjqDMA0GCSqGSIb3DQEBCwUAMEIxCzAJBgNVBAYTAlVT" | 
|  | "MRYwFAYDVQQKEw1HZW9UcnVzdCBJbmMuMRswGQYDVQQDExJHZW9UcnVzdCBHbG9i" | 
|  | "YWwgQ0EwHhcNMTMwNDA1MTUxNTU2WhcNMTYxMjMxMjM1OTU5WjBJMQswCQYDVQQG" | 
|  | "EwJVUzETMBEGA1UEChMKR29vZ2xlIEluYzElMCMGA1UEAxMcR29vZ2xlIEludGVy" | 
|  | "bmV0IEF1dGhvcml0eSBHMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB" | 
|  | "AJwqBHdc2FCROgajguDYUEi8iT/xGXAaiEZ+4I/F8YnOIe5a/mENtzJEiaB0C1NP" | 
|  | "VaTOgmKV7utZX8bhBYASxF6UP7xbSDj0U/ck5vuR6RXEz/RTDfRK/J9U3n2+oGtv" | 
|  | "h8DQUB8oMANA2ghzUWx//zo8pzcGjr1LEQTrfSTe5vn8MXH7lNVg8y5Kr0LSy+rE" | 
|  | "ahqyzFPdFUuLH8gZYR/Nnag+YyuENWllhMgZxUYi+FOVvuOAShDGKuy6lyARxzmZ" | 
|  | "EASg8GF6lSWMTlJ14rbtCMoU/M4iarNOz0YDl5cDfsCx3nuvRTPPuj5xt970JSXC" | 
|  | "DTWJnZ37DhF5iR43xa+OcmkCAwEAAaOB5zCB5DAfBgNVHSMEGDAWgBTAephojYn7" | 
|  | "qwVkDBF9qn1luMrMTjAdBgNVHQ4EFgQUSt0GFhu89mi1dvWBtrtiGrpagS8wDgYD" | 
|  | "VR0PAQH/BAQDAgEGMC4GCCsGAQUFBwEBBCIwIDAeBggrBgEFBQcwAYYSaHR0cDov" | 
|  | "L2cuc3ltY2QuY29tMBIGA1UdEwEB/wQIMAYBAf8CAQAwNQYDVR0fBC4wLDAqoCig" | 
|  | "JoYkaHR0cDovL2cuc3ltY2IuY29tL2NybHMvZ3RnbG9iYWwuY3JsMBcGA1UdIAQQ" | 
|  | "MA4wDAYKKwYBBAHWeQIFATANBgkqhkiG9w0BAQsFAAOCAQEAqvqpIM1qZ4PtXtR+" | 
|  | "3h3Ef+AlBgDFJPupyC1tft6dgmUsgWM0Zj7pUsIItMsv91+ZOmqcUHqFBYx90SpI" | 
|  | "hNMJbHzCzTWf84LuUt5oX+QAihcglvcpjZpNy6jehsgNb1aHA30DP9z6eX0hGfnI" | 
|  | "Oi9RdozHQZJxjyXON/hKTAAj78Q1EK7gI4BzfE00LshukNYQHpmEcxpw8u1VDu4X" | 
|  | "Bupn7jLrLN1nBz/2i8Jw3lsA5rsb0zYaImxssDVCbJAJPZPpZAkiDoUGn8JzIdPm" | 
|  | "X4DkjYUiOnMDsWCOrmji9D6X52ASCWg23jrW4kOVWzeBkoEfu43XrVJkFleW2V40" | 
|  | "fsg12DCCA30wggLmoAMCAQICAxK75jANBgkqhkiG9w0BAQUFADBOMQswCQYDVQQG" | 
|  | "EwJVUzEQMA4GA1UEChMHRXF1aWZheDEtMCsGA1UECxMkRXF1aWZheCBTZWN1cmUg" | 
|  | "Q2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTAyMDUyMTA0MDAwMFoXDTE4MDgyMTA0" | 
|  | "MDAwMFowQjELMAkGA1UEBhMCVVMxFjAUBgNVBAoTDUdlb1RydXN0IEluYy4xGzAZ" | 
|  | "BgNVBAMTEkdlb1RydXN0IEdsb2JhbCBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEP" | 
|  | "ADCCAQoCggEBANrMGGMw/fQXIxpWflvfPGw45HG3eJHUvKHYTPioQ7YD6U0hBwiI" | 
|  | "2lgvZjkpvQV4i5046AW3an5xpObEYKaw74DkiSgPniXW7YPzraaRx5jJQhg1FJ2t" | 
|  | "mEaSLk/K8YdDwRaVVy1Q74ktgHpXrfLuX2vSAI25FPgUFTXZwEaje3LIkb/JVSvN" | 
|  | "0Jc+nCZkzN/Ogxlxyk7m1NV7qRnNVd7I7NJeOFPlXE+MLf5QIzb8ZubLjqQ5GQC3" | 
|  | "lQI5kQsO/jgu0R0FmvZNPm8PBx2vLB6PYDni+jZTEznUXiYr2z2oFL0y6xgDKFIE" | 
|  | "ceWrMz3hOLsHNoRinHnqFjD0X8Ar6HFr5PkCAwEAAaOB8DCB7TAfBgNVHSMEGDAW" | 
|  | "gBRI5mj5K9KylddH2CMgEE8zmJCf1DAdBgNVHQ4EFgQUwHqYaI2J+6sFZAwRfap9" | 
|  | "ZbjKzE4wDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwOgYDVR0fBDMw" | 
|  | "MTAvoC2gK4YpaHR0cDovL2NybC5nZW90cnVzdC5jb20vY3Jscy9zZWN1cmVjYS5j" | 
|  | "cmwwTgYDVR0gBEcwRTBDBgRVHSAAMDswOQYIKwYBBQUHAgEWLWh0dHBzOi8vd3d3" | 
|  | "Lmdlb3RydXN0LmNvbS9yZXNvdXJjZXMvcmVwb3NpdG9yeTANBgkqhkiG9w0BAQUF" | 
|  | "AAOBgQB24RJuTksWEoYwBrKBCM/wCMfHcX5m7sLt1Dsf//DwyE7WQziwuTB9GNBV" | 
|  | "g6JqyzYRnOhIZqNtf7gT1Ef+i1pcc/yu2RsyGTirlzQUqpbS66McFAhJtrvlke+D" | 
|  | "NusdVm/K2rxzY5Dkf3s+Iss9B+1fOHSc4wNQTqGvmO5h8oQ/Eg=="; | 
|  |  | 
|  | // kBadSessionExtraField is a custom serialized SSL_SESSION generated by | 
|  | // replacing the final (optional) element of |kCustomSession| with tag | 
|  | // number 99. | 
|  | static const char kBadSessionExtraField[] = | 
|  | "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" | 
|  | "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" | 
|  | "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" | 
|  | "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" | 
|  | "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" | 
|  | "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" | 
|  | "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" | 
|  | "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBOMDBAEF"; | 
|  |  | 
|  | // kBadSessionVersion is a custom serialized SSL_SESSION generated by replacing | 
|  | // the version of |kCustomSession| with 2. | 
|  | static const char kBadSessionVersion[] = | 
|  | "MIIBdgIBAgICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" | 
|  | "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" | 
|  | "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" | 
|  | "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" | 
|  | "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" | 
|  | "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" | 
|  | "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" | 
|  | "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF"; | 
|  |  | 
|  | // kBadSessionTrailingData is a custom serialized SSL_SESSION with trailing data | 
|  | // appended. | 
|  | static const char kBadSessionTrailingData[] = | 
|  | "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ" | 
|  | "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH" | 
|  | "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE" | 
|  | "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe" | 
|  | "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751" | 
|  | "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP" | 
|  | "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG" | 
|  | "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEFAAAA"; | 
|  |  | 
|  | static bool DecodeBase64(std::vector<uint8_t> *out, const char *in) { | 
|  | size_t len; | 
|  | if (!EVP_DecodedLength(&len, strlen(in))) { | 
|  | fprintf(stderr, "EVP_DecodedLength failed\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | out->resize(len); | 
|  | if (!EVP_DecodeBase64(out->data(), &len, len, (const uint8_t *)in, | 
|  | strlen(in))) { | 
|  | fprintf(stderr, "EVP_DecodeBase64 failed\n"); | 
|  | return false; | 
|  | } | 
|  | out->resize(len); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool DecodeLowerHex(std::vector<uint8_t> *out, | 
|  | bssl::Span<const char> in) { | 
|  | if (in.size() % 2 != 0) { | 
|  | return false; | 
|  | } | 
|  | out->resize(in.size() / 2); | 
|  | for (size_t i = 0; i < out->size(); i++) { | 
|  | char hi = in[2 * i], lo = in[2 * i + 1]; | 
|  | uint8_t b = 0; | 
|  | if ('0' <= hi && hi <= '9') { | 
|  | b |= hi - '0'; | 
|  | } else if ('a' <= hi && hi <= 'f') { | 
|  | b |= hi - 'a' + 10; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | b <<= 4; | 
|  | if ('0' <= lo && lo <= '9') { | 
|  | b |= lo - '0'; | 
|  | } else if ('a' <= lo && lo <= 'f') { | 
|  | b |= lo - 'a' + 10; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | (*out)[i] = b; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SessionEncoding) { | 
|  | for (const char *input_b64 : { | 
|  | kOpenSSLSession, | 
|  | kCustomSession, | 
|  | kBoringSSLSession, | 
|  | }) { | 
|  | SCOPED_TRACE(std::string(input_b64)); | 
|  | // Decode the input. | 
|  | std::vector<uint8_t> input; | 
|  | ASSERT_TRUE(DecodeBase64(&input, input_b64)); | 
|  |  | 
|  | // Verify the SSL_SESSION decodes. | 
|  | bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ssl_ctx); | 
|  | bssl::UniquePtr<SSL_SESSION> session( | 
|  | SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get())); | 
|  | ASSERT_TRUE(session) << "SSL_SESSION_from_bytes failed"; | 
|  |  | 
|  | // Verify the SSL_SESSION encoding round-trips. | 
|  | size_t encoded_len; | 
|  | bssl::UniquePtr<uint8_t> encoded; | 
|  | uint8_t *encoded_raw; | 
|  | ASSERT_TRUE(SSL_SESSION_to_bytes(session.get(), &encoded_raw, &encoded_len)) | 
|  | << "SSL_SESSION_to_bytes failed"; | 
|  | encoded.reset(encoded_raw); | 
|  | EXPECT_EQ(Bytes(encoded.get(), encoded_len), Bytes(input)) | 
|  | << "SSL_SESSION_to_bytes did not round-trip"; | 
|  |  | 
|  | // Verify the SSL_SESSION also decodes with the legacy API. | 
|  | const uint8_t *cptr = input.data(); | 
|  | session.reset(d2i_SSL_SESSION(nullptr, &cptr, input.size())); | 
|  | ASSERT_TRUE(session) << "d2i_SSL_SESSION failed"; | 
|  | EXPECT_EQ(cptr, input.data() + input.size()); | 
|  |  | 
|  | // Verify the SSL_SESSION encoding round-trips via the legacy API. | 
|  | int len = i2d_SSL_SESSION(session.get(), nullptr); | 
|  | ASSERT_GT(len, 0) << "i2d_SSL_SESSION failed"; | 
|  | ASSERT_EQ(static_cast<size_t>(len), input.size()) | 
|  | << "i2d_SSL_SESSION(NULL) returned invalid length"; | 
|  |  | 
|  | encoded.reset((uint8_t *)OPENSSL_malloc(input.size())); | 
|  | ASSERT_TRUE(encoded); | 
|  |  | 
|  | uint8_t *ptr = encoded.get(); | 
|  | len = i2d_SSL_SESSION(session.get(), &ptr); | 
|  | ASSERT_GT(len, 0) << "i2d_SSL_SESSION failed"; | 
|  | ASSERT_EQ(static_cast<size_t>(len), input.size()) | 
|  | << "i2d_SSL_SESSION(NULL) returned invalid length"; | 
|  | ASSERT_EQ(ptr, encoded.get() + input.size()) | 
|  | << "i2d_SSL_SESSION did not advance ptr correctly"; | 
|  | EXPECT_EQ(Bytes(encoded.get(), encoded_len), Bytes(input)) | 
|  | << "SSL_SESSION_to_bytes did not round-trip"; | 
|  | } | 
|  |  | 
|  | for (const char *input_b64 : { | 
|  | kBadSessionExtraField, | 
|  | kBadSessionVersion, | 
|  | kBadSessionTrailingData, | 
|  | }) { | 
|  | SCOPED_TRACE(std::string(input_b64)); | 
|  | std::vector<uint8_t> input; | 
|  | ASSERT_TRUE(DecodeBase64(&input, input_b64)); | 
|  |  | 
|  | // Verify that the SSL_SESSION fails to decode. | 
|  | bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ssl_ctx); | 
|  | bssl::UniquePtr<SSL_SESSION> session( | 
|  | SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get())); | 
|  | EXPECT_FALSE(session) << "SSL_SESSION_from_bytes unexpectedly succeeded"; | 
|  | ERR_clear_error(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ExpectDefaultVersion(uint16_t min_version, uint16_t max_version, | 
|  | const SSL_METHOD *(*method)(void)) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | EXPECT_EQ(min_version, SSL_CTX_get_min_proto_version(ctx.get())); | 
|  | EXPECT_EQ(max_version, SSL_CTX_get_max_proto_version(ctx.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, DefaultVersion) { | 
|  | ExpectDefaultVersion(TLS1_2_VERSION, TLS1_3_VERSION, &TLS_method); | 
|  | ExpectDefaultVersion(TLS1_VERSION, TLS1_VERSION, &TLSv1_method); | 
|  | ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &TLSv1_1_method); | 
|  | ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &TLSv1_2_method); | 
|  | ExpectDefaultVersion(DTLS1_2_VERSION, DTLS1_2_VERSION, &DTLS_method); | 
|  | ExpectDefaultVersion(DTLS1_VERSION, DTLS1_VERSION, &DTLSv1_method); | 
|  | ExpectDefaultVersion(DTLS1_2_VERSION, DTLS1_2_VERSION, &DTLSv1_2_method); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, CipherProperties) { | 
|  | static const struct { | 
|  | uint16_t protocol_id; | 
|  | const char *standard_name; | 
|  | int cipher_nid; | 
|  | int digest_nid; | 
|  | int kx_nid; | 
|  | int auth_nid; | 
|  | int prf_nid; | 
|  | } kTests[] = { | 
|  | { | 
|  | SSL_CIPHER_RSA_WITH_3DES_EDE_CBC_SHA, | 
|  | "TLS_RSA_WITH_3DES_EDE_CBC_SHA", | 
|  | NID_des_ede3_cbc, | 
|  | NID_sha1, | 
|  | NID_kx_rsa, | 
|  | NID_auth_rsa, | 
|  | NID_md5_sha1, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_RSA_WITH_AES_128_CBC_SHA, | 
|  | "TLS_RSA_WITH_AES_128_CBC_SHA", | 
|  | NID_aes_128_cbc, | 
|  | NID_sha1, | 
|  | NID_kx_rsa, | 
|  | NID_auth_rsa, | 
|  | NID_md5_sha1, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_PSK_WITH_AES_256_CBC_SHA, | 
|  | "TLS_PSK_WITH_AES_256_CBC_SHA", | 
|  | NID_aes_256_cbc, | 
|  | NID_sha1, | 
|  | NID_kx_psk, | 
|  | NID_auth_psk, | 
|  | NID_md5_sha1, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_ECDHE_RSA_WITH_AES_128_CBC_SHA, | 
|  | "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", | 
|  | NID_aes_128_cbc, | 
|  | NID_sha1, | 
|  | NID_kx_ecdhe, | 
|  | NID_auth_rsa, | 
|  | NID_md5_sha1, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_ECDHE_RSA_WITH_AES_256_CBC_SHA, | 
|  | "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA", | 
|  | NID_aes_256_cbc, | 
|  | NID_sha1, | 
|  | NID_kx_ecdhe, | 
|  | NID_auth_rsa, | 
|  | NID_md5_sha1, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_ECDHE_RSA_WITH_AES_128_GCM_SHA256, | 
|  | "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", | 
|  | NID_aes_128_gcm, | 
|  | NID_undef, | 
|  | NID_kx_ecdhe, | 
|  | NID_auth_rsa, | 
|  | NID_sha256, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, | 
|  | "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", | 
|  | NID_aes_128_gcm, | 
|  | NID_undef, | 
|  | NID_kx_ecdhe, | 
|  | NID_auth_ecdsa, | 
|  | NID_sha256, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, | 
|  | "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", | 
|  | NID_aes_256_gcm, | 
|  | NID_undef, | 
|  | NID_kx_ecdhe, | 
|  | NID_auth_ecdsa, | 
|  | NID_sha384, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_ECDHE_PSK_WITH_AES_128_CBC_SHA, | 
|  | "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA", | 
|  | NID_aes_128_cbc, | 
|  | NID_sha1, | 
|  | NID_kx_ecdhe, | 
|  | NID_auth_psk, | 
|  | NID_md5_sha1, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, | 
|  | "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256", | 
|  | NID_chacha20_poly1305, | 
|  | NID_undef, | 
|  | NID_kx_ecdhe, | 
|  | NID_auth_rsa, | 
|  | NID_sha256, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_AES_256_GCM_SHA384, | 
|  | "TLS_AES_256_GCM_SHA384", | 
|  | NID_aes_256_gcm, | 
|  | NID_undef, | 
|  | NID_kx_any, | 
|  | NID_auth_any, | 
|  | NID_sha384, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_AES_128_GCM_SHA256, | 
|  | "TLS_AES_128_GCM_SHA256", | 
|  | NID_aes_128_gcm, | 
|  | NID_undef, | 
|  | NID_kx_any, | 
|  | NID_auth_any, | 
|  | NID_sha256, | 
|  | }, | 
|  | { | 
|  | SSL_CIPHER_CHACHA20_POLY1305_SHA256, | 
|  | "TLS_CHACHA20_POLY1305_SHA256", | 
|  | NID_chacha20_poly1305, | 
|  | NID_undef, | 
|  | NID_kx_any, | 
|  | NID_auth_any, | 
|  | NID_sha256, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | for (const auto &t : kTests) { | 
|  | SCOPED_TRACE(t.standard_name); | 
|  |  | 
|  | const SSL_CIPHER *cipher = SSL_get_cipher_by_value(t.protocol_id); | 
|  | ASSERT_TRUE(cipher); | 
|  | EXPECT_STREQ(t.standard_name, SSL_CIPHER_standard_name(cipher)); | 
|  |  | 
|  | EXPECT_EQ(t.cipher_nid, SSL_CIPHER_get_cipher_nid(cipher)); | 
|  | EXPECT_EQ(t.digest_nid, SSL_CIPHER_get_digest_nid(cipher)); | 
|  | EXPECT_EQ(t.kx_nid, SSL_CIPHER_get_kx_nid(cipher)); | 
|  | EXPECT_EQ(t.auth_nid, SSL_CIPHER_get_auth_nid(cipher)); | 
|  | EXPECT_EQ(t.prf_nid, EVP_MD_nid(SSL_CIPHER_get_handshake_digest(cipher))); | 
|  | EXPECT_EQ(t.prf_nid, SSL_CIPHER_get_prf_nid(cipher)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // CreateSessionWithTicket returns a sample |SSL_SESSION| with the specified | 
|  | // version and ticket length or nullptr on failure. | 
|  | static bssl::UniquePtr<SSL_SESSION> CreateSessionWithTicket(uint16_t version, | 
|  | size_t ticket_len) { | 
|  | std::vector<uint8_t> der; | 
|  | if (!DecodeBase64(&der, kOpenSSLSession)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); | 
|  | if (!ssl_ctx) { | 
|  | return nullptr; | 
|  | } | 
|  | // Use a garbage ticket. | 
|  | std::vector<uint8_t> ticket(ticket_len, 'a'); | 
|  | bssl::UniquePtr<SSL_SESSION> session( | 
|  | SSL_SESSION_from_bytes(der.data(), der.size(), ssl_ctx.get())); | 
|  | if (!session ||                                                   // | 
|  | !SSL_SESSION_set_protocol_version(session.get(), version) ||  // | 
|  | !SSL_SESSION_set_ticket(session.get(), ticket.data(), ticket.size())) { | 
|  | return nullptr; | 
|  | } | 
|  | // Fix up the timeout. | 
|  | SSL_SESSION_set_time(session.get(), time(nullptr)); | 
|  | return session; | 
|  | } | 
|  |  | 
|  | static bool GetClientHello(SSL *ssl, std::vector<uint8_t> *out) { | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); | 
|  | if (!bio) { | 
|  | return false; | 
|  | } | 
|  | // Do not configure a reading BIO, but record what's written to a memory BIO. | 
|  | BIO_up_ref(bio.get()); | 
|  | SSL_set_bio(ssl, nullptr /* rbio */, bio.get()); | 
|  | int ret = SSL_connect(ssl); | 
|  | if (ret > 0) { | 
|  | // SSL_connect should fail without a BIO to write to. | 
|  | return false; | 
|  | } | 
|  | ERR_clear_error(); | 
|  |  | 
|  | const uint8_t *client_hello; | 
|  | size_t client_hello_len; | 
|  | if (!BIO_mem_contents(bio.get(), &client_hello, &client_hello_len)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We did not get far enough to write a ClientHello. | 
|  | if (client_hello_len == 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *out = std::vector<uint8_t>(client_hello, client_hello + client_hello_len); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // GetClientHelloLen creates a client SSL connection with the specified version | 
|  | // and ticket length. It returns the length of the ClientHello, not including | 
|  | // the record header, on success and zero on error. | 
|  | static size_t GetClientHelloLen(uint16_t max_version, uint16_t session_version, | 
|  | size_t ticket_len) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateSessionWithTicket(session_version, ticket_len); | 
|  | if (!ctx || !session) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Set a one-element cipher list so the baseline ClientHello is unpadded. | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | if (!ssl || !SSL_set_session(ssl.get(), session.get()) || | 
|  | !SSL_set_strict_cipher_list(ssl.get(), "ECDHE-RSA-AES128-GCM-SHA256") || | 
|  | !SSL_set_max_proto_version(ssl.get(), max_version)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | std::vector<uint8_t> client_hello; | 
|  | if (!GetClientHello(ssl.get(), &client_hello) || | 
|  | client_hello.size() <= SSL3_RT_HEADER_LENGTH) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return client_hello.size() - SSL3_RT_HEADER_LENGTH; | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, Padding) { | 
|  | struct PaddingVersions { | 
|  | uint16_t max_version, session_version; | 
|  | }; | 
|  | static const PaddingVersions kPaddingVersions[] = { | 
|  | // Test the padding extension at TLS 1.2. | 
|  | {TLS1_2_VERSION, TLS1_2_VERSION}, | 
|  | // Test the padding extension at TLS 1.3 with a TLS 1.2 session, so there | 
|  | // will be no PSK binder after the padding extension. | 
|  | {TLS1_3_VERSION, TLS1_2_VERSION}, | 
|  | // Test the padding extension at TLS 1.3 with a TLS 1.3 session, so there | 
|  | // will be a PSK binder after the padding extension. | 
|  | {TLS1_3_VERSION, TLS1_3_VERSION}, | 
|  |  | 
|  | }; | 
|  |  | 
|  | struct PaddingTest { | 
|  | size_t input_len, padded_len; | 
|  | }; | 
|  | static const PaddingTest kPaddingTests[] = { | 
|  | // ClientHellos of length below 0x100 do not require padding. | 
|  | {0xfe, 0xfe}, | 
|  | {0xff, 0xff}, | 
|  | // ClientHellos of length 0x100 through 0x1fb are padded up to 0x200. | 
|  | {0x100, 0x200}, | 
|  | {0x123, 0x200}, | 
|  | {0x1fb, 0x200}, | 
|  | // ClientHellos of length 0x1fc through 0x1ff get padded beyond 0x200. The | 
|  | // padding extension takes a minimum of four bytes plus one required | 
|  | // content | 
|  | // byte. (To work around yet more server bugs, we avoid empty final | 
|  | // extensions.) | 
|  | {0x1fc, 0x201}, | 
|  | {0x1fd, 0x202}, | 
|  | {0x1fe, 0x203}, | 
|  | {0x1ff, 0x204}, | 
|  | // Finally, larger ClientHellos need no padding. | 
|  | {0x200, 0x200}, | 
|  | {0x201, 0x201}, | 
|  | }; | 
|  |  | 
|  | for (const PaddingVersions &versions : kPaddingVersions) { | 
|  | SCOPED_TRACE(versions.max_version); | 
|  | SCOPED_TRACE(versions.session_version); | 
|  |  | 
|  | // Sample a baseline length. | 
|  | size_t base_len = | 
|  | GetClientHelloLen(versions.max_version, versions.session_version, 1); | 
|  | ASSERT_NE(base_len, 0u) << "Baseline length could not be sampled"; | 
|  |  | 
|  | for (const PaddingTest &test : kPaddingTests) { | 
|  | SCOPED_TRACE(test.input_len); | 
|  | ASSERT_LE(base_len, test.input_len) << "Baseline ClientHello too long"; | 
|  |  | 
|  | size_t padded_len = | 
|  | GetClientHelloLen(versions.max_version, versions.session_version, | 
|  | 1 + test.input_len - base_len); | 
|  | EXPECT_EQ(padded_len, test.padded_len) | 
|  | << "ClientHello was not padded to expected length"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<X509> CertFromPEM(const char *pem) { | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem))); | 
|  | if (!bio) { | 
|  | return nullptr; | 
|  | } | 
|  | return bssl::UniquePtr<X509>( | 
|  | PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr)); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<EVP_PKEY> KeyFromPEM(const char *pem) { | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem))); | 
|  | if (!bio) { | 
|  | return nullptr; | 
|  | } | 
|  | return bssl::UniquePtr<EVP_PKEY>( | 
|  | PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr)); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<CRYPTO_BUFFER> BufferFromPEM(const char *pem) { | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem))); | 
|  | char *name, *header; | 
|  | uint8_t *data; | 
|  | long data_len; | 
|  | if (!PEM_read_bio(bio.get(), &name, &header, &data, &data_len)) { | 
|  | return nullptr; | 
|  | } | 
|  | OPENSSL_free(name); | 
|  | OPENSSL_free(header); | 
|  |  | 
|  | auto ret = bssl::UniquePtr<CRYPTO_BUFFER>( | 
|  | CRYPTO_BUFFER_new(data, data_len, nullptr)); | 
|  | OPENSSL_free(data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<X509> X509FromBuffer( | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> buffer) { | 
|  | if (!buffer) { | 
|  | return nullptr; | 
|  | } | 
|  | const uint8_t *derp = CRYPTO_BUFFER_data(buffer.get()); | 
|  | return bssl::UniquePtr<X509>( | 
|  | d2i_X509(nullptr, &derp, CRYPTO_BUFFER_len(buffer.get()))); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<X509> GetTestCertificate() { | 
|  | static const char kCertPEM[] = | 
|  | "-----BEGIN CERTIFICATE-----\n" | 
|  | "MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n" | 
|  | "BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n" | 
|  | "aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n" | 
|  | "MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n" | 
|  | "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n" | 
|  | "gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n" | 
|  | "HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n" | 
|  | "W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n" | 
|  | "HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n" | 
|  | "Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n" | 
|  | "ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n" | 
|  | "T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n" | 
|  | "j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n" | 
|  | "-----END CERTIFICATE-----\n"; | 
|  | return CertFromPEM(kCertPEM); | 
|  | } | 
|  | static bssl::UniquePtr<CRYPTO_BUFFER> GetTestCertificateBuffer() { | 
|  | static const char kCertPEM[] = | 
|  | "-----BEGIN CERTIFICATE-----\n" | 
|  | "MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n" | 
|  | "BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n" | 
|  | "aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n" | 
|  | "MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n" | 
|  | "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n" | 
|  | "gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n" | 
|  | "HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n" | 
|  | "W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n" | 
|  | "HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n" | 
|  | "Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n" | 
|  | "ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n" | 
|  | "T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n" | 
|  | "j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n" | 
|  | "-----END CERTIFICATE-----\n"; | 
|  | return BufferFromPEM(kCertPEM); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<EVP_PKEY> GetTestKey() { | 
|  | static const char kKeyPEM[] = | 
|  | "-----BEGIN RSA PRIVATE KEY-----\n" | 
|  | "MIICXgIBAAKBgQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92\n" | 
|  | "kWdGMdAQhLciHnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiF\n" | 
|  | "KKAnHmUcrgfVW28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQAB\n" | 
|  | "AoGBAIBy09Fd4DOq/Ijp8HeKuCMKTHqTW1xGHshLQ6jwVV2vWZIn9aIgmDsvkjCe\n" | 
|  | "i6ssZvnbjVcwzSoByhjN8ZCf/i15HECWDFFh6gt0P5z0MnChwzZmvatV/FXCT0j+\n" | 
|  | "WmGNB/gkehKjGXLLcjTb6dRYVJSCZhVuOLLcbWIV10gggJQBAkEA8S8sGe4ezyyZ\n" | 
|  | "m4e9r95g6s43kPqtj5rewTsUxt+2n4eVodD+ZUlCULWVNAFLkYRTBCASlSrm9Xhj\n" | 
|  | "QpmWAHJUkQJBAOVzQdFUaewLtdOJoPCtpYoY1zd22eae8TQEmpGOR11L6kbxLQsk\n" | 
|  | "aMly/DOnOaa82tqAGTdqDEZgSNmCeKKknmECQAvpnY8GUOVAubGR6c+W90iBuQLj\n" | 
|  | "LtFp/9ihd2w/PoDwrHZaoUYVcT4VSfJQog/k7kjE4MYXYWL8eEKg3WTWQNECQQDk\n" | 
|  | "104Wi91Umd1PzF0ijd2jXOERJU1wEKe6XLkYYNHWQAe5l4J4MWj9OdxFXAxIuuR/\n" | 
|  | "tfDwbqkta4xcux67//khAkEAvvRXLHTaa6VFzTaiiO8SaFsHV3lQyXOtMrBpB5jd\n" | 
|  | "moZWgjHvB2W9Ckn7sDqsPB+U2tyX0joDdQEyuiMECDY8oQ==\n" | 
|  | "-----END RSA PRIVATE KEY-----\n"; | 
|  | return KeyFromPEM(kKeyPEM); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<SSL_CTX> CreateContextWithTestCertificate( | 
|  | const SSL_METHOD *method) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method)); | 
|  | bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
|  | if (!ctx || !cert || !key || | 
|  | !SSL_CTX_use_certificate(ctx.get(), cert.get()) || | 
|  | !SSL_CTX_use_PrivateKey(ctx.get(), key.get())) { | 
|  | return nullptr; | 
|  | } | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<CRYPTO_BUFFER> GetECDSATestCertificateBuffer() { | 
|  | static const char kCertPEM[] = | 
|  | "-----BEGIN CERTIFICATE-----\n" | 
|  | "MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n" | 
|  | "QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp\n" | 
|  | "dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ\n" | 
|  | "BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l\n" | 
|  | "dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni\n" | 
|  | "v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa\n" | 
|  | "HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw\n" | 
|  | "HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ\n" | 
|  | "BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E\n" | 
|  | "BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ=\n" | 
|  | "-----END CERTIFICATE-----\n"; | 
|  | return BufferFromPEM(kCertPEM); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<X509> GetECDSATestCertificate() { | 
|  | return X509FromBuffer(GetECDSATestCertificateBuffer()); | 
|  | } | 
|  |  | 
|  |  | 
|  | static bssl::UniquePtr<EVP_PKEY> GetECDSATestKey() { | 
|  | static const char kKeyPEM[] = | 
|  | "-----BEGIN PRIVATE KEY-----\n" | 
|  | "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgBw8IcnrUoEqc3VnJ\n" | 
|  | "TYlodwi1b8ldMHcO6NHJzgqLtGqhRANCAATmK2niv2Wfl74vHg2UikzVl2u3qR4N\n" | 
|  | "Rvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLB\n" | 
|  | "-----END PRIVATE KEY-----\n"; | 
|  | return KeyFromPEM(kKeyPEM); | 
|  | } | 
|  |  | 
|  | static const char kChainTestCertificatePEM[] = | 
|  | "-----BEGIN CERTIFICATE-----\n" | 
|  | "MIIC0jCCAbqgAwIBAgICEAAwDQYJKoZIhvcNAQELBQAwDzENMAsGA1UEAwwEQiBD\n" | 
|  | "QTAeFw0xNjAyMjgyMDI3MDNaFw0yNjAyMjUyMDI3MDNaMBgxFjAUBgNVBAMMDUNs\n" | 
|  | "aWVudCBDZXJ0IEEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDRvaz8\n" | 
|  | "CC/cshpCafJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/\n" | 
|  | "kLRcH89M/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3\n" | 
|  | "tHb+xs2PSs8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+c\n" | 
|  | "IDs2rQ+lP7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1\n" | 
|  | "z7C8jU50Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9V\n" | 
|  | "iLeXANgZi+Xx9KgfAgMBAAGjLzAtMAwGA1UdEwEB/wQCMAAwHQYDVR0lBBYwFAYI\n" | 
|  | "KwYBBQUHAwEGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUAA4IBAQBFEVbmYl+2RtNw\n" | 
|  | "rDftRDF1v2QUbcN2ouSnQDHxeDQdSgasLzT3ui8iYu0Rw2WWcZ0DV5e0ztGPhWq7\n" | 
|  | "AO0B120aFRMOY+4+bzu9Q2FFkQqc7/fKTvTDzIJI5wrMnFvUfzzvxh3OHWMYSs/w\n" | 
|  | "giq33hTKeHEq6Jyk3btCny0Ycecyc3yGXH10sizUfiHlhviCkDuESk8mFDwDDzqW\n" | 
|  | "ZF0IipzFbEDHoIxLlm3GQxpiLoEV4k8KYJp3R5KBLFyxM6UGPz8h72mIPCJp2RuK\n" | 
|  | "MYgF91UDvVzvnYm6TfseM2+ewKirC00GOrZ7rEcFvtxnKSqYf4ckqfNdSU1Y+RRC\n" | 
|  | "1ngWZ7Ih\n" | 
|  | "-----END CERTIFICATE-----\n"; | 
|  |  | 
|  |  | 
|  | static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestCertificateBuffer() { | 
|  | return BufferFromPEM(kChainTestCertificatePEM); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<X509> GetChainTestCertificate() { | 
|  | return X509FromBuffer(GetChainTestCertificateBuffer()); | 
|  | } | 
|  |  | 
|  | static const char kChainTestIntermediatePEM[] = | 
|  | "-----BEGIN CERTIFICATE-----\n" | 
|  | "MIICwjCCAaqgAwIBAgICEAEwDQYJKoZIhvcNAQELBQAwFDESMBAGA1UEAwwJQyBS\n" | 
|  | "b290IENBMB4XDTE2MDIyODIwMjcwM1oXDTI2MDIyNTIwMjcwM1owDzENMAsGA1UE\n" | 
|  | "AwwEQiBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALsSCYmDip2D\n" | 
|  | "GkjFxw7ykz26JSjELkl6ArlYjFJ3aT/SCh8qbS4gln7RH8CPBd78oFdfhIKQrwtZ\n" | 
|  | "3/q21ykD9BAS3qHe2YdcJfm8/kWAy5DvXk6NXU4qX334KofBAEpgdA/igEFq1P1l\n" | 
|  | "HAuIfZCpMRfT+i5WohVsGi8f/NgpRvVaMONLNfgw57mz1lbtFeBEISmX0kbsuJxF\n" | 
|  | "Qj/Bwhi5/0HAEXG8e7zN4cEx0yPRvmOATRdVb/8dW2pwOHRJq9R5M0NUkIsTSnL7\n" | 
|  | "6N/z8hRAHMsV3IudC5Yd7GXW1AGu9a+iKU+Q4xcZCoj0DC99tL4VKujrV1kAeqsM\n" | 
|  | "cz5/dKzi6+cCAwEAAaMjMCEwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n" | 
|  | "AQYwDQYJKoZIhvcNAQELBQADggEBAIIeZiEeNhWWQ8Y4D+AGDwqUUeG8NjCbKrXQ\n" | 
|  | "BlHg5wZ8xftFaiP1Dp/UAezmx2LNazdmuwrYB8lm3FVTyaPDTKEGIPS4wJKHgqH1\n" | 
|  | "QPDhqNm85ey7TEtI9oYjsNim/Rb+iGkIAMXaxt58SzxbjvP0kMr1JfJIZbic9vye\n" | 
|  | "NwIspMFIpP3FB8ywyu0T0hWtCQgL4J47nigCHpOu58deP88fS/Nyz/fyGVWOZ76b\n" | 
|  | "WhWwgM3P3X95fQ3d7oFPR/bVh0YV+Cf861INwplokXgXQ3/TCQ+HNXeAMWn3JLWv\n" | 
|  | "XFwk8owk9dq/kQGdndGgy3KTEW4ctPX5GNhf3LJ9Q7dLji4ReQ4=\n" | 
|  | "-----END CERTIFICATE-----\n"; | 
|  |  | 
|  | static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestIntermediateBuffer() { | 
|  | return BufferFromPEM(kChainTestIntermediatePEM); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestIntermediateIssuerBuffer() { | 
|  | static const char kSubjectPEM[] = | 
|  | "-----BEGIN SUBJECT-----\n" | 
|  | "MBQxEjAQBgNVBAMMCUMgUm9vdCBDQQ==\n" | 
|  | "-----END SUBJECT-----\n"; | 
|  | return BufferFromPEM(kSubjectPEM); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<CRYPTO_BUFFER> GetTestCertIssuerBuffer() { | 
|  | static const char kSubjectPEM[] = | 
|  | "-----BEGIN SUBJECT-----\n" | 
|  | "MEUxCzAJBgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJ\n" | 
|  | "bnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQ=\n" | 
|  | "-----END SUBJECT-----\n"; | 
|  | return BufferFromPEM(kSubjectPEM); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<CRYPTO_BUFFER> GetBogusIssuerBuffer() { | 
|  | static const char kSubjectPEM[] = | 
|  | "-----BEGIN SUBJECT-----\n" | 
|  | "MBYxFDASBgNVBAMMC0RpZ2lOb3RBRm94\n" | 
|  | "-----END SUBJECT-----\n"; | 
|  | return BufferFromPEM(kSubjectPEM); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<X509> GetChainTestIntermediate() { | 
|  | return X509FromBuffer(GetChainTestIntermediateBuffer()); | 
|  | } | 
|  |  | 
|  | static const char kChainTestKeyPEM[] = | 
|  | "-----BEGIN PRIVATE KEY-----\n" | 
|  | "MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDRvaz8CC/cshpC\n" | 
|  | "afJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/kLRcH89M\n" | 
|  | "/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3tHb+xs2P\n" | 
|  | "Ss8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+cIDs2rQ+l\n" | 
|  | "P7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1z7C8jU50\n" | 
|  | "Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9ViLeXANgZ\n" | 
|  | "i+Xx9KgfAgMBAAECggEBAK0VjSJzkyPaamcyTVSWjo7GdaBGcK60lk657RjR+lK0\n" | 
|  | "YJ7pkej4oM2hdsVZFsP8Cs4E33nXLa/0pDsRov/qrp0WQm2skwqGMC1I/bZ0WRPk\n" | 
|  | "wHaDrBBfESWnJDX/AGpVtlyOjPmgmK6J2usMPihQUDkKdAYrVWJePrMIxt1q6BMe\n" | 
|  | "iczs3qriMmtY3bUc4UyUwJ5fhDLjshHvfuIpYQyI6EXZM6dZksn9LylXJnigY6QJ\n" | 
|  | "HxOYO0BDwOsZ8yQ8J8afLk88i0GizEkgE1z3REtQUwgWfxr1WV/ud+T6/ZhSAgH9\n" | 
|  | "042mQvSFZnIUSEsmCvjhWuAunfxHKCTcAoYISWfzWpkCgYEA7gpf3HHU5Tn+CgUn\n" | 
|  | "1X5uGpG3DmcMgfeGgs2r2f/IIg/5Ac1dfYILiybL1tN9zbyLCJfcbFpWBc9hJL6f\n" | 
|  | "CPc5hUiwWFJqBJewxQkC1Ae/HakHbip+IZ+Jr0842O4BAArvixk4Lb7/N2Ct9sTE\n" | 
|  | "NJO6RtK9lbEZ5uK61DglHy8CS2UCgYEA4ZC1o36kPAMQBggajgnucb2yuUEelk0f\n" | 
|  | "AEr+GI32MGE+93xMr7rAhBoqLg4AITyIfEnOSQ5HwagnIHonBbv1LV/Gf9ursx8Z\n" | 
|  | "YOGbvT8zzzC+SU1bkDzdjAYnFQVGIjMtKOBJ3K07++ypwX1fr4QsQ8uKL8WSOWwt\n" | 
|  | "Z3Bym6XiZzMCgYADnhy+2OwHX85AkLt+PyGlPbmuelpyTzS4IDAQbBa6jcuW/2wA\n" | 
|  | "UE2km75VUXmD+u2R/9zVuLm99NzhFhSMqlUxdV1YukfqMfP5yp1EY6m/5aW7QuIP\n" | 
|  | "2MDa7TVL9rIFMiVZ09RKvbBbQxjhuzPQKL6X/PPspnhiTefQ+dl2k9xREQKBgHDS\n" | 
|  | "fMfGNEeAEKezrfSVqxphE9/tXms3L+ZpnCaT+yu/uEr5dTIAawKoQ6i9f/sf1/Sy\n" | 
|  | "xedsqR+IB+oKrzIDDWMgoJybN4pkZ8E5lzhVQIjFjKgFdWLzzqyW9z1gYfABQPlN\n" | 
|  | "FiS20WX0vgP1vcKAjdNrHzc9zyHBpgQzDmAj3NZZAoGBAI8vKCKdH7w3aL5CNkZQ\n" | 
|  | "2buIeWNA2HZazVwAGG5F2TU/LmXfRKnG6dX5bkU+AkBZh56jNZy//hfFSewJB4Kk\n" | 
|  | "buB7ERSdaNbO21zXt9FEA3+z0RfMd/Zv2vlIWOSB5nzl/7UKti3sribK6s9ZVLfi\n" | 
|  | "SxpiPQ8d/hmSGwn4ksrWUsJD\n" | 
|  | "-----END PRIVATE KEY-----\n"; | 
|  |  | 
|  | static bssl::UniquePtr<EVP_PKEY> GetChainTestKey() { | 
|  | return KeyFromPEM(kChainTestKeyPEM); | 
|  | } | 
|  |  | 
|  | static bool CompleteHandshakes(SSL *client, SSL *server) { | 
|  | // Drive both their handshakes to completion. | 
|  | for (;;) { | 
|  | int client_ret = SSL_do_handshake(client); | 
|  | int client_err = SSL_get_error(client, client_ret); | 
|  | if (client_err != SSL_ERROR_NONE &&        // | 
|  | client_err != SSL_ERROR_WANT_READ &&   // | 
|  | client_err != SSL_ERROR_WANT_WRITE &&  // | 
|  | client_err != SSL_ERROR_PENDING_TICKET) { | 
|  | fprintf(stderr, "Client error: %s\n", SSL_error_description(client_err)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int server_ret = SSL_do_handshake(server); | 
|  | int server_err = SSL_get_error(server, server_ret); | 
|  | if (server_err != SSL_ERROR_NONE &&        // | 
|  | server_err != SSL_ERROR_WANT_READ &&   // | 
|  | server_err != SSL_ERROR_WANT_WRITE &&  // | 
|  | server_err != SSL_ERROR_PENDING_TICKET) { | 
|  | fprintf(stderr, "Server error: %s\n", SSL_error_description(server_err)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (client_ret == 1 && server_ret == 1) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool FlushNewSessionTickets(SSL *client, SSL *server) { | 
|  | // NewSessionTickets are deferred on the server to |SSL_write|, and clients do | 
|  | // not pick them up until |SSL_read|. | 
|  | for (;;) { | 
|  | int server_ret = SSL_write(server, nullptr, 0); | 
|  | int server_err = SSL_get_error(server, server_ret); | 
|  | // The server may either succeed (|server_ret| is zero) or block on write | 
|  | // (|server_ret| is -1 and |server_err| is |SSL_ERROR_WANT_WRITE|). | 
|  | if (server_ret > 0 || | 
|  | (server_ret < 0 && server_err != SSL_ERROR_WANT_WRITE)) { | 
|  | fprintf(stderr, "Unexpected server result: %d %d\n", server_ret, | 
|  | server_err); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int client_ret = SSL_read(client, nullptr, 0); | 
|  | int client_err = SSL_get_error(client, client_ret); | 
|  | // The client must always block on read. | 
|  | if (client_ret != -1 || client_err != SSL_ERROR_WANT_READ) { | 
|  | fprintf(stderr, "Unexpected client result: %d %d\n", client_ret, | 
|  | client_err); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The server flushed everything it had to write. | 
|  | if (server_ret == 0) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // CreateClientAndServer creates a client and server |SSL| objects whose |BIO|s | 
|  | // are paired with each other. It does not run the handshake. The caller is | 
|  | // expected to configure the objects and drive the handshake as needed. | 
|  | static bool CreateClientAndServer(bssl::UniquePtr<SSL> *out_client, | 
|  | bssl::UniquePtr<SSL> *out_server, | 
|  | SSL_CTX *client_ctx, SSL_CTX *server_ctx) { | 
|  | bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx)); | 
|  | if (!client || !server) { | 
|  | return false; | 
|  | } | 
|  | SSL_set_connect_state(client.get()); | 
|  | SSL_set_accept_state(server.get()); | 
|  |  | 
|  | BIO *bio1, *bio2; | 
|  | if (!BIO_new_bio_pair(&bio1, 0, &bio2, 0)) { | 
|  | return false; | 
|  | } | 
|  | // SSL_set_bio takes ownership. | 
|  | SSL_set_bio(client.get(), bio1, bio1); | 
|  | SSL_set_bio(server.get(), bio2, bio2); | 
|  |  | 
|  | *out_client = std::move(client); | 
|  | *out_server = std::move(server); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | struct ClientConfig { | 
|  | SSL_SESSION *session = nullptr; | 
|  | STACK_OF(CRYPTO_BUFFER) *ca_names = nullptr; | 
|  | std::string servername; | 
|  | std::string verify_hostname; | 
|  | unsigned hostflags = 0; | 
|  | bool early_data = false; | 
|  | }; | 
|  |  | 
|  | static bool ConnectClientAndServer(bssl::UniquePtr<SSL> *out_client, | 
|  | bssl::UniquePtr<SSL> *out_server, | 
|  | SSL_CTX *client_ctx, SSL_CTX *server_ctx, | 
|  | const ClientConfig &config = ClientConfig(), | 
|  | bool shed_handshake_config = true) { | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | if (!CreateClientAndServer(&client, &server, client_ctx, server_ctx)) { | 
|  | return false; | 
|  | } | 
|  | if (config.early_data) { | 
|  | SSL_set_early_data_enabled(client.get(), 1); | 
|  | } | 
|  | if (config.session) { | 
|  | SSL_set_session(client.get(), config.session); | 
|  | } | 
|  | if (!config.servername.empty() && | 
|  | !SSL_set_tlsext_host_name(client.get(), config.servername.c_str())) { | 
|  | return false; | 
|  | } | 
|  | if (!config.verify_hostname.empty()) { | 
|  | if (!SSL_set1_host(client.get(), config.verify_hostname.c_str())) { | 
|  | return false; | 
|  | } | 
|  | SSL_set_hostflags(client.get(), config.hostflags); | 
|  | } | 
|  |  | 
|  | if (config.ca_names) { | 
|  | SSL_set0_CA_names(client.get(), config.ca_names); | 
|  | } | 
|  |  | 
|  | SSL_set_shed_handshake_config(client.get(), shed_handshake_config); | 
|  | SSL_set_shed_handshake_config(server.get(), shed_handshake_config); | 
|  |  | 
|  | if (!CompleteHandshakes(client.get(), server.get())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *out_client = std::move(client); | 
|  | *out_server = std::move(server); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<SSL_SESSION> g_last_session; | 
|  |  | 
|  | static int SaveLastSession(SSL *ssl, SSL_SESSION *session) { | 
|  | // Save the most recent session. | 
|  | g_last_session.reset(session); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<SSL_SESSION> CreateClientSession( | 
|  | SSL_CTX *client_ctx, SSL_CTX *server_ctx, | 
|  | const ClientConfig &config = ClientConfig()) { | 
|  | g_last_session = nullptr; | 
|  | SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession); | 
|  |  | 
|  | // Connect client and server to get a session. | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx, | 
|  | config) || | 
|  | !FlushNewSessionTickets(client.get(), server.get())) { | 
|  | fprintf(stderr, "Failed to connect client and server.\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SSL_CTX_sess_set_new_cb(client_ctx, nullptr); | 
|  |  | 
|  | if (!g_last_session) { | 
|  | fprintf(stderr, "Client did not receive a session.\n"); | 
|  | return nullptr; | 
|  | } | 
|  | return std::move(g_last_session); | 
|  | } | 
|  |  | 
|  | static void SetUpExpectedNewCodePoint(SSL_CTX *ctx) { | 
|  | SSL_CTX_set_select_certificate_cb( | 
|  | ctx, | 
|  | [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | if (!SSL_early_callback_ctx_extension_get( | 
|  | client_hello, TLSEXT_TYPE_application_settings, &data, &len)) { | 
|  | ADD_FAILURE() << "Could not find alps new codepoint."; | 
|  | return ssl_select_cert_error; | 
|  | } | 
|  | return ssl_select_cert_success; | 
|  | }); | 
|  | } | 
|  |  | 
|  | static void SetUpExpectedOldCodePoint(SSL_CTX *ctx) { | 
|  | SSL_CTX_set_select_certificate_cb( | 
|  | ctx, | 
|  | [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | if (!SSL_early_callback_ctx_extension_get( | 
|  | client_hello, TLSEXT_TYPE_application_settings_old, &data, | 
|  | &len)) { | 
|  | ADD_FAILURE() << "Could not find alps old codepoint."; | 
|  | return ssl_select_cert_error; | 
|  | } | 
|  | return ssl_select_cert_success; | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Test that |SSL_get_client_CA_list| echoes back the configured parameter even | 
|  | // before configuring as a server. | 
|  | TEST(SSLTest, ClientCAList) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  |  | 
|  | bssl::UniquePtr<X509_NAME> name(X509_NAME_new()); | 
|  | ASSERT_TRUE(name); | 
|  |  | 
|  | bssl::UniquePtr<X509_NAME> name_dup(X509_NAME_dup(name.get())); | 
|  | ASSERT_TRUE(name_dup); | 
|  |  | 
|  | bssl::UniquePtr<STACK_OF(X509_NAME)> stack(sk_X509_NAME_new_null()); | 
|  | ASSERT_TRUE(stack); | 
|  | ASSERT_TRUE(PushToStack(stack.get(), std::move(name_dup))); | 
|  |  | 
|  | // |SSL_set_client_CA_list| takes ownership. | 
|  | SSL_set_client_CA_list(ssl.get(), stack.release()); | 
|  |  | 
|  | STACK_OF(X509_NAME) *result = SSL_get_client_CA_list(ssl.get()); | 
|  | ASSERT_TRUE(result); | 
|  | ASSERT_EQ(1u, sk_X509_NAME_num(result)); | 
|  | EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(result, 0), name.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, AddClientCA) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  |  | 
|  | bssl::UniquePtr<X509> cert1 = GetTestCertificate(); | 
|  | bssl::UniquePtr<X509> cert2 = GetChainTestCertificate(); | 
|  | ASSERT_TRUE(cert1 && cert2); | 
|  | X509_NAME *name1 = X509_get_subject_name(cert1.get()); | 
|  | X509_NAME *name2 = X509_get_subject_name(cert2.get()); | 
|  |  | 
|  | EXPECT_EQ(0u, sk_X509_NAME_num(SSL_get_client_CA_list(ssl.get()))); | 
|  |  | 
|  | ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get())); | 
|  | ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert2.get())); | 
|  |  | 
|  | STACK_OF(X509_NAME) *list = SSL_get_client_CA_list(ssl.get()); | 
|  | ASSERT_EQ(2u, sk_X509_NAME_num(list)); | 
|  | EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1)); | 
|  | EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2)); | 
|  |  | 
|  | ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get())); | 
|  |  | 
|  | list = SSL_get_client_CA_list(ssl.get()); | 
|  | ASSERT_EQ(3u, sk_X509_NAME_num(list)); | 
|  | EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1)); | 
|  | EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2)); | 
|  | EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 2), name1)); | 
|  | } | 
|  |  | 
|  | struct ECHConfigParams { | 
|  | uint16_t version = TLSEXT_TYPE_encrypted_client_hello; | 
|  | uint16_t config_id = 1; | 
|  | std::string public_name = "example.com"; | 
|  | const EVP_HPKE_KEY *key = nullptr; | 
|  | // kem_id, if zero, takes its value from |key|. | 
|  | uint16_t kem_id = 0; | 
|  | // public_key, if empty takes its value from |key|. | 
|  | std::vector<uint8_t> public_key; | 
|  | size_t max_name_len = 16; | 
|  | // cipher_suites is a list of code points which should contain pairs of KDF | 
|  | // and AEAD IDs. | 
|  | std::vector<uint16_t> cipher_suites = {EVP_HPKE_HKDF_SHA256, | 
|  | EVP_HPKE_AES_128_GCM}; | 
|  | std::vector<uint8_t> extensions; | 
|  | }; | 
|  |  | 
|  | // MakeECHConfig serializes an ECHConfig from |params| and writes it to | 
|  | // |*out|. | 
|  | bool MakeECHConfig(std::vector<uint8_t> *out, const ECHConfigParams ¶ms) { | 
|  | uint16_t kem_id = params.kem_id == 0 | 
|  | ? EVP_HPKE_KEM_id(EVP_HPKE_KEY_kem(params.key)) | 
|  | : params.kem_id; | 
|  | std::vector<uint8_t> public_key = params.public_key; | 
|  | if (public_key.empty()) { | 
|  | public_key.resize(EVP_HPKE_MAX_PUBLIC_KEY_LENGTH); | 
|  | size_t len; | 
|  | if (!EVP_HPKE_KEY_public_key(params.key, public_key.data(), &len, | 
|  | public_key.size())) { | 
|  | return false; | 
|  | } | 
|  | public_key.resize(len); | 
|  | } | 
|  |  | 
|  | bssl::ScopedCBB cbb; | 
|  | CBB contents, child; | 
|  | if (!CBB_init(cbb.get(), 64) ||                                      // | 
|  | !CBB_add_u16(cbb.get(), params.version) ||                       // | 
|  | !CBB_add_u16_length_prefixed(cbb.get(), &contents) ||            // | 
|  | !CBB_add_u8(&contents, params.config_id) ||                      // | 
|  | !CBB_add_u16(&contents, kem_id) ||                               // | 
|  | !CBB_add_u16_length_prefixed(&contents, &child) ||               // | 
|  | !CBB_add_bytes(&child, public_key.data(), public_key.size()) ||  // | 
|  | !CBB_add_u16_length_prefixed(&contents, &child)) { | 
|  | return false; | 
|  | } | 
|  | for (uint16_t cipher_suite : params.cipher_suites) { | 
|  | if (!CBB_add_u16(&child, cipher_suite)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (!CBB_add_u8(&contents, params.max_name_len) || | 
|  | !CBB_add_u8_length_prefixed(&contents, &child) || | 
|  | !CBB_add_bytes( | 
|  | &child, reinterpret_cast<const uint8_t *>(params.public_name.data()), | 
|  | params.public_name.size()) || | 
|  | !CBB_add_u16_length_prefixed(&contents, &child) || | 
|  | !CBB_add_bytes(&child, params.extensions.data(), | 
|  | params.extensions.size()) || | 
|  | !CBB_flush(cbb.get())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | out->assign(CBB_data(cbb.get()), CBB_data(cbb.get()) + CBB_len(cbb.get())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<SSL_ECH_KEYS> MakeTestECHKeys(uint8_t config_id = 1) { | 
|  | bssl::ScopedEVP_HPKE_KEY key; | 
|  | uint8_t *ech_config; | 
|  | size_t ech_config_len; | 
|  | if (!EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256()) || | 
|  | !SSL_marshal_ech_config(&ech_config, &ech_config_len, config_id, | 
|  | key.get(), "public.example", 16)) { | 
|  | return nullptr; | 
|  | } | 
|  | bssl::UniquePtr<uint8_t> free_ech_config(ech_config); | 
|  |  | 
|  | // Install a non-retry config. | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
|  | if (!keys || !SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, | 
|  | ech_config_len, key.get())) { | 
|  | return nullptr; | 
|  | } | 
|  | return keys; | 
|  | } | 
|  |  | 
|  | static bool InstallECHConfigList(SSL *client, const SSL_ECH_KEYS *keys) { | 
|  | uint8_t *ech_config_list; | 
|  | size_t ech_config_list_len; | 
|  | if (!SSL_ECH_KEYS_marshal_retry_configs(keys, &ech_config_list, | 
|  | &ech_config_list_len)) { | 
|  | return false; | 
|  | } | 
|  | bssl::UniquePtr<uint8_t> free_ech_config_list(ech_config_list); | 
|  | return SSL_set1_ech_config_list(client, ech_config_list, ech_config_list_len); | 
|  | } | 
|  |  | 
|  | // Test that |SSL_marshal_ech_config| and |SSL_ECH_KEYS_marshal_retry_configs| | 
|  | // output values as expected. | 
|  | TEST(SSLTest, MarshalECHConfig) { | 
|  | static const uint8_t kPrivateKey[X25519_PRIVATE_KEY_LEN] = { | 
|  | 0xbc, 0xb5, 0x51, 0x29, 0x31, 0x10, 0x30, 0xc9, 0xed, 0x26, 0xde, | 
|  | 0xd4, 0xb3, 0xdf, 0x3a, 0xce, 0x06, 0x8a, 0xee, 0x17, 0xab, 0xce, | 
|  | 0xd7, 0xdb, 0xf3, 0x11, 0xe5, 0xa8, 0xf3, 0xb1, 0x8e, 0x24}; | 
|  | bssl::ScopedEVP_HPKE_KEY key; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_init(key.get(), EVP_hpke_x25519_hkdf_sha256(), | 
|  | kPrivateKey, sizeof(kPrivateKey))); | 
|  |  | 
|  | static const uint8_t kECHConfig[] = { | 
|  | // version | 
|  | 0xfe, 0x0d, | 
|  | // length | 
|  | 0x00, 0x41, | 
|  | // contents.config_id | 
|  | 0x01, | 
|  | // contents.kem_id | 
|  | 0x00, 0x20, | 
|  | // contents.public_key | 
|  | 0x00, 0x20, 0xa6, 0x9a, 0x41, 0x48, 0x5d, 0x32, 0x96, 0xa4, 0xe0, 0xc3, | 
|  | 0x6a, 0xee, 0xf6, 0x63, 0x0f, 0x59, 0x32, 0x6f, 0xdc, 0xff, 0x81, 0x29, | 
|  | 0x59, 0xa5, 0x85, 0xd3, 0x9b, 0x3b, 0xde, 0x98, 0x55, 0x5c, | 
|  | // contents.cipher_suites | 
|  | 0x00, 0x08, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x03, | 
|  | // contents.maximum_name_length | 
|  | 0x10, | 
|  | // contents.public_name | 
|  | 0x0e, 0x70, 0x75, 0x62, 0x6c, 0x69, 0x63, 0x2e, 0x65, 0x78, 0x61, 0x6d, | 
|  | 0x70, 0x6c, 0x65, | 
|  | // contents.extensions | 
|  | 0x00, 0x00}; | 
|  | uint8_t *ech_config; | 
|  | size_t ech_config_len; | 
|  | ASSERT_TRUE(SSL_marshal_ech_config(&ech_config, &ech_config_len, | 
|  | /*config_id=*/1, key.get(), | 
|  | "public.example", 16)); | 
|  | bssl::UniquePtr<uint8_t> free_ech_config(ech_config); | 
|  | EXPECT_EQ(Bytes(kECHConfig), Bytes(ech_config, ech_config_len)); | 
|  |  | 
|  | // Generate a second ECHConfig. | 
|  | bssl::ScopedEVP_HPKE_KEY key2; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_generate(key2.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  | uint8_t *ech_config2; | 
|  | size_t ech_config2_len; | 
|  | ASSERT_TRUE(SSL_marshal_ech_config(&ech_config2, &ech_config2_len, | 
|  | /*config_id=*/2, key2.get(), | 
|  | "public.example", 16)); | 
|  | bssl::UniquePtr<uint8_t> free_ech_config2(ech_config2); | 
|  |  | 
|  | // Install both ECHConfigs in an |SSL_ECH_KEYS|. | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
|  | ASSERT_TRUE(keys); | 
|  | ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, | 
|  | ech_config_len, key.get())); | 
|  | ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config2, | 
|  | ech_config2_len, key2.get())); | 
|  |  | 
|  | // The ECHConfigList should be correctly serialized. | 
|  | uint8_t *ech_config_list; | 
|  | size_t ech_config_list_len; | 
|  | ASSERT_TRUE(SSL_ECH_KEYS_marshal_retry_configs(keys.get(), &ech_config_list, | 
|  | &ech_config_list_len)); | 
|  | bssl::UniquePtr<uint8_t> free_ech_config_list(ech_config_list); | 
|  |  | 
|  | // ECHConfigList is just the concatenation with a length prefix. | 
|  | size_t len = ech_config_len + ech_config2_len; | 
|  | std::vector<uint8_t> expected = {uint8_t(len >> 8), uint8_t(len)}; | 
|  | expected.insert(expected.end(), ech_config, ech_config + ech_config_len); | 
|  | expected.insert(expected.end(), ech_config2, ech_config2 + ech_config2_len); | 
|  | EXPECT_EQ(Bytes(expected), Bytes(ech_config_list, ech_config_list_len)); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ECHHasDuplicateConfigID) { | 
|  | const struct { | 
|  | std::vector<uint8_t> ids; | 
|  | bool has_duplicate; | 
|  | } kTests[] = { | 
|  | {{}, false}, | 
|  | {{1}, false}, | 
|  | {{1, 2, 3, 255}, false}, | 
|  | {{1, 2, 3, 1}, true}, | 
|  | }; | 
|  | for (const auto &test : kTests) { | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
|  | ASSERT_TRUE(keys); | 
|  | for (const uint8_t id : test.ids) { | 
|  | bssl::ScopedEVP_HPKE_KEY key; | 
|  | ASSERT_TRUE( | 
|  | EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  | uint8_t *ech_config; | 
|  | size_t ech_config_len; | 
|  | ASSERT_TRUE(SSL_marshal_ech_config(&ech_config, &ech_config_len, id, | 
|  | key.get(), "public.example", 16)); | 
|  | bssl::UniquePtr<uint8_t> free_ech_config(ech_config); | 
|  | ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
|  | ech_config, ech_config_len, key.get())); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(test.has_duplicate ? 1 : 0, | 
|  | SSL_ECH_KEYS_has_duplicate_config_id(keys.get())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test that |SSL_ECH_KEYS_add| checks consistency between the public and | 
|  | // private key. | 
|  | TEST(SSLTest, ECHKeyConsistency) { | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
|  | ASSERT_TRUE(keys); | 
|  | bssl::ScopedEVP_HPKE_KEY key; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  | uint8_t public_key[EVP_HPKE_MAX_PUBLIC_KEY_LENGTH]; | 
|  | size_t public_key_len; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_public_key(key.get(), public_key, &public_key_len, | 
|  | sizeof(public_key))); | 
|  |  | 
|  | // Adding an ECHConfig with the matching public key succeeds. | 
|  | ECHConfigParams params; | 
|  | params.key = key.get(); | 
|  | std::vector<uint8_t> ech_config; | 
|  | ASSERT_TRUE(MakeECHConfig(&ech_config, params)); | 
|  | EXPECT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
|  | ech_config.data(), ech_config.size(), | 
|  | key.get())); | 
|  |  | 
|  | // Adding an ECHConfig with the wrong public key is an error. | 
|  | bssl::ScopedEVP_HPKE_KEY wrong_key; | 
|  | ASSERT_TRUE( | 
|  | EVP_HPKE_KEY_generate(wrong_key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  | EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
|  | ech_config.data(), ech_config.size(), | 
|  | wrong_key.get())); | 
|  |  | 
|  | // Adding an ECHConfig with a truncated public key is an error. | 
|  | ECHConfigParams truncated; | 
|  | truncated.key = key.get(); | 
|  | truncated.public_key.assign(public_key, public_key + public_key_len - 1); | 
|  | ASSERT_TRUE(MakeECHConfig(&ech_config, truncated)); | 
|  | EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
|  | ech_config.data(), ech_config.size(), | 
|  | key.get())); | 
|  |  | 
|  | // Adding an ECHConfig with the right public key, but wrong KEM ID, is an | 
|  | // error. | 
|  | ECHConfigParams wrong_kem; | 
|  | wrong_kem.key = key.get(); | 
|  | wrong_kem.kem_id = 0x0010;  // DHKEM(P-256, HKDF-SHA256) | 
|  | ASSERT_TRUE(MakeECHConfig(&ech_config, wrong_kem)); | 
|  | EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
|  | ech_config.data(), ech_config.size(), | 
|  | key.get())); | 
|  | } | 
|  |  | 
|  | // Test that |SSL_CTX_set1_ech_keys| fails when the config list | 
|  | // has no retry configs. | 
|  | TEST(SSLTest, ECHServerConfigsWithoutRetryConfigs) { | 
|  | bssl::ScopedEVP_HPKE_KEY key; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  | uint8_t *ech_config; | 
|  | size_t ech_config_len; | 
|  | ASSERT_TRUE(SSL_marshal_ech_config(&ech_config, &ech_config_len, | 
|  | /*config_id=*/1, key.get(), | 
|  | "public.example", 16)); | 
|  | bssl::UniquePtr<uint8_t> free_ech_config(ech_config); | 
|  |  | 
|  | // Install a non-retry config. | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
|  | ASSERT_TRUE(keys); | 
|  | ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/0, ech_config, | 
|  | ech_config_len, key.get())); | 
|  |  | 
|  | // |keys| has no retry configs. | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | EXPECT_FALSE(SSL_CTX_set1_ech_keys(ctx.get(), keys.get())); | 
|  |  | 
|  | // Add the same ECHConfig to the list, but this time mark it as a retry | 
|  | // config. | 
|  | ASSERT_TRUE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, | 
|  | ech_config_len, key.get())); | 
|  | EXPECT_TRUE(SSL_CTX_set1_ech_keys(ctx.get(), keys.get())); | 
|  | } | 
|  |  | 
|  | // Test that the server APIs reject ECHConfigs with unsupported features. | 
|  | TEST(SSLTest, UnsupportedECHConfig) { | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
|  | ASSERT_TRUE(keys); | 
|  | bssl::ScopedEVP_HPKE_KEY key; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  |  | 
|  | // Unsupported versions are rejected. | 
|  | ECHConfigParams unsupported_version; | 
|  | unsupported_version.version = 0xffff; | 
|  | unsupported_version.key = key.get(); | 
|  | std::vector<uint8_t> ech_config; | 
|  | ASSERT_TRUE(MakeECHConfig(&ech_config, unsupported_version)); | 
|  | EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
|  | ech_config.data(), ech_config.size(), | 
|  | key.get())); | 
|  |  | 
|  | // Unsupported cipher suites are rejected. (We only support HKDF-SHA256.) | 
|  | ECHConfigParams unsupported_kdf; | 
|  | unsupported_kdf.key = key.get(); | 
|  | unsupported_kdf.cipher_suites = {0x002 /* HKDF-SHA384 */, | 
|  | EVP_HPKE_AES_128_GCM}; | 
|  | ASSERT_TRUE(MakeECHConfig(&ech_config, unsupported_kdf)); | 
|  | EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
|  | ech_config.data(), ech_config.size(), | 
|  | key.get())); | 
|  | ECHConfigParams unsupported_aead; | 
|  | unsupported_aead.key = key.get(); | 
|  | unsupported_aead.cipher_suites = {EVP_HPKE_HKDF_SHA256, 0xffff}; | 
|  | ASSERT_TRUE(MakeECHConfig(&ech_config, unsupported_aead)); | 
|  | EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
|  | ech_config.data(), ech_config.size(), | 
|  | key.get())); | 
|  |  | 
|  |  | 
|  | // Unsupported extensions are rejected. | 
|  | ECHConfigParams extensions; | 
|  | extensions.key = key.get(); | 
|  | extensions.extensions = {0x00, 0x01, 0x00, 0x00}; | 
|  | ASSERT_TRUE(MakeECHConfig(&ech_config, extensions)); | 
|  | EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
|  | ech_config.data(), ech_config.size(), | 
|  | key.get())); | 
|  |  | 
|  | // Invalid public names are rejected. | 
|  | ECHConfigParams invalid_public_name; | 
|  | invalid_public_name.key = key.get(); | 
|  | invalid_public_name.public_name = "dns_names_have_no_underscores.example"; | 
|  | ASSERT_TRUE(MakeECHConfig(&ech_config, invalid_public_name)); | 
|  | EXPECT_FALSE(SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, | 
|  | ech_config.data(), ech_config.size(), | 
|  | key.get())); | 
|  | } | 
|  |  | 
|  | // Test that |SSL_get_client_random| reports the correct value on both client | 
|  | // and server in ECH. The client sends two different random values. When ECH is | 
|  | // accepted, we should report the inner one. | 
|  | TEST(SSLTest, ECHClientRandomsMatch) { | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys = MakeTestECHKeys(); | 
|  | ASSERT_TRUE(keys); | 
|  | ASSERT_TRUE(SSL_CTX_set1_ech_keys(server_ctx.get(), keys.get())); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | ASSERT_TRUE(InstallECHConfigList(client.get(), keys.get())); | 
|  | ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
|  |  | 
|  | EXPECT_TRUE(SSL_ech_accepted(client.get())); | 
|  | EXPECT_TRUE(SSL_ech_accepted(server.get())); | 
|  |  | 
|  | // An ECH server will fairly naturally record the inner ClientHello random, | 
|  | // but an ECH client may forget to update the random once ClientHelloInner is | 
|  | // selected. | 
|  | uint8_t client_random1[SSL3_RANDOM_SIZE]; | 
|  | uint8_t client_random2[SSL3_RANDOM_SIZE]; | 
|  | ASSERT_EQ(sizeof(client_random1), | 
|  | SSL_get_client_random(client.get(), client_random1, | 
|  | sizeof(client_random1))); | 
|  | ASSERT_EQ(sizeof(client_random2), | 
|  | SSL_get_client_random(server.get(), client_random2, | 
|  | sizeof(client_random2))); | 
|  | EXPECT_EQ(Bytes(client_random1), Bytes(client_random2)); | 
|  | } | 
|  |  | 
|  | // GetECHLength sets |*out_client_hello_len| and |*out_ech_len| to the lengths | 
|  | // of the ClientHello and ECH extension, respectively, when a client created | 
|  | // from |ctx| constructs a ClientHello with name |name| and an ECHConfig with | 
|  | // maximum name length |max_name_len|. | 
|  | static bool GetECHLength(SSL_CTX *ctx, size_t *out_client_hello_len, | 
|  | size_t *out_ech_len, size_t max_name_len, | 
|  | const char *name) { | 
|  | bssl::ScopedEVP_HPKE_KEY key; | 
|  | uint8_t *ech_config; | 
|  | size_t ech_config_len; | 
|  | if (!EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256()) || | 
|  | !SSL_marshal_ech_config(&ech_config, &ech_config_len, | 
|  | /*config_id=*/1, key.get(), "public.example", | 
|  | max_name_len)) { | 
|  | return false; | 
|  | } | 
|  | bssl::UniquePtr<uint8_t> free_ech_config(ech_config); | 
|  |  | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); | 
|  | if (!keys || !SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config, | 
|  | ech_config_len, key.get())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx)); | 
|  | if (!ssl || !InstallECHConfigList(ssl.get(), keys.get()) || | 
|  | (name != nullptr && !SSL_set_tlsext_host_name(ssl.get(), name))) { | 
|  | return false; | 
|  | } | 
|  | SSL_set_connect_state(ssl.get()); | 
|  |  | 
|  | std::vector<uint8_t> client_hello; | 
|  | SSL_CLIENT_HELLO parsed; | 
|  | const uint8_t *unused; | 
|  | if (!GetClientHello(ssl.get(), &client_hello)) { | 
|  | return false; | 
|  | } | 
|  | // Skip record and handshake headers. This assumes the ClientHello | 
|  | // fits in one record. | 
|  | auto body = | 
|  | Span(client_hello).subspan(SSL3_RT_HEADER_LENGTH + SSL3_HM_HEADER_LENGTH); | 
|  | if (!SSL_parse_client_hello(ssl.get(), &parsed, body.data(), body.size()) || | 
|  | !SSL_early_callback_ctx_extension_get( | 
|  | &parsed, TLSEXT_TYPE_encrypted_client_hello, &unused, out_ech_len)) { | 
|  | return false; | 
|  | } | 
|  | *out_client_hello_len = client_hello.size(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ECHPadding) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | // Sample lengths with max_name_len = 128 as baseline. | 
|  | size_t client_hello_len_baseline, ech_len_baseline; | 
|  | ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len_baseline, | 
|  | &ech_len_baseline, 128, "example.com")); | 
|  |  | 
|  | // Check that all name lengths under the server's maximum look the same. | 
|  | for (size_t name_len : {1, 2, 32, 64, 127, 128}) { | 
|  | SCOPED_TRACE(name_len); | 
|  | size_t client_hello_len, ech_len; | 
|  | ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len, &ech_len, 128, | 
|  | std::string(name_len, 'a').c_str())); | 
|  | EXPECT_EQ(client_hello_len, client_hello_len_baseline); | 
|  | EXPECT_EQ(ech_len, ech_len_baseline); | 
|  | } | 
|  |  | 
|  | // When sending no SNI, we must still pad as if we are sending one. | 
|  | size_t client_hello_len, ech_len; | 
|  | ASSERT_TRUE( | 
|  | GetECHLength(ctx.get(), &client_hello_len, &ech_len, 128, nullptr)); | 
|  | EXPECT_EQ(client_hello_len, client_hello_len_baseline); | 
|  | EXPECT_EQ(ech_len, ech_len_baseline); | 
|  |  | 
|  | // Name lengths above the maximum do not get named-based padding, but the | 
|  | // overall input is padded to a multiple of 32. | 
|  | size_t client_hello_len_baseline2, ech_len_baseline2; | 
|  | ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len_baseline2, | 
|  | &ech_len_baseline2, 128, | 
|  | std::string(128 + 32, 'a').c_str())); | 
|  | EXPECT_EQ(ech_len_baseline2, ech_len_baseline + 32); | 
|  | // The ClientHello lengths may match if we are still under the threshold for | 
|  | // padding extension. | 
|  | EXPECT_GE(client_hello_len_baseline2, client_hello_len_baseline); | 
|  |  | 
|  | for (size_t name_len = 128 + 1; name_len < 128 + 32; name_len++) { | 
|  | SCOPED_TRACE(name_len); | 
|  | ASSERT_TRUE(GetECHLength(ctx.get(), &client_hello_len, &ech_len, 128, | 
|  | std::string(name_len, 'a').c_str())); | 
|  | EXPECT_TRUE(ech_len == ech_len_baseline || ech_len == ech_len_baseline2) | 
|  | << ech_len; | 
|  | EXPECT_TRUE(client_hello_len == client_hello_len_baseline || | 
|  | client_hello_len == client_hello_len_baseline2) | 
|  | << client_hello_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ECHPublicName) { | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes(""))); | 
|  | EXPECT_TRUE(ssl_is_valid_ech_public_name(StringAsBytes("example.com"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes(".example.com"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("example.com."))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("example..com"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("www.-example.com"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("www.example-.com"))); | 
|  | EXPECT_FALSE( | 
|  | ssl_is_valid_ech_public_name(StringAsBytes("no_underscores.example"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
|  | StringAsBytes("invalid_chars.\x01.example"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
|  | StringAsBytes("invalid_chars.\xff.example"))); | 
|  | static const uint8_t kWithNUL[] = {'t', 'e', 's', 't', 0}; | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(kWithNUL)); | 
|  |  | 
|  | // Test an LDH label with every character and the maximum length. | 
|  | EXPECT_TRUE(ssl_is_valid_ech_public_name(StringAsBytes( | 
|  | "abcdefhijklmnopqrstuvwxyz-ABCDEFGHIJKLMNOPQRSTUVWXYZ-0123456789"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes( | 
|  | "abcdefhijklmnopqrstuvwxyz-ABCDEFGHIJKLMNOPQRSTUVWXYZ-01234567899"))); | 
|  |  | 
|  | // Inputs with trailing numeric components are rejected. | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("127.0.0.1"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("example.1"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("example.01"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("example.0x01"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("example.0X01"))); | 
|  | // Leading zeros and values that overflow |uint32_t| are still rejected. | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
|  | StringAsBytes("example.123456789000000000000000"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
|  | StringAsBytes("example.012345678900000000000000"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
|  | StringAsBytes("example.0x123456789abcdefABCDEF0"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name( | 
|  | StringAsBytes("example.0x0123456789abcdefABCDEF"))); | 
|  | // Adding a non-digit or non-hex character makes it a valid DNS name again. | 
|  | // Single-component numbers are rejected. | 
|  | EXPECT_TRUE( | 
|  | ssl_is_valid_ech_public_name(StringAsBytes("example.1234567890a"))); | 
|  | EXPECT_TRUE( | 
|  | ssl_is_valid_ech_public_name(StringAsBytes("example.01234567890a"))); | 
|  | EXPECT_TRUE(ssl_is_valid_ech_public_name( | 
|  | StringAsBytes("example.0x123456789abcdefg"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("1"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("01"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("0x01"))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("0X01"))); | 
|  | // Numbers with trailing dots are rejected. (They are already rejected by the | 
|  | // LDH label rules, but the WHATWG URL parser additionally rejects them.) | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("1."))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("01."))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("0x01."))); | 
|  | EXPECT_FALSE(ssl_is_valid_ech_public_name(StringAsBytes("0X01."))); | 
|  | } | 
|  |  | 
|  | // When using the built-in verifier, test that |SSL_get0_ech_name_override| is | 
|  | // applied automatically. | 
|  | TEST(SSLTest, ECHBuiltinVerifier) { | 
|  | // These test certificates generated with the following Go program. | 
|  | /* clang-format off | 
|  | func main() { | 
|  | notBefore := time.Date(2000, time.January, 1, 0, 0, 0, 0, time.UTC) | 
|  | notAfter := time.Date(2099, time.January, 1, 0, 0, 0, 0, time.UTC) | 
|  | rootKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader) | 
|  | rootTemplate := &x509.Certificate{ | 
|  | SerialNumber:          big.NewInt(1), | 
|  | Subject:               pkix.Name{CommonName: "Test CA"}, | 
|  | NotBefore:             notBefore, | 
|  | NotAfter:              notAfter, | 
|  | BasicConstraintsValid: true, | 
|  | IsCA:                  true, | 
|  | } | 
|  | rootDER, _ := x509.CreateCertificate(rand.Reader, rootTemplate, rootTemplate, &rootKey.PublicKey, rootKey) | 
|  | root, _ := x509.ParseCertificate(rootDER) | 
|  | pem.Encode(os.Stdout, &pem.Block{Type: "CERTIFICATE", Bytes: rootDER}) | 
|  | leafKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader) | 
|  | leafKeyDER, _ := x509.MarshalPKCS8PrivateKey(leafKey) | 
|  | pem.Encode(os.Stdout, &pem.Block{Type: "PRIVATE KEY", Bytes: leafKeyDER}) | 
|  | for i, name := range []string{"public.example", "secret.example"} { | 
|  | leafTemplate := &x509.Certificate{ | 
|  | SerialNumber:          big.NewInt(int64(i) + 2), | 
|  | Subject:               pkix.Name{CommonName: name}, | 
|  | NotBefore:             notBefore, | 
|  | NotAfter:              notAfter, | 
|  | BasicConstraintsValid: true, | 
|  | DNSNames:              []string{name}, | 
|  | } | 
|  | leafDER, _ := x509.CreateCertificate(rand.Reader, leafTemplate, root, &leafKey.PublicKey, rootKey) | 
|  | pem.Encode(os.Stdout, &pem.Block{Type: "CERTIFICATE", Bytes: leafDER}) | 
|  | } | 
|  | } | 
|  | clang-format on */ | 
|  | bssl::UniquePtr<X509> root = CertFromPEM(R"( | 
|  | -----BEGIN CERTIFICATE----- | 
|  | MIIBRzCB7aADAgECAgEBMAoGCCqGSM49BAMCMBIxEDAOBgNVBAMTB1Rlc3QgQ0Ew | 
|  | IBcNMDAwMTAxMDAwMDAwWhgPMjA5OTAxMDEwMDAwMDBaMBIxEDAOBgNVBAMTB1Rl | 
|  | c3QgQ0EwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAT5JUjrI1DAxSpEl88UkmJw | 
|  | tAJqxo/YrSFo9V3MkcNkfTixi5p6MUtO8DazhEgekBcd2+tBAWtl7dy0qpvTqx92 | 
|  | ozIwMDAPBgNVHRMBAf8EBTADAQH/MB0GA1UdDgQWBBTw6ftkexAI6o4r5FntJIfL | 
|  | GU5F4zAKBggqhkjOPQQDAgNJADBGAiEAiiNowddQeHZaZFIygwe6RW5/WG4sUXWC | 
|  | dkyl9CQzRaYCIQCFS1EvwZbZtMny27fYm1eeYciY0TkJTEi34H1KwyzzIA== | 
|  | -----END CERTIFICATE----- | 
|  | )"); | 
|  | ASSERT_TRUE(root); | 
|  | bssl::UniquePtr<EVP_PKEY> leaf_key = KeyFromPEM(R"( | 
|  | -----BEGIN PRIVATE KEY----- | 
|  | MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgj5WKHwHnziiyPauf | 
|  | 7QukxTwtTyGZkk8qNdms4puJfxqhRANCAARNrkhxabALDlJrHtvkuDwvCWUF/oVC | 
|  | hr6PDITHi1lDlJzvVT4aXBH87sH2n2UV5zpx13NHkq1bIC8eRT8eOIe0 | 
|  | -----END PRIVATE KEY----- | 
|  | )"); | 
|  | ASSERT_TRUE(leaf_key); | 
|  | bssl::UniquePtr<X509> leaf_public = CertFromPEM(R"( | 
|  | -----BEGIN CERTIFICATE----- | 
|  | MIIBaDCCAQ6gAwIBAgIBAjAKBggqhkjOPQQDAjASMRAwDgYDVQQDEwdUZXN0IENB | 
|  | MCAXDTAwMDEwMTAwMDAwMFoYDzIwOTkwMTAxMDAwMDAwWjAZMRcwFQYDVQQDEw5w | 
|  | dWJsaWMuZXhhbXBsZTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABE2uSHFpsAsO | 
|  | Umse2+S4PC8JZQX+hUKGvo8MhMeLWUOUnO9VPhpcEfzuwfafZRXnOnHXc0eSrVsg | 
|  | Lx5FPx44h7SjTDBKMAwGA1UdEwEB/wQCMAAwHwYDVR0jBBgwFoAU8On7ZHsQCOqO | 
|  | K+RZ7SSHyxlOReMwGQYDVR0RBBIwEIIOcHVibGljLmV4YW1wbGUwCgYIKoZIzj0E | 
|  | AwIDSAAwRQIhANqZRhDR/+QL05hsWXMYEwaiHifd9iakKoFEhKFchcF3AiBRAeXw | 
|  | wRGGT6+iPmTYM6N5/IDyAb5B9Ke38O6lLEsUwA== | 
|  | -----END CERTIFICATE----- | 
|  | )"); | 
|  | ASSERT_TRUE(leaf_public); | 
|  | bssl::UniquePtr<X509> leaf_secret = CertFromPEM(R"( | 
|  | -----BEGIN CERTIFICATE----- | 
|  | MIIBaTCCAQ6gAwIBAgIBAzAKBggqhkjOPQQDAjASMRAwDgYDVQQDEwdUZXN0IENB | 
|  | MCAXDTAwMDEwMTAwMDAwMFoYDzIwOTkwMTAxMDAwMDAwWjAZMRcwFQYDVQQDEw5z | 
|  | ZWNyZXQuZXhhbXBsZTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABE2uSHFpsAsO | 
|  | Umse2+S4PC8JZQX+hUKGvo8MhMeLWUOUnO9VPhpcEfzuwfafZRXnOnHXc0eSrVsg | 
|  | Lx5FPx44h7SjTDBKMAwGA1UdEwEB/wQCMAAwHwYDVR0jBBgwFoAU8On7ZHsQCOqO | 
|  | K+RZ7SSHyxlOReMwGQYDVR0RBBIwEIIOc2VjcmV0LmV4YW1wbGUwCgYIKoZIzj0E | 
|  | AwIDSQAwRgIhAPQdIz1xCFkc9WuSkxOxJDpywZiEp9SnKcxJ9nwrlRp3AiEA+O3+ | 
|  | XRqE7XFhHL+7TNC2a9OOAjQsEF137YPWo+rhgko= | 
|  | -----END CERTIFICATE----- | 
|  | )"); | 
|  | ASSERT_TRUE(leaf_secret); | 
|  |  | 
|  | // Use different config IDs so that fuzzer mode, which breaks trial | 
|  | // decryption, will observe the key mismatch. | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys = MakeTestECHKeys(/*config_id=*/1); | 
|  | ASSERT_TRUE(keys); | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> wrong_keys = MakeTestECHKeys(/*config_id=*/2); | 
|  | ASSERT_TRUE(wrong_keys); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  |  | 
|  | // Configure the client to verify certificates and expect the secret name. | 
|  | // This is the name the client is trying to connect to. If ECH is rejected, | 
|  | // BoringSSL will internally override this setting with the public name. | 
|  | bssl::UniquePtr<X509_STORE> store(X509_STORE_new()); | 
|  | ASSERT_TRUE(store); | 
|  | ASSERT_TRUE(X509_STORE_add_cert(store.get(), root.get())); | 
|  | SSL_CTX_set_cert_store(client_ctx.get(), store.release()); | 
|  | SSL_CTX_set_verify(client_ctx.get(), SSL_VERIFY_PEER, nullptr); | 
|  | X509_VERIFY_PARAM_set_flags(SSL_CTX_get0_param(client_ctx.get()), | 
|  | X509_V_FLAG_NO_CHECK_TIME); | 
|  | static const char kSecretName[] = "secret.example"; | 
|  | ASSERT_TRUE(X509_VERIFY_PARAM_set1_host(SSL_CTX_get0_param(client_ctx.get()), | 
|  | kSecretName, strlen(kSecretName))); | 
|  |  | 
|  | // For simplicity, we only run through a pair of representative scenarios here | 
|  | // and rely on runner.go to verify that |SSL_get0_ech_name_override| behaves | 
|  | // correctly. | 
|  | for (bool accept_ech : {false, true}) { | 
|  | SCOPED_TRACE(accept_ech); | 
|  | for (bool use_leaf_secret : {false, true}) { | 
|  | SCOPED_TRACE(use_leaf_secret); | 
|  |  | 
|  | // The server will reject ECH when configured with the wrong keys. | 
|  | ASSERT_TRUE(SSL_CTX_set1_ech_keys( | 
|  | server_ctx.get(), accept_ech ? keys.get() : wrong_keys.get())); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | ASSERT_TRUE(InstallECHConfigList(client.get(), keys.get())); | 
|  |  | 
|  | // Configure the server with the selected certificate. | 
|  | ASSERT_TRUE(SSL_use_certificate(server.get(), use_leaf_secret | 
|  | ? leaf_secret.get() | 
|  | : leaf_public.get())); | 
|  | ASSERT_TRUE(SSL_use_PrivateKey(server.get(), leaf_key.get())); | 
|  |  | 
|  | // The handshake may fail due to name mismatch or ECH reject. We check | 
|  | // |SSL_get_verify_result| to confirm the handshake got far enough. | 
|  | CompleteHandshakes(client.get(), server.get()); | 
|  | EXPECT_EQ(accept_ech == use_leaf_secret ? X509_V_OK | 
|  | : X509_V_ERR_HOSTNAME_MISMATCH, | 
|  | SSL_get_verify_result(client.get())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(OPENSSL_THREADS) | 
|  | // Test that the server ECH config can be swapped out while the |SSL_CTX| is | 
|  | // in use on other threads. This test is intended to be run with TSan. | 
|  | TEST(SSLTest, ECHThreads) { | 
|  | // Generate a pair of ECHConfigs. | 
|  | bssl::ScopedEVP_HPKE_KEY key1; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_generate(key1.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  | uint8_t *ech_config1; | 
|  | size_t ech_config1_len; | 
|  | ASSERT_TRUE(SSL_marshal_ech_config(&ech_config1, &ech_config1_len, | 
|  | /*config_id=*/1, key1.get(), | 
|  | "public.example", 16)); | 
|  | bssl::UniquePtr<uint8_t> free_ech_config1(ech_config1); | 
|  | bssl::ScopedEVP_HPKE_KEY key2; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_generate(key2.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  | uint8_t *ech_config2; | 
|  | size_t ech_config2_len; | 
|  | ASSERT_TRUE(SSL_marshal_ech_config(&ech_config2, &ech_config2_len, | 
|  | /*config_id=*/2, key2.get(), | 
|  | "public.example", 16)); | 
|  | bssl::UniquePtr<uint8_t> free_ech_config2(ech_config2); | 
|  |  | 
|  | // |keys1| contains the first config. |keys12| contains both. | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys1(SSL_ECH_KEYS_new()); | 
|  | ASSERT_TRUE(keys1); | 
|  | ASSERT_TRUE(SSL_ECH_KEYS_add(keys1.get(), /*is_retry_config=*/1, ech_config1, | 
|  | ech_config1_len, key1.get())); | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys12(SSL_ECH_KEYS_new()); | 
|  | ASSERT_TRUE(keys12); | 
|  | ASSERT_TRUE(SSL_ECH_KEYS_add(keys12.get(), /*is_retry_config=*/1, ech_config2, | 
|  | ech_config2_len, key2.get())); | 
|  | ASSERT_TRUE(SSL_ECH_KEYS_add(keys12.get(), /*is_retry_config=*/0, ech_config1, | 
|  | ech_config1_len, key1.get())); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | ASSERT_TRUE(SSL_CTX_set1_ech_keys(server_ctx.get(), keys1.get())); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | ASSERT_TRUE(InstallECHConfigList(client.get(), keys1.get())); | 
|  |  | 
|  | // In parallel, complete the connection and reconfigure the ECHConfig. Note | 
|  | // |keys12| supports all the keys in |keys1|, so the handshake should complete | 
|  | // the same whichever the server uses. | 
|  | std::vector<std::thread> threads; | 
|  | threads.emplace_back([&] { | 
|  | ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
|  | EXPECT_TRUE(SSL_ech_accepted(client.get())); | 
|  | EXPECT_TRUE(SSL_ech_accepted(server.get())); | 
|  | }); | 
|  | threads.emplace_back([&] { | 
|  | EXPECT_TRUE(SSL_CTX_set1_ech_keys(server_ctx.get(), keys12.get())); | 
|  | }); | 
|  | for (auto &thread : threads) { | 
|  | thread.join(); | 
|  | } | 
|  | } | 
|  | #endif  // OPENSSL_THREADS | 
|  |  | 
|  | TEST(SSLTest, TLS13ExporterAvailability) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | // Configure only TLS 1.3. | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | std::vector<uint8_t> buffer(32); | 
|  | const char *label = "EXPORTER-test-label"; | 
|  |  | 
|  | // The exporters are not available before the handshake starts. | 
|  | EXPECT_FALSE(SSL_export_keying_material(client.get(), buffer.data(), | 
|  | buffer.size(), label, strlen(label), | 
|  | nullptr, 0, 0)); | 
|  | EXPECT_FALSE(SSL_export_keying_material(server.get(), buffer.data(), | 
|  | buffer.size(), label, strlen(label), | 
|  | nullptr, 0, 0)); | 
|  |  | 
|  | // Send the client's first flight of handshake messages. | 
|  | int client_ret = SSL_do_handshake(client.get()); | 
|  | EXPECT_EQ(SSL_get_error(client.get(), client_ret), SSL_ERROR_WANT_READ); | 
|  |  | 
|  | // The handshake isn't far enough for the exporters to work. | 
|  | EXPECT_FALSE(SSL_export_keying_material(client.get(), buffer.data(), | 
|  | buffer.size(), label, strlen(label), | 
|  | nullptr, 0, 0)); | 
|  | EXPECT_FALSE(SSL_export_keying_material(server.get(), buffer.data(), | 
|  | buffer.size(), label, strlen(label), | 
|  | nullptr, 0, 0)); | 
|  |  | 
|  | // Send all the server's handshake messages. | 
|  | int server_ret = SSL_do_handshake(server.get()); | 
|  | EXPECT_EQ(SSL_get_error(server.get(), server_ret), SSL_ERROR_WANT_READ); | 
|  |  | 
|  | // At this point in the handshake, the server should have the exporter key | 
|  | // derived since it's sent its Finished message. The client hasn't yet | 
|  | // processed the server's handshake messages, so the exporter shouldn't be | 
|  | // available to the client. | 
|  | EXPECT_FALSE(SSL_export_keying_material(client.get(), buffer.data(), | 
|  | buffer.size(), label, strlen(label), | 
|  | nullptr, 0, 0)); | 
|  | EXPECT_TRUE(SSL_export_keying_material(server.get(), buffer.data(), | 
|  | buffer.size(), label, strlen(label), | 
|  | nullptr, 0, 0)); | 
|  |  | 
|  | // Finish the handshake on the client. | 
|  | EXPECT_EQ(SSL_do_handshake(client.get()), 1); | 
|  |  | 
|  | // The exporter should be available on both endpoints. | 
|  | EXPECT_TRUE(SSL_export_keying_material(client.get(), buffer.data(), | 
|  | buffer.size(), label, strlen(label), | 
|  | nullptr, 0, 0)); | 
|  | EXPECT_TRUE(SSL_export_keying_material(server.get(), buffer.data(), | 
|  | buffer.size(), label, strlen(label), | 
|  | nullptr, 0, 0)); | 
|  |  | 
|  | // Finish the handshake on the server. | 
|  | EXPECT_EQ(SSL_do_handshake(server.get()), 1); | 
|  |  | 
|  | // The exporter should still be available on both endpoints. | 
|  | EXPECT_TRUE(SSL_export_keying_material(client.get(), buffer.data(), | 
|  | buffer.size(), label, strlen(label), | 
|  | nullptr, 0, 0)); | 
|  | EXPECT_TRUE(SSL_export_keying_material(server.get(), buffer.data(), | 
|  | buffer.size(), label, strlen(label), | 
|  | nullptr, 0, 0)); | 
|  | } | 
|  |  | 
|  | static void AppendSession(SSL_SESSION *session, void *arg) { | 
|  | std::vector<SSL_SESSION *> *out = | 
|  | reinterpret_cast<std::vector<SSL_SESSION *> *>(arg); | 
|  | out->push_back(session); | 
|  | } | 
|  |  | 
|  | // CacheEquals returns true if |ctx|'s session cache consists of |expected|, in | 
|  | // order. | 
|  | static bool CacheEquals(SSL_CTX *ctx, | 
|  | const std::vector<SSL_SESSION *> &expected) { | 
|  | // Check the linked list. | 
|  | SSL_SESSION *ptr = ctx->session_cache_head; | 
|  | for (SSL_SESSION *session : expected) { | 
|  | if (ptr != session) { | 
|  | return false; | 
|  | } | 
|  | // TODO(davidben): This is an absurd way to denote the end of the list. | 
|  | if (ptr->next == | 
|  | reinterpret_cast<SSL_SESSION *>(&ctx->session_cache_tail)) { | 
|  | ptr = nullptr; | 
|  | } else { | 
|  | ptr = ptr->next; | 
|  | } | 
|  | } | 
|  | if (ptr != nullptr) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check the hash table. | 
|  | std::vector<SSL_SESSION *> actual, expected_copy; | 
|  | lh_SSL_SESSION_doall_arg(ctx->sessions, AppendSession, &actual); | 
|  | expected_copy = expected; | 
|  |  | 
|  | std::sort(actual.begin(), actual.end()); | 
|  | std::sort(expected_copy.begin(), expected_copy.end()); | 
|  |  | 
|  | return actual == expected_copy; | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<SSL_SESSION> CreateTestSession(uint32_t number) { | 
|  | bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); | 
|  | if (!ssl_ctx) { | 
|  | return nullptr; | 
|  | } | 
|  | bssl::UniquePtr<SSL_SESSION> ret(SSL_SESSION_new(ssl_ctx.get())); | 
|  | if (!ret) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | uint8_t id[SSL3_SSL_SESSION_ID_LENGTH] = {0}; | 
|  | OPENSSL_memcpy(id, &number, sizeof(number)); | 
|  | if (!SSL_SESSION_set1_id(ret.get(), id, sizeof(id))) { | 
|  | return nullptr; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Test that the internal session cache behaves as expected. | 
|  | TEST(SSLTest, InternalSessionCache) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | // Prepare 10 test sessions. | 
|  | std::vector<bssl::UniquePtr<SSL_SESSION>> sessions; | 
|  | for (int i = 0; i < 10; i++) { | 
|  | bssl::UniquePtr<SSL_SESSION> session = CreateTestSession(i); | 
|  | ASSERT_TRUE(session); | 
|  | sessions.push_back(std::move(session)); | 
|  | } | 
|  |  | 
|  | SSL_CTX_sess_set_cache_size(ctx.get(), 5); | 
|  |  | 
|  | // Insert all the test sessions. | 
|  | for (const auto &session : sessions) { | 
|  | ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), session.get())); | 
|  | } | 
|  |  | 
|  | // Only the last five should be in the list. | 
|  | ASSERT_TRUE(CacheEquals( | 
|  | ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(), | 
|  | sessions[6].get(), sessions[5].get()})); | 
|  |  | 
|  | // Inserting an element already in the cache should fail and leave the cache | 
|  | // unchanged. | 
|  | ASSERT_FALSE(SSL_CTX_add_session(ctx.get(), sessions[7].get())); | 
|  | ASSERT_TRUE(CacheEquals( | 
|  | ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(), | 
|  | sessions[6].get(), sessions[5].get()})); | 
|  |  | 
|  | // Although collisions should be impossible (256-bit session IDs), the cache | 
|  | // must handle them gracefully. | 
|  | bssl::UniquePtr<SSL_SESSION> collision(CreateTestSession(7)); | 
|  | ASSERT_TRUE(collision); | 
|  | ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), collision.get())); | 
|  | ASSERT_TRUE(CacheEquals( | 
|  | ctx.get(), {collision.get(), sessions[9].get(), sessions[8].get(), | 
|  | sessions[6].get(), sessions[5].get()})); | 
|  |  | 
|  | // Removing sessions behaves correctly. | 
|  | ASSERT_TRUE(SSL_CTX_remove_session(ctx.get(), sessions[6].get())); | 
|  | ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(), | 
|  | sessions[8].get(), sessions[5].get()})); | 
|  |  | 
|  | // Removing sessions requires an exact match. | 
|  | ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[0].get())); | 
|  | ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[7].get())); | 
|  |  | 
|  | // The cache remains unchanged. | 
|  | ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(), | 
|  | sessions[8].get(), sessions[5].get()})); | 
|  | } | 
|  |  | 
|  | static uint16_t EpochFromSequence(uint64_t seq) { | 
|  | return static_cast<uint16_t>(seq >> 48); | 
|  | } | 
|  |  | 
|  | static const uint8_t kTestName[] = { | 
|  | 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, | 
|  | 0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, | 
|  | 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, | 
|  | 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, | 
|  | 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, | 
|  | 0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64, | 
|  | }; | 
|  |  | 
|  | // SSLVersionTest executes its test cases under all available protocol versions. | 
|  | // Test cases call |Connect| to create a connection using context objects with | 
|  | // the protocol version fixed to the current version under test. | 
|  | class SSLVersionTest : public ::testing::TestWithParam<VersionParam> { | 
|  | protected: | 
|  | SSLVersionTest() : cert_(GetTestCertificate()), key_(GetTestKey()) {} | 
|  |  | 
|  | void SetUp() { ResetContexts(); } | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> CreateContext() const { | 
|  | const SSL_METHOD *method = is_dtls() ? DTLS_method() : TLS_method(); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method)); | 
|  | if (!ctx || !SSL_CTX_set_min_proto_version(ctx.get(), version()) || | 
|  | !SSL_CTX_set_max_proto_version(ctx.get(), version())) { | 
|  | return nullptr; | 
|  | } | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | void ResetContexts() { | 
|  | ASSERT_TRUE(cert_); | 
|  | ASSERT_TRUE(key_); | 
|  | client_ctx_ = CreateContext(); | 
|  | ASSERT_TRUE(client_ctx_); | 
|  | server_ctx_ = CreateContext(); | 
|  | ASSERT_TRUE(server_ctx_); | 
|  | // Set up a server cert. Client certs can be set up explicitly. | 
|  | ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); | 
|  | } | 
|  |  | 
|  | bool UseCertAndKey(SSL_CTX *ctx) const { | 
|  | return SSL_CTX_use_certificate(ctx, cert_.get()) && | 
|  | SSL_CTX_use_PrivateKey(ctx, key_.get()); | 
|  | } | 
|  |  | 
|  | bool Connect(const ClientConfig &config = ClientConfig()) { | 
|  | return ConnectClientAndServer(&client_, &server_, client_ctx_.get(), | 
|  | server_ctx_.get(), config, | 
|  | shed_handshake_config_); | 
|  | } | 
|  |  | 
|  | uint16_t version() const { return GetParam().version; } | 
|  |  | 
|  | bool is_tls13() const { | 
|  | return version() == TLS1_3_VERSION || version() == DTLS1_3_VERSION; | 
|  | } | 
|  |  | 
|  | bool is_dtls() const { | 
|  | return GetParam().ssl_method == VersionParam::is_dtls; | 
|  | } | 
|  |  | 
|  | bool shed_handshake_config_ = true; | 
|  | bssl::UniquePtr<SSL> client_, server_; | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx_, client_ctx_; | 
|  | bssl::UniquePtr<X509> cert_; | 
|  | bssl::UniquePtr<EVP_PKEY> key_; | 
|  | }; | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(WithVersion, SSLVersionTest, | 
|  | testing::ValuesIn(kAllVersions), | 
|  | [](const testing::TestParamInfo<VersionParam> &i) { | 
|  | return i.param.name; | 
|  | }); | 
|  |  | 
|  | TEST_P(SSLVersionTest, SequenceNumber) { | 
|  | // TODO(crbug.com/42290608): Once |SSL_get_read_sequence| and | 
|  | // |SSL_get_write_sequence| are no longer implemented in DTLS 1.3, make this | 
|  | // test TLS-only and remove the DTLS cases. For now, since we still care about | 
|  | // their behavior in DTLS 1.2, continue testing this behavior. | 
|  | if (is_dtls() && is_tls13()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | // Drain any post-handshake messages to ensure there are no unread records | 
|  | // on either end. | 
|  | ASSERT_TRUE(FlushNewSessionTickets(client_.get(), server_.get())); | 
|  |  | 
|  | uint64_t client_read_seq = SSL_get_read_sequence(client_.get()); | 
|  | uint64_t client_write_seq = SSL_get_write_sequence(client_.get()); | 
|  | uint64_t server_read_seq = SSL_get_read_sequence(server_.get()); | 
|  | uint64_t server_write_seq = SSL_get_write_sequence(server_.get()); | 
|  |  | 
|  | if (is_dtls()) { | 
|  | // Both client and server must be at epoch 1. | 
|  | EXPECT_EQ(EpochFromSequence(client_read_seq), 1); | 
|  | EXPECT_EQ(EpochFromSequence(client_write_seq), 1); | 
|  | EXPECT_EQ(EpochFromSequence(server_read_seq), 1); | 
|  | EXPECT_EQ(EpochFromSequence(server_write_seq), 1); | 
|  |  | 
|  | // The next record to be written should exceed the largest received. | 
|  | EXPECT_GT(client_write_seq, server_read_seq); | 
|  | EXPECT_GT(server_write_seq, client_read_seq); | 
|  | } else { | 
|  | // The next record to be written should equal the next to be received. | 
|  | EXPECT_EQ(client_write_seq, server_read_seq); | 
|  | EXPECT_EQ(server_write_seq, client_read_seq); | 
|  | } | 
|  |  | 
|  | // Send a record from client to server. | 
|  | uint8_t byte = 0; | 
|  | EXPECT_EQ(SSL_write(client_.get(), &byte, 1), 1); | 
|  | EXPECT_EQ(SSL_read(server_.get(), &byte, 1), 1); | 
|  |  | 
|  | // The client write and server read sequence numbers should have | 
|  | // incremented. | 
|  | EXPECT_EQ(client_write_seq + 1, SSL_get_write_sequence(client_.get())); | 
|  | EXPECT_EQ(server_read_seq + 1, SSL_get_read_sequence(server_.get())); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, RecordStateDTLS) { | 
|  | if (!is_dtls()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | SSL_CTX_set_current_time_cb(client_ctx_.get(), CurrentTimeCallback); | 
|  | SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), | 
|  | server_ctx_.get())); | 
|  |  | 
|  | // The handshake is incomplete. | 
|  | EXPECT_FALSE(SSL_is_dtls_handshake_idle(client_.get())); | 
|  | EXPECT_FALSE(SSL_is_dtls_handshake_idle(server_.get())); | 
|  |  | 
|  | // The initial epoch is zero. | 
|  | EXPECT_EQ(SSL_get_dtls_read_epoch(client_.get()), 0); | 
|  | EXPECT_EQ(SSL_get_dtls_write_epoch(server_.get()), 0); | 
|  | EXPECT_EQ(SSL_get_dtls_read_epoch(server_.get()), 0); | 
|  | EXPECT_EQ(SSL_get_dtls_write_epoch(client_.get()), 0); | 
|  |  | 
|  | // We have not sent or received any records. | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(client_.get(), 0), 0u); | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(server_.get(), 0), 0u); | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(server_.get(), 0), 0u); | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(client_.get(), 0), 0u); | 
|  |  | 
|  | // We have not sent or received any handshake messages. | 
|  | EXPECT_EQ(SSL_get_dtls_handshake_read_seq(client_.get()), 0u); | 
|  | EXPECT_EQ(SSL_get_dtls_handshake_write_seq(server_.get()), 0u); | 
|  | EXPECT_EQ(SSL_get_dtls_handshake_read_seq(server_.get()), 0u); | 
|  | EXPECT_EQ(SSL_get_dtls_handshake_write_seq(client_.get()), 0u); | 
|  |  | 
|  | // Though it exists, epoch zero is unencrypted and does not have traffic | 
|  | // secrets. | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | EXPECT_FALSE(SSL_get_dtls_read_traffic_secret(client_.get(), &data, &len, 0)); | 
|  | EXPECT_FALSE( | 
|  | SSL_get_dtls_write_traffic_secret(client_.get(), &data, &len, 0)); | 
|  | EXPECT_FALSE(SSL_get_dtls_read_traffic_secret(server_.get(), &data, &len, 0)); | 
|  | EXPECT_FALSE( | 
|  | SSL_get_dtls_write_traffic_secret(server_.get(), &data, &len, 0)); | 
|  |  | 
|  | // Other epochs do not exist yet. | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(client_.get(), 1), UINT64_MAX); | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(server_.get(), 1), UINT64_MAX); | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(server_.get(), 1), UINT64_MAX); | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(client_.get(), 1), UINT64_MAX); | 
|  | EXPECT_FALSE(SSL_get_dtls_read_traffic_secret(client_.get(), &data, &len, 1)); | 
|  | EXPECT_FALSE( | 
|  | SSL_get_dtls_write_traffic_secret(server_.get(), &data, &len, 1)); | 
|  | EXPECT_FALSE(SSL_get_dtls_read_traffic_secret(server_.get(), &data, &len, 1)); | 
|  | EXPECT_FALSE( | 
|  | SSL_get_dtls_write_traffic_secret(client_.get(), &data, &len, 1)); | 
|  |  | 
|  | ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
|  |  | 
|  | // DTLS 1.0 and 1.2 are relative simple. | 
|  | if (!is_tls13()) { | 
|  | // This handshake is now idle. | 
|  | EXPECT_TRUE(SSL_is_dtls_handshake_idle(client_.get())); | 
|  | EXPECT_TRUE(SSL_is_dtls_handshake_idle(server_.get())); | 
|  |  | 
|  | // Both sides of both channels are at epoch 1. | 
|  | EXPECT_EQ(SSL_get_dtls_read_epoch(client_.get()), 1); | 
|  | EXPECT_EQ(SSL_get_dtls_write_epoch(server_.get()), 1); | 
|  | EXPECT_EQ(SSL_get_dtls_read_epoch(server_.get()), 1); | 
|  | EXPECT_EQ(SSL_get_dtls_write_epoch(client_.get()), 1); | 
|  |  | 
|  | // Both sides have sent one record at epoch 1 each (Finished). | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(client_.get(), 1), 1u); | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(server_.get(), 1), 1u); | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(server_.get(), 1), 1u); | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(client_.get(), 1), 1u); | 
|  |  | 
|  | // DTLS 1.2 does not use traffic secrets. | 
|  | EXPECT_FALSE( | 
|  | SSL_get_dtls_read_traffic_secret(client_.get(), &data, &len, 1)); | 
|  | EXPECT_FALSE( | 
|  | SSL_get_dtls_write_traffic_secret(server_.get(), &data, &len, 1)); | 
|  | EXPECT_FALSE( | 
|  | SSL_get_dtls_read_traffic_secret(server_.get(), &data, &len, 1)); | 
|  | EXPECT_FALSE( | 
|  | SSL_get_dtls_write_traffic_secret(client_.get(), &data, &len, 1)); | 
|  |  | 
|  | // Send a record from client to server. | 
|  | uint8_t byte = 0; | 
|  | EXPECT_EQ(SSL_write(client_.get(), &byte, 1), 1); | 
|  | EXPECT_EQ(SSL_read(server_.get(), &byte, 1), 1); | 
|  |  | 
|  | // Sequence numbers should have updated. | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(client_.get(), 1), 1u); | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(server_.get(), 1), 1u); | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(server_.get(), 1), 2u); | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(client_.get(), 1), 2u); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The client sent Finished, which the server ACKed, but the client hasn't | 
|  | // consumed the ACK. | 
|  | EXPECT_FALSE(SSL_is_dtls_handshake_idle(client_.get())); | 
|  | // The server sent NewSessionTicket, which the client hasn't consumed yet. | 
|  | EXPECT_FALSE(SSL_is_dtls_handshake_idle(server_.get())); | 
|  |  | 
|  | // Both sides of both channels are at epoch 3. | 
|  | EXPECT_EQ(SSL_get_dtls_read_epoch(client_.get()), 3); | 
|  | EXPECT_EQ(SSL_get_dtls_write_epoch(server_.get()), 3); | 
|  | EXPECT_EQ(SSL_get_dtls_read_epoch(server_.get()), 3); | 
|  | EXPECT_EQ(SSL_get_dtls_write_epoch(client_.get()), 3); | 
|  |  | 
|  | auto check_matching_secret = [&](SSL *reader, SSL *writer, uint16_t epoch) { | 
|  | ASSERT_TRUE(SSL_get_dtls_read_traffic_secret(reader, &data, &len, epoch)); | 
|  | auto read_secret = Span(data, len); | 
|  | ASSERT_TRUE(SSL_get_dtls_write_traffic_secret(writer, &data, &len, epoch)); | 
|  | auto write_secret = Span(data, len); | 
|  | EXPECT_EQ(Bytes(read_secret), Bytes(write_secret)); | 
|  | }; | 
|  |  | 
|  | // Traffic secrets at epoch 3 should match. | 
|  | check_matching_secret(client_.get(), server_.get(), 3); | 
|  | check_matching_secret(server_.get(), client_.get(), 3); | 
|  |  | 
|  | // Both sides retain read epoch 2 (but not write epoch 2). The server must | 
|  | // retain epoch 2 because it does not know the client has seen the ACK and | 
|  | // therefore must respond to retransmissions of the client's final flight. | 
|  | // The client could discard epoch 2, but our implementation happens not to. | 
|  | EXPECT_LT(SSL_get_dtls_read_sequence(client_.get(), 2), UINT64_MAX); | 
|  | EXPECT_LT(SSL_get_dtls_read_sequence(server_.get(), 2), UINT64_MAX); | 
|  | EXPECT_TRUE(SSL_get_dtls_read_traffic_secret(client_.get(), &data, &len, 2)); | 
|  | EXPECT_TRUE(SSL_get_dtls_read_traffic_secret(server_.get(), &data, &len, 2)); | 
|  |  | 
|  | // The client has not sent anything over epoch 3. | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(client_.get(), 3), 0u); | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(server_.get(), 3), 0u); | 
|  |  | 
|  | // The server has (ACK and NewSessionTicket), but the client has not seen it. | 
|  | EXPECT_GT(SSL_get_dtls_write_sequence(server_.get(), 3), 0u); | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(client_.get(), 3), 0u); | 
|  |  | 
|  | // Read from the client. No application data, but this will consume the | 
|  | // records. We send ACKs on a timer, so advance the clock to flush it. | 
|  | uint8_t byte; | 
|  | EXPECT_EQ(SSL_read(client_.get(), &byte, 1), -1); | 
|  | EXPECT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); | 
|  | g_current_time.tv_sec++; | 
|  | EXPECT_EQ(DTLSv1_handle_timeout(client_.get()), 1); | 
|  |  | 
|  | // The client has now picked up the ACK and is idle. | 
|  | EXPECT_TRUE(SSL_is_dtls_handshake_idle(client_.get())); | 
|  |  | 
|  | // The client has caught up to what the server wrote. | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(server_.get(), 3), | 
|  | SSL_get_dtls_read_sequence(client_.get(), 3)); | 
|  |  | 
|  | // The client saw NewSessionTicket and sent an ACK. | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(client_.get(), 3), 1u); | 
|  |  | 
|  | // Pick up the ACK from the server. | 
|  | EXPECT_EQ(SSL_read(server_.get(), &byte, 1), -1); | 
|  | EXPECT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ); | 
|  |  | 
|  | // Now the server is also idle. | 
|  | EXPECT_TRUE(SSL_is_dtls_handshake_idle(server_.get())); | 
|  |  | 
|  | // The server has seen the ACK and has caught up to the client. | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(client_.get(), 3), | 
|  | SSL_get_dtls_read_sequence(server_.get(), 3)); | 
|  |  | 
|  | // Exchange some data. Sequence numbers should increment. | 
|  | uint64_t old_seq = SSL_get_dtls_write_sequence(server_.get(), 3); | 
|  | byte = 42; | 
|  | ASSERT_EQ(SSL_write(server_.get(), &byte, 1), 1); | 
|  | ASSERT_EQ(SSL_read(client_.get(), &byte, 1), 1); | 
|  | EXPECT_EQ(SSL_get_dtls_write_sequence(server_.get(), 3), old_seq + 1); | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(client_.get(), 3), old_seq + 1); | 
|  |  | 
|  | // Now that everyone's caught up, handshake sequence numbers should be | 
|  | // non-zero and match. | 
|  | uint32_t client_hs_seq = SSL_get_dtls_handshake_write_seq(client_.get()); | 
|  | EXPECT_NE(client_hs_seq, 0u); | 
|  | EXPECT_EQ(client_hs_seq, SSL_get_dtls_handshake_read_seq(server_.get())); | 
|  | uint32_t server_hs_seq = SSL_get_dtls_handshake_write_seq(server_.get()); | 
|  | EXPECT_NE(server_hs_seq, 0u); | 
|  | EXPECT_EQ(server_hs_seq, SSL_get_dtls_handshake_read_seq(client_.get())); | 
|  |  | 
|  | // Enqueue a KeyUpdate that requests the peer do the same. The client is now | 
|  | // busy. | 
|  | ASSERT_TRUE(SSL_key_update(client_.get(), SSL_KEY_UPDATE_REQUESTED)); | 
|  | EXPECT_FALSE(SSL_is_dtls_handshake_idle(client_.get())); | 
|  | // Flush the KeyUpdate to the transport. (We currently flush incidental | 
|  | // traffic on read because callers are expected to be constantly reading.) | 
|  | // The client has an unacked message, so it is still busy. | 
|  | EXPECT_EQ(SSL_read(client_.get(), &byte, 1), -1); | 
|  | EXPECT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); | 
|  | EXPECT_FALSE(SSL_is_dtls_handshake_idle(client_.get())); | 
|  |  | 
|  | // KeyUpdates are driven by ACKs, so the client is still at epoch 3. | 
|  | EXPECT_EQ(SSL_get_dtls_write_epoch(client_.get()), 3); | 
|  |  | 
|  | // Consume the KeyUpdate on the server and wait for the ACK timer. The server | 
|  | // has now ACKed the KeyUpdate, advanced to read epoch 4, and sent a KeyUpdate | 
|  | // of its own. | 
|  | EXPECT_EQ(SSL_read(server_.get(), &byte, 1), -1); | 
|  | EXPECT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ); | 
|  | g_current_time.tv_sec++; | 
|  | EXPECT_EQ(DTLSv1_handle_timeout(server_.get()), 1); | 
|  | EXPECT_EQ(SSL_get_dtls_read_epoch(server_.get()), 4); | 
|  | EXPECT_EQ(SSL_get_dtls_read_sequence(server_.get(), 4), 0u); | 
|  |  | 
|  | // The server has an outstanding unacked KeyUpdate, so it is busy. | 
|  | EXPECT_FALSE(SSL_is_dtls_handshake_idle(server_.get())); | 
|  | EXPECT_EQ(SSL_get_dtls_write_epoch(server_.get()), 3); | 
|  |  | 
|  | // Consume the ACK and new KeyUpdate on the client. Wait the ACK timer for the | 
|  | // client to flush its ACK. | 
|  | EXPECT_EQ(SSL_read(client_.get(), &byte, 1), -1); | 
|  | EXPECT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); | 
|  | g_current_time.tv_sec++; | 
|  | EXPECT_EQ(DTLSv1_handle_timeout(client_.get()), 1); | 
|  |  | 
|  | // The client has now seen the ACK to its KeyUpdate, advancing its write | 
|  | // state, and seen the server's KeyUpdate, advancing its read state. It is | 
|  | // now idle. | 
|  | EXPECT_TRUE(SSL_is_dtls_handshake_idle(client_.get())); | 
|  | EXPECT_EQ(SSL_get_dtls_read_epoch(client_.get()), 4); | 
|  | EXPECT_EQ(SSL_get_dtls_write_epoch(client_.get()), 4); | 
|  |  | 
|  | // Both sides now have epoch 4 of the client write channel. | 
|  | check_matching_secret(/*reader=*/server_.get(), /*writer=*/client_.get(), 4); | 
|  |  | 
|  | // Finally, consume the ACK on the server. The server applies the KeyUpdate | 
|  | // and is also idle. | 
|  | EXPECT_EQ(SSL_read(server_.get(), &byte, 1), -1); | 
|  | EXPECT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ); | 
|  | EXPECT_TRUE(SSL_is_dtls_handshake_idle(server_.get())); | 
|  | EXPECT_EQ(SSL_get_dtls_read_epoch(server_.get()), 4); | 
|  | EXPECT_EQ(SSL_get_dtls_write_epoch(server_.get()), 4); | 
|  |  | 
|  | // Both sides now have epoch 4 of the server write channel. | 
|  | check_matching_secret(/*reader=*/client_.get(), /*writer=*/server_.get(), 4); | 
|  |  | 
|  | // Both sides still retain read epoch 3 because neither side has received data | 
|  | // at epoch 4 and cannot be sure the ACK has gotten through. | 
|  | EXPECT_TRUE(SSL_get_dtls_read_traffic_secret(client_.get(), &data, &len, 3)); | 
|  | EXPECT_TRUE(SSL_get_dtls_read_traffic_secret(server_.get(), &data, &len, 3)); | 
|  |  | 
|  | // Handshake sequence numbers should have incremented. | 
|  | EXPECT_EQ(SSL_get_dtls_handshake_write_seq(client_.get()), client_hs_seq + 1); | 
|  | EXPECT_EQ(SSL_get_dtls_handshake_read_seq(server_.get()), client_hs_seq + 1); | 
|  | EXPECT_EQ(SSL_get_dtls_handshake_write_seq(server_.get()), server_hs_seq + 1); | 
|  | EXPECT_EQ(SSL_get_dtls_handshake_read_seq(client_.get()), server_hs_seq + 1); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, OneSidedShutdown) { | 
|  | // SSL_shutdown is a no-op in DTLS. | 
|  | if (is_dtls()) { | 
|  | return; | 
|  | } | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | // Shut down half the connection. |SSL_shutdown| will return 0 to signal only | 
|  | // one side has shut down. | 
|  | ASSERT_EQ(SSL_shutdown(client_.get()), 0); | 
|  |  | 
|  | // Reading from the server should consume the EOF. | 
|  | uint8_t byte; | 
|  | ASSERT_EQ(SSL_read(server_.get(), &byte, 1), 0); | 
|  | ASSERT_EQ(SSL_get_error(server_.get(), 0), SSL_ERROR_ZERO_RETURN); | 
|  |  | 
|  | // However, the server may continue to write data and then shut down the | 
|  | // connection. | 
|  | byte = 42; | 
|  | ASSERT_EQ(SSL_write(server_.get(), &byte, 1), 1); | 
|  | ASSERT_EQ(SSL_read(client_.get(), &byte, 1), 1); | 
|  | ASSERT_EQ(byte, 42); | 
|  |  | 
|  | // The server may then shutdown the connection. | 
|  | EXPECT_EQ(SSL_shutdown(server_.get()), 1); | 
|  | EXPECT_EQ(SSL_shutdown(client_.get()), 1); | 
|  | } | 
|  |  | 
|  | // Test that, after calling |SSL_shutdown|, |SSL_write| fails. | 
|  | TEST_P(SSLVersionTest, WriteAfterShutdown) { | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | for (SSL *ssl : {client_.get(), server_.get()}) { | 
|  | SCOPED_TRACE(SSL_is_server(ssl) ? "server" : "client"); | 
|  |  | 
|  | bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(mem); | 
|  | SSL_set0_wbio(ssl, bssl::UpRef(mem).release()); | 
|  |  | 
|  | // Shut down half the connection. |SSL_shutdown| will return 0 to signal | 
|  | // only one side has shut down. | 
|  | ASSERT_EQ(SSL_shutdown(ssl), 0); | 
|  |  | 
|  | // |ssl| should have written an alert to the transport. | 
|  | const uint8_t *unused; | 
|  | size_t len; | 
|  | ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
|  | EXPECT_NE(0u, len); | 
|  | EXPECT_TRUE(BIO_reset(mem.get())); | 
|  |  | 
|  | // Writing should fail. | 
|  | EXPECT_EQ(-1, SSL_write(ssl, "a", 1)); | 
|  |  | 
|  | // Nothing should be written to the transport. | 
|  | ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
|  | EXPECT_EQ(0u, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test that, after sending a fatal alert in a failed |SSL_read|, |SSL_write| | 
|  | // fails. | 
|  | TEST_P(SSLVersionTest, WriteAfterReadSentFatalAlert) { | 
|  | // Decryption failures are not fatal in DTLS. | 
|  | if (is_dtls()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | // Save the write |BIO|s as the test will overwrite them. | 
|  | bssl::UniquePtr<BIO> client_wbio = bssl::UpRef(SSL_get_wbio(client_.get())); | 
|  | bssl::UniquePtr<BIO> server_wbio = bssl::UpRef(SSL_get_wbio(server_.get())); | 
|  |  | 
|  | for (bool test_server : {false, true}) { | 
|  | SCOPED_TRACE(test_server ? "server" : "client"); | 
|  | SSL *ssl = test_server ? server_.get() : client_.get(); | 
|  | BIO *other_wbio = test_server ? client_wbio.get() : server_wbio.get(); | 
|  |  | 
|  | bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(mem); | 
|  | SSL_set0_wbio(ssl, bssl::UpRef(mem).release()); | 
|  |  | 
|  | // Read an invalid record from the peer. | 
|  | static const uint8_t kInvalidRecord[] = "invalid record"; | 
|  | EXPECT_EQ(int{sizeof(kInvalidRecord)}, | 
|  | BIO_write(other_wbio, kInvalidRecord, sizeof(kInvalidRecord))); | 
|  | char buf[256]; | 
|  | EXPECT_EQ(-1, SSL_read(ssl, buf, sizeof(buf))); | 
|  |  | 
|  | // |ssl| should have written an alert to the transport. | 
|  | const uint8_t *unused; | 
|  | size_t len; | 
|  | ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
|  | EXPECT_NE(0u, len); | 
|  | EXPECT_TRUE(BIO_reset(mem.get())); | 
|  |  | 
|  | // Writing should fail. | 
|  | EXPECT_EQ(-1, SSL_write(ssl, "a", 1)); | 
|  |  | 
|  | // Nothing should be written to the transport. | 
|  | ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
|  | EXPECT_EQ(0u, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test that, after sending a fatal alert from the handshake, |SSL_write| fails. | 
|  | TEST_P(SSLVersionTest, WriteAfterHandshakeSentFatalAlert) { | 
|  | for (bool test_server : {false, true}) { | 
|  | SCOPED_TRACE(test_server ? "server" : "client"); | 
|  |  | 
|  | bssl::UniquePtr<SSL> ssl( | 
|  | SSL_new(test_server ? server_ctx_.get() : client_ctx_.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | if (test_server) { | 
|  | SSL_set_accept_state(ssl.get()); | 
|  | } else { | 
|  | SSL_set_connect_state(ssl.get()); | 
|  | } | 
|  |  | 
|  | std::vector<uint8_t> invalid; | 
|  | if (is_dtls()) { | 
|  | // In DTLS, invalid records are discarded. To cause the handshake to fail, | 
|  | // use a valid handshake record with invalid contents. | 
|  | invalid.push_back(SSL3_RT_HANDSHAKE); | 
|  | invalid.push_back(DTLS1_VERSION >> 8); | 
|  | invalid.push_back(DTLS1_VERSION & 0xff); | 
|  | // epoch and sequence_number | 
|  | for (int i = 0; i < 8; i++) { | 
|  | invalid.push_back(0); | 
|  | } | 
|  | // A one-byte fragment is invalid. | 
|  | invalid.push_back(0); | 
|  | invalid.push_back(1); | 
|  | // Arbitrary contents. | 
|  | invalid.push_back(0); | 
|  | } else { | 
|  | invalid = {'i', 'n', 'v', 'a', 'l', 'i', 'd'}; | 
|  | } | 
|  | bssl::UniquePtr<BIO> rbio(BIO_new_mem_buf(invalid.data(), invalid.size())); | 
|  | ASSERT_TRUE(rbio); | 
|  | SSL_set0_rbio(ssl.get(), rbio.release()); | 
|  |  | 
|  | bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(mem); | 
|  | SSL_set0_wbio(ssl.get(), bssl::UpRef(mem).release()); | 
|  |  | 
|  | // The handshake should fail. | 
|  | EXPECT_EQ(-1, SSL_do_handshake(ssl.get())); | 
|  | EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), -1)); | 
|  | uint32_t err = ERR_get_error(); | 
|  |  | 
|  | // |ssl| should have written an alert (and, in the client's case, a | 
|  | // ClientHello) to the transport. | 
|  | const uint8_t *unused; | 
|  | size_t len; | 
|  | ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
|  | EXPECT_NE(0u, len); | 
|  | EXPECT_TRUE(BIO_reset(mem.get())); | 
|  |  | 
|  | // Writing should fail, with the same error as the handshake. | 
|  | EXPECT_EQ(-1, SSL_write(ssl.get(), "a", 1)); | 
|  | EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), -1)); | 
|  | EXPECT_EQ(err, ERR_get_error()); | 
|  |  | 
|  | // Nothing should be written to the transport. | 
|  | ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
|  | EXPECT_EQ(0u, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test that, after seeing TLS 1.2 in response to early data, |SSL_write| | 
|  | // continues to report |SSL_R_WRONG_VERSION_ON_EARLY_DATA|. See | 
|  | // https://crbug.com/1078515. | 
|  | TEST(SSLTest, WriteAfterWrongVersionOnEarlyData) { | 
|  | // Set up some 0-RTT-enabled contexts. | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | SSL_CTX_set_early_data_enabled(client_ctx.get(), 1); | 
|  | SSL_CTX_set_early_data_enabled(server_ctx.get(), 1); | 
|  | SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | // Get an early-data-capable session. | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx.get(), server_ctx.get()); | 
|  | ASSERT_TRUE(session); | 
|  | EXPECT_TRUE(SSL_SESSION_early_data_capable(session.get())); | 
|  |  | 
|  | // Offer the session to the server, but now the server speaks TLS 1.2. | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | SSL_set_session(client.get(), session.get()); | 
|  | EXPECT_TRUE(SSL_set_max_proto_version(server.get(), TLS1_2_VERSION)); | 
|  |  | 
|  | // The client handshake initially succeeds in the early data state. | 
|  | EXPECT_EQ(1, SSL_do_handshake(client.get())); | 
|  | EXPECT_TRUE(SSL_in_early_data(client.get())); | 
|  |  | 
|  | // The server processes the ClientHello and negotiates TLS 1.2. | 
|  | EXPECT_EQ(-1, SSL_do_handshake(server.get())); | 
|  | EXPECT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server.get(), -1)); | 
|  | EXPECT_EQ(TLS1_2_VERSION, SSL_version(server.get())); | 
|  |  | 
|  | // Capture the client's output. | 
|  | bssl::UniquePtr<BIO> mem(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(mem); | 
|  | SSL_set0_wbio(client.get(), bssl::UpRef(mem).release()); | 
|  |  | 
|  | // The client processes the ServerHello and fails. | 
|  | EXPECT_EQ(-1, SSL_do_handshake(client.get())); | 
|  | EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(client.get(), -1)); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, | 
|  | SSL_R_WRONG_VERSION_ON_EARLY_DATA)); | 
|  |  | 
|  | // The client should have written an alert to the transport. | 
|  | const uint8_t *unused; | 
|  | size_t len; | 
|  | ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
|  | EXPECT_NE(0u, len); | 
|  | EXPECT_TRUE(BIO_reset(mem.get())); | 
|  |  | 
|  | // Writing should fail, with the same error as the handshake. | 
|  | EXPECT_EQ(-1, SSL_write(client.get(), "a", 1)); | 
|  | EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(client.get(), -1)); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, | 
|  | SSL_R_WRONG_VERSION_ON_EARLY_DATA)); | 
|  |  | 
|  | // Nothing should be written to the transport. | 
|  | ASSERT_TRUE(BIO_mem_contents(mem.get(), &unused, &len)); | 
|  | EXPECT_EQ(0u, len); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SessionDuplication) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | SSL_SESSION *session0 = SSL_get_session(client.get()); | 
|  | bssl::UniquePtr<SSL_SESSION> session1 = | 
|  | bssl::SSL_SESSION_dup(session0, SSL_SESSION_DUP_ALL); | 
|  | ASSERT_TRUE(session1); | 
|  |  | 
|  | session1->not_resumable = false; | 
|  |  | 
|  | uint8_t *s0_bytes, *s1_bytes; | 
|  | size_t s0_len, s1_len; | 
|  |  | 
|  | ASSERT_TRUE(SSL_SESSION_to_bytes(session0, &s0_bytes, &s0_len)); | 
|  | bssl::UniquePtr<uint8_t> free_s0(s0_bytes); | 
|  |  | 
|  | ASSERT_TRUE(SSL_SESSION_to_bytes(session1.get(), &s1_bytes, &s1_len)); | 
|  | bssl::UniquePtr<uint8_t> free_s1(s1_bytes); | 
|  |  | 
|  | EXPECT_EQ(Bytes(s0_bytes, s0_len), Bytes(s1_bytes, s1_len)); | 
|  | } | 
|  |  | 
|  | static void ExpectFDs(const SSL *ssl, int rfd, int wfd) { | 
|  | EXPECT_EQ(rfd, SSL_get_fd(ssl)); | 
|  | EXPECT_EQ(rfd, SSL_get_rfd(ssl)); | 
|  | EXPECT_EQ(wfd, SSL_get_wfd(ssl)); | 
|  |  | 
|  | // The wrapper BIOs are always equal when fds are equal, even if set | 
|  | // individually. | 
|  | if (rfd == wfd) { | 
|  | EXPECT_EQ(SSL_get_rbio(ssl), SSL_get_wbio(ssl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SetFD) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | // Test setting different read and write FDs. | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); | 
|  | EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2)); | 
|  | ExpectFDs(ssl.get(), 1, 2); | 
|  |  | 
|  | // Test setting the same FD. | 
|  | ssl.reset(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); | 
|  | ExpectFDs(ssl.get(), 1, 1); | 
|  |  | 
|  | // Test setting the same FD one side at a time. | 
|  | ssl.reset(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); | 
|  | EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); | 
|  | ExpectFDs(ssl.get(), 1, 1); | 
|  |  | 
|  | // Test setting the same FD in the other order. | 
|  | ssl.reset(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); | 
|  | EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); | 
|  | ExpectFDs(ssl.get(), 1, 1); | 
|  |  | 
|  | // Test changing the read FD partway through. | 
|  | ssl.reset(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); | 
|  | EXPECT_TRUE(SSL_set_rfd(ssl.get(), 2)); | 
|  | ExpectFDs(ssl.get(), 2, 1); | 
|  |  | 
|  | // Test changing the write FD partway through. | 
|  | ssl.reset(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); | 
|  | EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2)); | 
|  | ExpectFDs(ssl.get(), 1, 2); | 
|  |  | 
|  | // Test a no-op change to the read FD partway through. | 
|  | ssl.reset(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); | 
|  | EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1)); | 
|  | ExpectFDs(ssl.get(), 1, 1); | 
|  |  | 
|  | // Test a no-op change to the write FD partway through. | 
|  | ssl.reset(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | EXPECT_TRUE(SSL_set_fd(ssl.get(), 1)); | 
|  | EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1)); | 
|  | ExpectFDs(ssl.get(), 1, 1); | 
|  |  | 
|  | // ASan builds will implicitly test that the internal |BIO| reference-counting | 
|  | // is correct. | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SetBIO) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | bssl::UniquePtr<BIO> bio1(BIO_new(BIO_s_mem())), bio2(BIO_new(BIO_s_mem())), | 
|  | bio3(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(ssl); | 
|  | ASSERT_TRUE(bio1); | 
|  | ASSERT_TRUE(bio2); | 
|  | ASSERT_TRUE(bio3); | 
|  |  | 
|  | // SSL_set_bio takes one reference when the parameters are the same. | 
|  | BIO_up_ref(bio1.get()); | 
|  | SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); | 
|  |  | 
|  | // Repeating the call does nothing. | 
|  | SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); | 
|  |  | 
|  | // It takes one reference each when the parameters are different. | 
|  | BIO_up_ref(bio2.get()); | 
|  | BIO_up_ref(bio3.get()); | 
|  | SSL_set_bio(ssl.get(), bio2.get(), bio3.get()); | 
|  |  | 
|  | // Repeating the call does nothing. | 
|  | SSL_set_bio(ssl.get(), bio2.get(), bio3.get()); | 
|  |  | 
|  | // It takes one reference when changing only wbio. | 
|  | BIO_up_ref(bio1.get()); | 
|  | SSL_set_bio(ssl.get(), bio2.get(), bio1.get()); | 
|  |  | 
|  | // It takes one reference when changing only rbio and the two are different. | 
|  | BIO_up_ref(bio3.get()); | 
|  | SSL_set_bio(ssl.get(), bio3.get(), bio1.get()); | 
|  |  | 
|  | // If setting wbio to rbio, it takes no additional references. | 
|  | SSL_set_bio(ssl.get(), bio3.get(), bio3.get()); | 
|  |  | 
|  | // From there, wbio may be switched to something else. | 
|  | BIO_up_ref(bio1.get()); | 
|  | SSL_set_bio(ssl.get(), bio3.get(), bio1.get()); | 
|  |  | 
|  | // If setting rbio to wbio, it takes no additional references. | 
|  | SSL_set_bio(ssl.get(), bio1.get(), bio1.get()); | 
|  |  | 
|  | // From there, rbio may be switched to something else, but, for historical | 
|  | // reasons, it takes a reference to both parameters. | 
|  | BIO_up_ref(bio1.get()); | 
|  | BIO_up_ref(bio2.get()); | 
|  | SSL_set_bio(ssl.get(), bio2.get(), bio1.get()); | 
|  |  | 
|  | // ASAN builds will implicitly test that the internal |BIO| reference-counting | 
|  | // is correct. | 
|  | } | 
|  |  | 
|  | static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { return 1; } | 
|  |  | 
|  | TEST_P(SSLVersionTest, GetPeerCertificate) { | 
|  | ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); | 
|  |  | 
|  | // Configure both client and server to accept any certificate. | 
|  | SSL_CTX_set_verify(client_ctx_.get(), | 
|  | SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
|  | nullptr); | 
|  | SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, nullptr); | 
|  | SSL_CTX_set_verify(server_ctx_.get(), | 
|  | SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
|  | nullptr); | 
|  | SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, nullptr); | 
|  |  | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | // Client and server should both see the leaf certificate. | 
|  | bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get())); | 
|  | ASSERT_TRUE(peer); | 
|  | ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0); | 
|  |  | 
|  | peer.reset(SSL_get_peer_certificate(client_.get())); | 
|  | ASSERT_TRUE(peer); | 
|  | ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0); | 
|  |  | 
|  | // However, for historical reasons, the X509 chain includes the leaf on the | 
|  | // client, but does not on the server. | 
|  | EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(client_.get())), 1u); | 
|  | EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(client_.get())), | 
|  | 1u); | 
|  |  | 
|  | EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(server_.get())), 0u); | 
|  | EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(server_.get())), | 
|  | 1u); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, NoPeerCertificate) { | 
|  | SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER, nullptr); | 
|  | SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, nullptr); | 
|  | SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, nullptr); | 
|  |  | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | // Server should not see a peer certificate. | 
|  | bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get())); | 
|  | ASSERT_FALSE(peer); | 
|  | ASSERT_FALSE(SSL_get0_peer_certificates(server_.get())); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, RetainOnlySHA256OfCerts) { | 
|  | uint8_t *cert_der = nullptr; | 
|  | int cert_der_len = i2d_X509(cert_.get(), &cert_der); | 
|  | ASSERT_GE(cert_der_len, 0); | 
|  | bssl::UniquePtr<uint8_t> free_cert_der(cert_der); | 
|  |  | 
|  | uint8_t cert_sha256[SHA256_DIGEST_LENGTH]; | 
|  | SHA256(cert_der, cert_der_len, cert_sha256); | 
|  |  | 
|  | ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); | 
|  |  | 
|  | // Configure both client and server to accept any certificate, but the | 
|  | // server must retain only the SHA-256 of the peer. | 
|  | SSL_CTX_set_verify(client_ctx_.get(), | 
|  | SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
|  | nullptr); | 
|  | SSL_CTX_set_verify(server_ctx_.get(), | 
|  | SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
|  | nullptr); | 
|  | SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, nullptr); | 
|  | SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, nullptr); | 
|  | SSL_CTX_set_retain_only_sha256_of_client_certs(server_ctx_.get(), 1); | 
|  |  | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | // The peer certificate has been dropped. | 
|  | bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get())); | 
|  | EXPECT_FALSE(peer); | 
|  |  | 
|  | SSL_SESSION *session = SSL_get_session(server_.get()); | 
|  | EXPECT_TRUE(SSL_SESSION_has_peer_sha256(session)); | 
|  |  | 
|  | const uint8_t *peer_sha256; | 
|  | size_t peer_sha256_len; | 
|  | SSL_SESSION_get0_peer_sha256(session, &peer_sha256, &peer_sha256_len); | 
|  | EXPECT_EQ(Bytes(cert_sha256), Bytes(peer_sha256, peer_sha256_len)); | 
|  | } | 
|  |  | 
|  | // Tests that our ClientHellos do not change unexpectedly. These are purely | 
|  | // change detection tests. If they fail as part of an intentional ClientHello | 
|  | // change, update the test vector. | 
|  | TEST(SSLTest, ClientHello) { | 
|  | struct { | 
|  | uint16_t max_version; | 
|  | std::vector<uint8_t> expected; | 
|  | } kTests[] = { | 
|  | {TLS1_VERSION, | 
|  | {0x16, 0x03, 0x01, 0x00, 0x58, 0x01, 0x00, 0x00, 0x54, 0x03, 0x01, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0c, 0xc0, 0x09, | 
|  | 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x01, 0x00, | 
|  | 0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, | 
|  | 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, | 
|  | 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}}, | 
|  | {TLS1_1_VERSION, | 
|  | {0x16, 0x03, 0x01, 0x00, 0x58, 0x01, 0x00, 0x00, 0x54, 0x03, 0x02, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0c, 0xc0, 0x09, | 
|  | 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x01, 0x00, | 
|  | 0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, | 
|  | 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, | 
|  | 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}}, | 
|  | {TLS1_2_VERSION, | 
|  | {0x16, 0x03, 0x01, 0x00, 0x80, 0x01, 0x00, 0x00, 0x7c, 0x03, 0x03, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1c, 0xcc, 0xa9, | 
|  | 0xcc, 0xa8, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, 0xc0, 0x09, | 
|  | 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, | 
|  | 0x00, 0x35, 0x01, 0x00, 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, | 
|  | 0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, | 
|  | 0x17, 0x00, 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, | 
|  | 0x00, 0x00, 0x0d, 0x00, 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, | 
|  | 0x01, 0x05, 0x03, 0x08, 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, | 
|  | 0x01}}, | 
|  | // TODO(davidben): Add a change detector for TLS 1.3 once the spec and our | 
|  | // implementation has settled enough that it won't change. | 
|  | }; | 
|  |  | 
|  | for (const auto &t : kTests) { | 
|  | SCOPED_TRACE(t.max_version); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | // Our default cipher list varies by CPU capabilities, so manually place the | 
|  | // ChaCha20 ciphers in front. | 
|  | const char *cipher_list = "CHACHA20:ALL"; | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), t.max_version)); | 
|  | ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), cipher_list)); | 
|  |  | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | std::vector<uint8_t> client_hello; | 
|  | ASSERT_TRUE(GetClientHello(ssl.get(), &client_hello)); | 
|  |  | 
|  | // Zero the client_random. | 
|  | constexpr size_t kRandomOffset = 1 + 2 + 2 +  // record header | 
|  | 1 + 3 +      // handshake message header | 
|  | 2;           // client_version | 
|  | ASSERT_GE(client_hello.size(), kRandomOffset + SSL3_RANDOM_SIZE); | 
|  | OPENSSL_memset(client_hello.data() + kRandomOffset, 0, SSL3_RANDOM_SIZE); | 
|  |  | 
|  | if (client_hello != t.expected) { | 
|  | ADD_FAILURE() << "ClientHellos did not match."; | 
|  | // Print the value manually so it is easier to update the test vector. | 
|  | for (size_t i = 0; i < client_hello.size(); i += 12) { | 
|  | printf("     %c", i == 0 ? '{' : ' '); | 
|  | for (size_t j = i; j < client_hello.size() && j < i + 12; j++) { | 
|  | if (j > i) { | 
|  | printf(" "); | 
|  | } | 
|  | printf("0x%02x", client_hello[j]); | 
|  | if (j < client_hello.size() - 1) { | 
|  | printf(","); | 
|  | } | 
|  | } | 
|  | if (i + 12 >= client_hello.size()) { | 
|  | printf("}},"); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ExpectSessionReused(SSL_CTX *client_ctx, SSL_CTX *server_ctx, | 
|  | SSL_SESSION *session, bool want_reused) { | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ClientConfig config; | 
|  | config.session = session; | 
|  | ASSERT_TRUE( | 
|  | ConnectClientAndServer(&client, &server, client_ctx, server_ctx, config)); | 
|  |  | 
|  | EXPECT_EQ(SSL_session_reused(client.get()), SSL_session_reused(server.get())); | 
|  |  | 
|  | bool was_reused = !!SSL_session_reused(client.get()); | 
|  | EXPECT_EQ(was_reused, want_reused); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<SSL_SESSION> ExpectSessionRenewed(SSL_CTX *client_ctx, | 
|  | SSL_CTX *server_ctx, | 
|  | SSL_SESSION *session) { | 
|  | g_last_session = nullptr; | 
|  | SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ClientConfig config; | 
|  | config.session = session; | 
|  | if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx, | 
|  | config) || | 
|  | !FlushNewSessionTickets(client.get(), server.get())) { | 
|  | fprintf(stderr, "Failed to connect client and server.\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) { | 
|  | fprintf(stderr, "Client and server were inconsistent.\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!SSL_session_reused(client.get())) { | 
|  | fprintf(stderr, "Session was not reused.\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SSL_CTX_sess_set_new_cb(client_ctx, nullptr); | 
|  |  | 
|  | if (!g_last_session) { | 
|  | fprintf(stderr, "Client did not receive a renewed session.\n"); | 
|  | return nullptr; | 
|  | } | 
|  | return std::move(g_last_session); | 
|  | } | 
|  |  | 
|  | static void ExpectTicketKeyChanged(SSL_CTX *ctx, uint8_t *inout_key, | 
|  | bool changed) { | 
|  | uint8_t new_key[kTicketKeyLen]; | 
|  | // May return 0, 1 or 48. | 
|  | ASSERT_EQ(SSL_CTX_get_tlsext_ticket_keys(ctx, new_key, kTicketKeyLen), 1); | 
|  | if (changed) { | 
|  | ASSERT_NE(Bytes(inout_key, kTicketKeyLen), Bytes(new_key)); | 
|  | } else { | 
|  | ASSERT_EQ(Bytes(inout_key, kTicketKeyLen), Bytes(new_key)); | 
|  | } | 
|  | OPENSSL_memcpy(inout_key, new_key, kTicketKeyLen); | 
|  | } | 
|  |  | 
|  | static int SwitchSessionIDContextSNI(SSL *ssl, int *out_alert, void *arg) { | 
|  | static const uint8_t kContext[] = {3}; | 
|  |  | 
|  | if (!SSL_set_session_id_context(ssl, kContext, sizeof(kContext))) { | 
|  | return SSL_TLSEXT_ERR_ALERT_FATAL; | 
|  | } | 
|  |  | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, SessionIDContext) { | 
|  | static const uint8_t kContext1[] = {1}; | 
|  | static const uint8_t kContext2[] = {2}; | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1, | 
|  | sizeof(kContext1))); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session); | 
|  |  | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | session.get(), | 
|  | true /* expect session reused */)); | 
|  |  | 
|  | // Change the session ID context. | 
|  | ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext2, | 
|  | sizeof(kContext2))); | 
|  |  | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | session.get(), | 
|  | false /* expect session not reused */)); | 
|  |  | 
|  | // Change the session ID context back and install an SNI callback to switch | 
|  | // it. | 
|  | ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1, | 
|  | sizeof(kContext1))); | 
|  |  | 
|  | SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), | 
|  | SwitchSessionIDContextSNI); | 
|  |  | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | session.get(), | 
|  | false /* expect session not reused */)); | 
|  |  | 
|  | // Switch the session ID context with the early callback instead. | 
|  | SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), nullptr); | 
|  | SSL_CTX_set_select_certificate_cb( | 
|  | server_ctx_.get(), | 
|  | [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
|  | static const uint8_t kContext[] = {3}; | 
|  |  | 
|  | if (!SSL_set_session_id_context(client_hello->ssl, kContext, | 
|  | sizeof(kContext))) { | 
|  | return ssl_select_cert_error; | 
|  | } | 
|  |  | 
|  | return ssl_select_cert_success; | 
|  | }); | 
|  |  | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | session.get(), | 
|  | false /* expect session not reused */)); | 
|  | } | 
|  |  | 
|  | static int RenewTicketCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv, | 
|  | EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, | 
|  | int encrypt) { | 
|  | static const uint8_t kZeros[16] = {0}; | 
|  |  | 
|  | if (encrypt) { | 
|  | OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros)); | 
|  | RAND_bytes(iv, 16); | 
|  | } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), nullptr) || | 
|  | !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), nullptr, kZeros, iv, | 
|  | encrypt)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Returning two from the callback in decrypt mode renews the | 
|  | // session in TLS 1.2 and below. | 
|  | return encrypt ? 1 : 2; | 
|  | } | 
|  |  | 
|  | static bool GetServerTicketTime(long *out, const SSL_SESSION *session) { | 
|  | const uint8_t *ticket; | 
|  | size_t ticket_len; | 
|  | SSL_SESSION_get0_ticket(session, &ticket, &ticket_len); | 
|  | if (ticket_len < 16 + 16 + SHA256_DIGEST_LENGTH) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const uint8_t *ciphertext = ticket + 16 + 16; | 
|  | size_t len = ticket_len - 16 - 16 - SHA256_DIGEST_LENGTH; | 
|  | auto plaintext = std::make_unique<uint8_t[]>(len); | 
|  |  | 
|  | static const uint8_t kZeros[16] = {0}; | 
|  | const uint8_t *iv = ticket + 16; | 
|  | bssl::ScopedEVP_CIPHER_CTX ctx; | 
|  | int len1, len2; | 
|  | if (len > INT_MAX || | 
|  | !EVP_DecryptInit_ex(ctx.get(), EVP_aes_128_cbc(), nullptr, kZeros, iv) || | 
|  | !EVP_DecryptUpdate(ctx.get(), plaintext.get(), &len1, ciphertext, | 
|  | static_cast<int>(len)) || | 
|  | !EVP_DecryptFinal_ex(ctx.get(), plaintext.get() + len1, &len2)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | len = static_cast<size_t>(len1 + len2); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method())); | 
|  | if (!ssl_ctx) { | 
|  | return false; | 
|  | } | 
|  | bssl::UniquePtr<SSL_SESSION> server_session( | 
|  | SSL_SESSION_from_bytes(plaintext.get(), len, ssl_ctx.get())); | 
|  | if (!server_session) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *out = SSL_SESSION_get_time(server_session.get()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, SessionTimeout) { | 
|  | for (bool server_test : {false, true}) { | 
|  | SCOPED_TRACE(server_test); | 
|  |  | 
|  | ASSERT_NO_FATAL_FAILURE(ResetContexts()); | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | static const time_t kStartTime = 1000; | 
|  | g_current_time.tv_sec = kStartTime; | 
|  |  | 
|  | // We are willing to use a longer lifetime for TLS 1.3 sessions as | 
|  | // resumptions still perform ECDHE. | 
|  | const time_t timeout = is_tls13() ? SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT | 
|  | : SSL_DEFAULT_SESSION_TIMEOUT; | 
|  |  | 
|  | // Both client and server must enforce session timeouts. We configure the | 
|  | // other side with a frozen clock so it never expires tickets. | 
|  | if (server_test) { | 
|  | SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback); | 
|  | SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); | 
|  | } else { | 
|  | SSL_CTX_set_current_time_cb(client_ctx_.get(), CurrentTimeCallback); | 
|  | SSL_CTX_set_current_time_cb(server_ctx_.get(), FrozenTimeCallback); | 
|  | } | 
|  |  | 
|  | // Configure a ticket callback which renews tickets. | 
|  | SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session); | 
|  |  | 
|  | // Advance the clock just behind the timeout. | 
|  | g_current_time.tv_sec += timeout - 1; | 
|  |  | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | session.get(), | 
|  | true /* expect session reused */)); | 
|  |  | 
|  | // Advance the clock one more second. | 
|  | g_current_time.tv_sec++; | 
|  |  | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | session.get(), | 
|  | false /* expect session not reused */)); | 
|  |  | 
|  | // Rewind the clock to before the session was minted. | 
|  | g_current_time.tv_sec = kStartTime - 1; | 
|  |  | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | session.get(), | 
|  | false /* expect session not reused */)); | 
|  |  | 
|  | // Renew the session 10 seconds before expiration. | 
|  | time_t new_start_time = kStartTime + timeout - 10; | 
|  | g_current_time.tv_sec = new_start_time; | 
|  | bssl::UniquePtr<SSL_SESSION> new_session = ExpectSessionRenewed( | 
|  | client_ctx_.get(), server_ctx_.get(), session.get()); | 
|  | ASSERT_TRUE(new_session); | 
|  |  | 
|  | // This new session is not the same object as before. | 
|  | EXPECT_NE(session.get(), new_session.get()); | 
|  |  | 
|  | // Check the sessions have timestamps measured from issuance. | 
|  | long session_time = 0; | 
|  | if (server_test) { | 
|  | ASSERT_TRUE(GetServerTicketTime(&session_time, new_session.get())); | 
|  | } else { | 
|  | session_time = SSL_SESSION_get_time(new_session.get()); | 
|  | } | 
|  |  | 
|  | ASSERT_EQ(session_time, g_current_time.tv_sec); | 
|  |  | 
|  | if (is_tls13()) { | 
|  | // Renewal incorporates fresh key material in TLS 1.3, so we extend the | 
|  | // lifetime TLS 1.3. | 
|  | g_current_time.tv_sec = new_start_time + timeout - 1; | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | new_session.get(), | 
|  | true /* expect session reused */)); | 
|  |  | 
|  | // The new session expires after the new timeout. | 
|  | g_current_time.tv_sec = new_start_time + timeout + 1; | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | new_session.get(), | 
|  | false /* expect session ot reused */)); | 
|  |  | 
|  | // Renew the session until it begins just past the auth timeout. | 
|  | time_t auth_end_time = kStartTime + SSL_DEFAULT_SESSION_AUTH_TIMEOUT; | 
|  | while (new_start_time < auth_end_time - 1000) { | 
|  | // Get as close as possible to target start time. | 
|  | new_start_time = | 
|  | std::min(auth_end_time - 1000, new_start_time + timeout - 1); | 
|  | g_current_time.tv_sec = new_start_time; | 
|  | new_session = ExpectSessionRenewed(client_ctx_.get(), server_ctx_.get(), | 
|  | new_session.get()); | 
|  | ASSERT_TRUE(new_session); | 
|  | } | 
|  |  | 
|  | // Now the session's lifetime is bound by the auth timeout. | 
|  | g_current_time.tv_sec = auth_end_time - 1; | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | new_session.get(), | 
|  | true /* expect session reused */)); | 
|  |  | 
|  | g_current_time.tv_sec = auth_end_time + 1; | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | new_session.get(), | 
|  | false /* expect session ot reused */)); | 
|  | } else { | 
|  | // The new session is usable just before the old expiration. | 
|  | g_current_time.tv_sec = kStartTime + timeout - 1; | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | new_session.get(), | 
|  | true /* expect session reused */)); | 
|  |  | 
|  | // Renewal does not extend the lifetime, so it is not usable beyond the | 
|  | // old expiration. | 
|  | g_current_time.tv_sec = kStartTime + timeout + 1; | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | new_session.get(), | 
|  | false /* expect session not reused */)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, DefaultTicketKeyInitialization) { | 
|  | static const uint8_t kZeroKey[kTicketKeyLen] = {}; | 
|  | uint8_t ticket_key[kTicketKeyLen]; | 
|  | ASSERT_EQ(1, SSL_CTX_get_tlsext_ticket_keys(server_ctx_.get(), ticket_key, | 
|  | kTicketKeyLen)); | 
|  | ASSERT_NE(0, OPENSSL_memcmp(ticket_key, kZeroKey, kTicketKeyLen)); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, DefaultTicketKeyRotation) { | 
|  | static const time_t kStartTime = 1001; | 
|  | g_current_time.tv_sec = kStartTime; | 
|  |  | 
|  | // We use session reuse as a proxy for ticket decryption success, hence | 
|  | // disable session timeouts. | 
|  | SSL_CTX_set_timeout(server_ctx_.get(), std::numeric_limits<uint32_t>::max()); | 
|  | SSL_CTX_set_session_psk_dhe_timeout(server_ctx_.get(), | 
|  | std::numeric_limits<uint32_t>::max()); | 
|  |  | 
|  | SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback); | 
|  | SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_OFF); | 
|  |  | 
|  | // Initialize ticket_key with the current key and check that it was | 
|  | // initialized to something, not all zeros. | 
|  | uint8_t ticket_key[kTicketKeyLen] = {0}; | 
|  | TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, | 
|  | true /* changed */)); | 
|  |  | 
|  | // Verify ticket resumption actually works. | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session); | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | session.get(), true /* reused */)); | 
|  |  | 
|  | // Advance time to just before key rotation. | 
|  | g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL - 1; | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | session.get(), true /* reused */)); | 
|  | TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, | 
|  | false /* NOT changed */)); | 
|  |  | 
|  | // Force key rotation. | 
|  | g_current_time.tv_sec += 1; | 
|  | bssl::UniquePtr<SSL_SESSION> new_session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, | 
|  | true /* changed */)); | 
|  |  | 
|  | // Resumption with both old and new ticket should work. | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | session.get(), true /* reused */)); | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | new_session.get(), true /* reused */)); | 
|  | TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, | 
|  | false /* NOT changed */)); | 
|  |  | 
|  | // Force key rotation again. Resumption with the old ticket now fails. | 
|  | g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL; | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | session.get(), false /* NOT reused */)); | 
|  | TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key, | 
|  | true /* changed */)); | 
|  |  | 
|  | // But resumption with the newer session still works. | 
|  | TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(), | 
|  | new_session.get(), true /* reused */)); | 
|  | } | 
|  |  | 
|  | static int SwitchContext(SSL *ssl, int *out_alert, void *arg) { | 
|  | SSL_CTX *ctx = reinterpret_cast<SSL_CTX *>(arg); | 
|  | SSL_set_SSL_CTX(ssl, ctx); | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, SNICallback) { | 
|  | bssl::UniquePtr<X509> cert2 = GetECDSATestCertificate(); | 
|  | ASSERT_TRUE(cert2); | 
|  | bssl::UniquePtr<EVP_PKEY> key2 = GetECDSATestKey(); | 
|  | ASSERT_TRUE(key2); | 
|  |  | 
|  | // Test that switching the |SSL_CTX| at the SNI callback behaves correctly. | 
|  | static const uint16_t kECDSAWithSHA256 = SSL_SIGN_ECDSA_SECP256R1_SHA256; | 
|  |  | 
|  | static const uint8_t kSCTList[] = {0, 6, 0, 4, 5, 6, 7, 8}; | 
|  | static const uint8_t kOCSPResponse[] = {1, 2, 3, 4}; | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); | 
|  | ASSERT_TRUE(server_ctx2); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx2.get(), cert2.get())); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx2.get(), key2.get())); | 
|  | ASSERT_TRUE(SSL_CTX_set_signed_cert_timestamp_list( | 
|  | server_ctx2.get(), kSCTList, sizeof(kSCTList))); | 
|  | ASSERT_TRUE(SSL_CTX_set_ocsp_response(server_ctx2.get(), kOCSPResponse, | 
|  | sizeof(kOCSPResponse))); | 
|  | // Historically signing preferences would be lost in some cases with the | 
|  | // SNI callback, which triggers the TLS 1.2 SHA-1 default. To ensure | 
|  | // this doesn't happen when |version| is TLS 1.2, configure the private | 
|  | // key to only sign SHA-256. | 
|  | ASSERT_TRUE(SSL_CTX_set_signing_algorithm_prefs(server_ctx2.get(), | 
|  | &kECDSAWithSHA256, 1)); | 
|  |  | 
|  | SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), SwitchContext); | 
|  | SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), server_ctx2.get()); | 
|  |  | 
|  | SSL_CTX_enable_signed_cert_timestamps(client_ctx_.get()); | 
|  | SSL_CTX_enable_ocsp_stapling(client_ctx_.get()); | 
|  |  | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | // The client should have received |cert2|. | 
|  | bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client_.get())); | 
|  | ASSERT_TRUE(peer); | 
|  | EXPECT_EQ(X509_cmp(peer.get(), cert2.get()), 0); | 
|  |  | 
|  | // The client should have received |server_ctx2|'s SCT list. | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | SSL_get0_signed_cert_timestamp_list(client_.get(), &data, &len); | 
|  | EXPECT_EQ(Bytes(kSCTList), Bytes(data, len)); | 
|  |  | 
|  | // The client should have received |server_ctx2|'s OCSP response. | 
|  | SSL_get0_ocsp_response(client_.get(), &data, &len); | 
|  | EXPECT_EQ(Bytes(kOCSPResponse), Bytes(data, len)); | 
|  | } | 
|  |  | 
|  | // Test that the early callback can swap the maximum version. | 
|  | TEST(SSLTest, EarlyCallbackVersionSwitch) { | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
|  |  | 
|  | SSL_CTX_set_select_certificate_cb( | 
|  | server_ctx.get(), | 
|  | [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
|  | if (!SSL_set_max_proto_version(client_hello->ssl, TLS1_2_VERSION)) { | 
|  | return ssl_select_cert_error; | 
|  | } | 
|  |  | 
|  | return ssl_select_cert_success; | 
|  | }); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | EXPECT_EQ(TLS1_2_VERSION, SSL_version(client.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SetVersion) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | // Set valid TLS versions. | 
|  | for (const auto &vers : kAllVersions) { | 
|  | SCOPED_TRACE(vers.name); | 
|  | if (vers.ssl_method == VersionParam::is_tls) { | 
|  | EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), vers.version)); | 
|  | EXPECT_EQ(SSL_CTX_get_max_proto_version(ctx.get()), vers.version); | 
|  | EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), vers.version)); | 
|  | EXPECT_EQ(SSL_CTX_get_min_proto_version(ctx.get()), vers.version); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Invalid TLS versions are rejected. | 
|  | EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION)); | 
|  | EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x0200)); | 
|  | EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234)); | 
|  | EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION)); | 
|  | EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x0200)); | 
|  | EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234)); | 
|  |  | 
|  | // Zero is the default version. | 
|  | EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0)); | 
|  | EXPECT_EQ(TLS1_3_VERSION, SSL_CTX_get_max_proto_version(ctx.get())); | 
|  | EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0)); | 
|  | EXPECT_EQ(TLS1_2_VERSION, SSL_CTX_get_min_proto_version(ctx.get())); | 
|  |  | 
|  | // SSL 3.0 is not available. | 
|  | EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), SSL3_VERSION)); | 
|  |  | 
|  | ctx.reset(SSL_CTX_new(DTLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | // Set valid DTLS versions. | 
|  | for (const auto &vers : kAllVersions) { | 
|  | SCOPED_TRACE(vers.name); | 
|  | if (vers.ssl_method == VersionParam::is_dtls) { | 
|  | EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), vers.version)); | 
|  | EXPECT_EQ(SSL_CTX_get_max_proto_version(ctx.get()), vers.version); | 
|  | EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), vers.version)); | 
|  | EXPECT_EQ(SSL_CTX_get_min_proto_version(ctx.get()), vers.version); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Invalid DTLS versions are rejected. | 
|  | EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION)); | 
|  | EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */)); | 
|  | EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */)); | 
|  | EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234)); | 
|  | EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION)); | 
|  | EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */)); | 
|  | EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */)); | 
|  | EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234)); | 
|  |  | 
|  | // Zero is the default version. | 
|  | EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0)); | 
|  | EXPECT_EQ(DTLS1_2_VERSION, SSL_CTX_get_max_proto_version(ctx.get())); | 
|  | EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0)); | 
|  | EXPECT_EQ(DTLS1_2_VERSION, SSL_CTX_get_min_proto_version(ctx.get())); | 
|  | } | 
|  |  | 
|  | static const char *GetVersionName(uint16_t version) { | 
|  | switch (version) { | 
|  | case TLS1_VERSION: | 
|  | return "TLSv1"; | 
|  | case TLS1_1_VERSION: | 
|  | return "TLSv1.1"; | 
|  | case TLS1_2_VERSION: | 
|  | return "TLSv1.2"; | 
|  | case TLS1_3_VERSION: | 
|  | return "TLSv1.3"; | 
|  | case DTLS1_VERSION: | 
|  | return "DTLSv1"; | 
|  | case DTLS1_2_VERSION: | 
|  | return "DTLSv1.2"; | 
|  | case DTLS1_3_VERSION: | 
|  | return "DTLSv1.3"; | 
|  | default: | 
|  | return "???"; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, Version) { | 
|  | ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), | 
|  | server_ctx_.get())); | 
|  | // Before the handshake, |SSL_version| reports some placeholder value. | 
|  | const uint16_t placeholder = is_dtls() ? DTLS1_2_VERSION : TLS1_2_VERSION; | 
|  | EXPECT_EQ(SSL_version(client_.get()), placeholder); | 
|  | EXPECT_EQ(SSL_version(server_.get()), placeholder); | 
|  |  | 
|  | // After the handshake, |SSL_version| reports the version. | 
|  | ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
|  | EXPECT_EQ(SSL_version(client_.get()), version()); | 
|  | EXPECT_EQ(SSL_version(server_.get()), version()); | 
|  |  | 
|  | // Test the version name is reported as expected. | 
|  | const char *version_name = GetVersionName(version()); | 
|  | EXPECT_EQ(strcmp(version_name, SSL_get_version(client_.get())), 0); | 
|  | EXPECT_EQ(strcmp(version_name, SSL_get_version(server_.get())), 0); | 
|  |  | 
|  | // Test SSL_SESSION reports the same name. | 
|  | const char *client_name = | 
|  | SSL_SESSION_get_version(SSL_get_session(client_.get())); | 
|  | const char *server_name = | 
|  | SSL_SESSION_get_version(SSL_get_session(server_.get())); | 
|  | EXPECT_EQ(strcmp(version_name, client_name), 0); | 
|  | EXPECT_EQ(strcmp(version_name, server_name), 0); | 
|  |  | 
|  | // |SSL_clear| should reset the |SSL|s to the original state. | 
|  | ASSERT_TRUE(SSL_clear(client_.get())); | 
|  | ASSERT_TRUE(SSL_clear(server_.get())); | 
|  | EXPECT_EQ(SSL_version(client_.get()), placeholder); | 
|  | EXPECT_EQ(SSL_version(server_.get()), placeholder); | 
|  | } | 
|  |  | 
|  | // Tests that that |SSL_get_pending_cipher| is available during the ALPN | 
|  | // selection callback. | 
|  | TEST_P(SSLVersionTest, ALPNCipherAvailable) { | 
|  | ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); | 
|  |  | 
|  | static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'}; | 
|  | ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos, | 
|  | sizeof(kALPNProtos)), | 
|  | 0); | 
|  |  | 
|  | // The ALPN callback does not fail the handshake on error, so have the | 
|  | // callback write a boolean. | 
|  | std::pair<uint16_t, bool> callback_state(version(), false); | 
|  | SSL_CTX_set_alpn_select_cb( | 
|  | server_ctx_.get(), | 
|  | [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, | 
|  | unsigned in_len, void *arg) -> int { | 
|  | auto state = reinterpret_cast<std::pair<uint16_t, bool> *>(arg); | 
|  | if (SSL_get_pending_cipher(ssl) != nullptr && | 
|  | SSL_version(ssl) == state->first) { | 
|  | state->second = true; | 
|  | } | 
|  | return SSL_TLSEXT_ERR_NOACK; | 
|  | }, | 
|  | &callback_state); | 
|  |  | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | ASSERT_TRUE(callback_state.second); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, SSLClearSessionResumption) { | 
|  | // Skip this for TLS 1.3. TLS 1.3's ticket mechanism is incompatible with this | 
|  | // API pattern. | 
|  | if (is_tls13()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | shed_handshake_config_ = false; | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | EXPECT_FALSE(SSL_session_reused(client_.get())); | 
|  | EXPECT_FALSE(SSL_session_reused(server_.get())); | 
|  |  | 
|  | // Reset everything. | 
|  | ASSERT_TRUE(SSL_clear(client_.get())); | 
|  | ASSERT_TRUE(SSL_clear(server_.get())); | 
|  |  | 
|  | // Attempt to connect a second time. | 
|  | ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
|  |  | 
|  | // |SSL_clear| should implicitly offer the previous session to the server. | 
|  | EXPECT_TRUE(SSL_session_reused(client_.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server_.get())); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, SSLClearFailsWithShedding) { | 
|  | shed_handshake_config_ = false; | 
|  | ASSERT_TRUE(Connect()); | 
|  | ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
|  |  | 
|  | // Reset everything. | 
|  | ASSERT_TRUE(SSL_clear(client_.get())); | 
|  | ASSERT_TRUE(SSL_clear(server_.get())); | 
|  |  | 
|  | // Now enable shedding, and connect a second time. | 
|  | shed_handshake_config_ = true; | 
|  | ASSERT_TRUE(Connect()); | 
|  | ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
|  |  | 
|  | // |SSL_clear| should now fail. | 
|  | ASSERT_FALSE(SSL_clear(client_.get())); | 
|  | ASSERT_FALSE(SSL_clear(server_.get())); | 
|  | } | 
|  |  | 
|  | static bool ChainsEqual(const STACK_OF(X509) *chain, | 
|  | const std::vector<X509 *> &expected) { | 
|  | if (sk_X509_num(chain) != expected.size()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < expected.size(); i++) { | 
|  | if (X509_cmp(sk_X509_value(chain, i), expected[i]) != 0) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool BuffersEqual(const STACK_OF(CRYPTO_BUFFER) *chain, | 
|  | const std::vector<CRYPTO_BUFFER *> &expected) { | 
|  | if (sk_CRYPTO_BUFFER_num(chain) != expected.size()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < expected.size(); i++) { | 
|  | const CRYPTO_BUFFER *buf = sk_CRYPTO_BUFFER_value(chain, i); | 
|  | if (Bytes(CRYPTO_BUFFER_data(buf), CRYPTO_BUFFER_len(buf)) != | 
|  | Bytes(CRYPTO_BUFFER_data(expected[i]), | 
|  | CRYPTO_BUFFER_len(expected[i]))) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, AutoChain) { | 
|  | cert_ = GetChainTestCertificate(); | 
|  | ASSERT_TRUE(cert_); | 
|  | key_ = GetChainTestKey(); | 
|  | ASSERT_TRUE(key_); | 
|  | bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate(); | 
|  | ASSERT_TRUE(intermediate); | 
|  |  | 
|  | ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); | 
|  | ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); | 
|  |  | 
|  | // Configure both client and server to accept any certificate. Add | 
|  | // |intermediate| to the cert store. | 
|  | ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx_.get()), | 
|  | intermediate.get())); | 
|  | ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(server_ctx_.get()), | 
|  | intermediate.get())); | 
|  | SSL_CTX_set_verify(client_ctx_.get(), | 
|  | SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
|  | nullptr); | 
|  | SSL_CTX_set_verify(server_ctx_.get(), | 
|  | SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
|  | nullptr); | 
|  | SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, nullptr); | 
|  | SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, nullptr); | 
|  |  | 
|  | // By default, the client and server should each only send the leaf. | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | EXPECT_TRUE( | 
|  | ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), {cert_.get()})); | 
|  | EXPECT_TRUE( | 
|  | ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), {cert_.get()})); | 
|  |  | 
|  | // If auto-chaining is enabled, then the intermediate is sent. | 
|  | SSL_CTX_clear_mode(client_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN); | 
|  | SSL_CTX_clear_mode(server_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN); | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), | 
|  | {cert_.get(), intermediate.get()})); | 
|  | EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), | 
|  | {cert_.get(), intermediate.get()})); | 
|  |  | 
|  | // Auto-chaining does not override explicitly-configured intermediates. | 
|  | ASSERT_TRUE(SSL_CTX_add1_chain_cert(client_ctx_.get(), cert_.get())); | 
|  | ASSERT_TRUE(SSL_CTX_add1_chain_cert(server_ctx_.get(), cert_.get())); | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), | 
|  | {cert_.get(), cert_.get()})); | 
|  | EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), | 
|  | {cert_.get(), cert_.get()})); | 
|  |  | 
|  | // Auto-chaining does not override explicitly-configured intermediates that | 
|  | // are configured as late as cert_cb. If this fails, something in the | 
|  | // handshake is likely auto-chaining too early. | 
|  | SSL_CTX_clear_chain_certs(client_ctx_.get()); | 
|  | SSL_CTX_clear_chain_certs(server_ctx_.get()); | 
|  | auto install_intermediate = [](SSL *ssl, void *arg) -> int { | 
|  | return SSL_add1_chain_cert(ssl, static_cast<X509 *>(arg)); | 
|  | }; | 
|  | SSL_CTX_set_cert_cb(client_ctx_.get(), install_intermediate, cert_.get()); | 
|  | SSL_CTX_set_cert_cb(server_ctx_.get(), install_intermediate, cert_.get()); | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), | 
|  | {cert_.get(), cert_.get()})); | 
|  | EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), | 
|  | {cert_.get(), cert_.get()})); | 
|  | } | 
|  |  | 
|  | static bool ExpectSingleError(int lib, int reason) { | 
|  | const char *expected = ERR_reason_error_string(ERR_PACK(lib, reason)); | 
|  | uint32_t err = ERR_get_error(); | 
|  | if (!ERR_equals(err, lib, reason)) { | 
|  | char buf[ERR_ERROR_STRING_BUF_LEN]; | 
|  | ERR_error_string_n(err, buf, sizeof(buf)); | 
|  | fprintf(stderr, "Wanted %s, got: %s.\n", expected, buf); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (ERR_peek_error() != 0) { | 
|  | fprintf(stderr, "Unexpected error following %s.\n", expected); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, SSLWriteRetry) { | 
|  | if (is_dtls()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (bool enable_partial_write : {false, true}) { | 
|  | SCOPED_TRACE(enable_partial_write); | 
|  |  | 
|  | // Connect a client and server. | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | if (enable_partial_write) { | 
|  | SSL_set_mode(client_.get(), SSL_MODE_ENABLE_PARTIAL_WRITE); | 
|  | } | 
|  |  | 
|  | // Write without reading until the buffer is full and we have an unfinished | 
|  | // write. Keep a count so we may reread it again later. "hello!" will be | 
|  | // written in two chunks, "hello" and "!". | 
|  | char data[] = "hello!"; | 
|  | static const int kChunkLen = 5;  // The length of "hello". | 
|  | unsigned count = 0; | 
|  | for (;;) { | 
|  | int ret = SSL_write(client_.get(), data, kChunkLen); | 
|  | if (ret <= 0) { | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), ret), SSL_ERROR_WANT_WRITE); | 
|  | break; | 
|  | } | 
|  | ASSERT_EQ(ret, 5); | 
|  | count++; | 
|  | } | 
|  |  | 
|  | // Retrying with the same parameters is legal. | 
|  | ASSERT_EQ( | 
|  | SSL_get_error(client_.get(), SSL_write(client_.get(), data, kChunkLen)), | 
|  | SSL_ERROR_WANT_WRITE); | 
|  |  | 
|  | // Retrying with the same buffer but shorter length is not legal. | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), | 
|  | SSL_write(client_.get(), data, kChunkLen - 1)), | 
|  | SSL_ERROR_SSL); | 
|  | ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY)); | 
|  |  | 
|  | // Retrying with a different buffer pointer is not legal. | 
|  | char data2[] = "hello"; | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), | 
|  | SSL_write(client_.get(), data2, kChunkLen)), | 
|  | SSL_ERROR_SSL); | 
|  | ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY)); | 
|  |  | 
|  | // With |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, the buffer may move. | 
|  | SSL_set_mode(client_.get(), SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER); | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), | 
|  | SSL_write(client_.get(), data2, kChunkLen)), | 
|  | SSL_ERROR_WANT_WRITE); | 
|  |  | 
|  | // |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| does not disable length checks. | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), | 
|  | SSL_write(client_.get(), data2, kChunkLen - 1)), | 
|  | SSL_ERROR_SSL); | 
|  | ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY)); | 
|  |  | 
|  | // Retrying with a larger buffer is legal. | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), | 
|  | SSL_write(client_.get(), data, kChunkLen + 1)), | 
|  | SSL_ERROR_WANT_WRITE); | 
|  |  | 
|  | // Drain the buffer. | 
|  | char buf[20]; | 
|  | for (unsigned i = 0; i < count; i++) { | 
|  | ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
|  | ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
|  | } | 
|  |  | 
|  | // Now that there is space, a retry with a larger buffer should flush the | 
|  | // pending record, skip over that many bytes of input (on assumption they | 
|  | // are the same), and write the remainder. If SSL_MODE_ENABLE_PARTIAL_WRITE | 
|  | // is set, this will complete in two steps. | 
|  | char data_longer[] = "_____!!!!!"; | 
|  | if (enable_partial_write) { | 
|  | ASSERT_EQ(SSL_write(client_.get(), data_longer, 2 * kChunkLen), | 
|  | kChunkLen); | 
|  | ASSERT_EQ(SSL_write(client_.get(), data_longer + kChunkLen, kChunkLen), | 
|  | kChunkLen); | 
|  | } else { | 
|  | ASSERT_EQ(SSL_write(client_.get(), data_longer, 2 * kChunkLen), | 
|  | 2 * kChunkLen); | 
|  | } | 
|  |  | 
|  | // Check the last write was correct. The data will be spread over two | 
|  | // records, so SSL_read returns twice. | 
|  | ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
|  | ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
|  | ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
|  | ASSERT_EQ(OPENSSL_memcmp(buf, "!!!!!", kChunkLen), 0); | 
|  |  | 
|  | // Fill the transport buffer again. This time only leave room for one | 
|  | // record. | 
|  | count = 0; | 
|  | for (;;) { | 
|  | int ret = SSL_write(client_.get(), data, kChunkLen); | 
|  | if (ret <= 0) { | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), ret), SSL_ERROR_WANT_WRITE); | 
|  | break; | 
|  | } | 
|  | ASSERT_EQ(ret, 5); | 
|  | count++; | 
|  | } | 
|  | ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
|  | ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
|  | count--; | 
|  |  | 
|  | // Retry the last write, with a longer input. The first half is the most | 
|  | // recently failed write, from filling the buffer. |SSL_write| should write | 
|  | // that to the transport, and then attempt to write the second half. | 
|  | int ret = SSL_write(client_.get(), data_longer, 2 * kChunkLen); | 
|  | if (enable_partial_write) { | 
|  | // If partial writes are allowed, the write will succeed partially. | 
|  | ASSERT_EQ(ret, kChunkLen); | 
|  |  | 
|  | // Check the first half and make room for another record. | 
|  | ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
|  | ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
|  | count--; | 
|  |  | 
|  | // Finish writing the input. | 
|  | ASSERT_EQ(SSL_write(client_.get(), data_longer + kChunkLen, kChunkLen), | 
|  | kChunkLen); | 
|  | } else { | 
|  | // Otherwise, although the first half made it to the transport, the second | 
|  | // half is blocked. | 
|  | ASSERT_EQ(ret, -1); | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_WRITE); | 
|  |  | 
|  | // Check the first half and make room for another record. | 
|  | ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
|  | ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
|  | count--; | 
|  |  | 
|  | // Retrying with fewer bytes than previously attempted is an error. If the | 
|  | // input length is less than the number of bytes successfully written, the | 
|  | // check happens at a different point, with a different error. | 
|  | // | 
|  | // TODO(davidben): Should these cases use the same error? | 
|  | ASSERT_EQ( | 
|  | SSL_get_error(client_.get(), | 
|  | SSL_write(client_.get(), data_longer, kChunkLen - 1)), | 
|  | SSL_ERROR_SSL); | 
|  | ASSERT_TRUE(ExpectSingleError(ERR_LIB_SSL, SSL_R_BAD_LENGTH)); | 
|  |  | 
|  | // Complete the write with the correct retry. | 
|  | ASSERT_EQ(SSL_write(client_.get(), data_longer, 2 * kChunkLen), | 
|  | 2 * kChunkLen); | 
|  | } | 
|  |  | 
|  | // Drain the input and ensure everything was written correctly. | 
|  | for (unsigned i = 0; i < count; i++) { | 
|  | ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
|  | ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
|  | } | 
|  |  | 
|  | // The final write is spread over two records. | 
|  | ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
|  | ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0); | 
|  | ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen); | 
|  | ASSERT_EQ(OPENSSL_memcmp(buf, "!!!!!", kChunkLen), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, RecordCallback) { | 
|  | if (version() == DTLS1_3_VERSION) { | 
|  | // The DTLS 1.3 record header is vastly different than the TLS or DTLS < 1.3 | 
|  | // header format. Instead of checking that the record header is formatted as | 
|  | // expected here, the runner implementation in dtls.go is strict about what | 
|  | // it accepts. | 
|  | return; | 
|  | } | 
|  | for (bool test_server : {true, false}) { | 
|  | SCOPED_TRACE(test_server); | 
|  | ASSERT_NO_FATAL_FAILURE(ResetContexts()); | 
|  |  | 
|  | bool read_seen = false; | 
|  | bool write_seen = false; | 
|  | auto cb = [&](int is_write, int cb_version, int cb_type, const void *buf, | 
|  | size_t len, SSL *ssl) { | 
|  | if (cb_type != SSL3_RT_HEADER) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The callback does not report a version for records. | 
|  | EXPECT_EQ(0, cb_version); | 
|  |  | 
|  | if (is_write) { | 
|  | write_seen = true; | 
|  | } else { | 
|  | read_seen = true; | 
|  | } | 
|  |  | 
|  | // Sanity-check that the record header is plausible. | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, reinterpret_cast<const uint8_t *>(buf), len); | 
|  | uint8_t type; | 
|  | uint16_t record_version, length; | 
|  | ASSERT_TRUE(CBS_get_u8(&cbs, &type)); | 
|  | ASSERT_TRUE(CBS_get_u16(&cbs, &record_version)); | 
|  | EXPECT_EQ(record_version >> 8, is_dtls() ? 0xfe : 0x03); | 
|  | if (is_dtls()) { | 
|  | uint16_t epoch; | 
|  | ASSERT_TRUE(CBS_get_u16(&cbs, &epoch)); | 
|  | uint16_t max_epoch = 1; | 
|  | EXPECT_LE(epoch, max_epoch) << "Invalid epoch: " << epoch; | 
|  | ASSERT_TRUE(CBS_skip(&cbs, 6)); | 
|  | } | 
|  | ASSERT_TRUE(CBS_get_u16(&cbs, &length)); | 
|  | EXPECT_EQ(0u, CBS_len(&cbs)); | 
|  | }; | 
|  | using CallbackType = decltype(cb); | 
|  | SSL_CTX *ctx = test_server ? server_ctx_.get() : client_ctx_.get(); | 
|  | SSL_CTX_set_msg_callback( | 
|  | ctx, [](int is_write, int cb_version, int cb_type, const void *buf, | 
|  | size_t len, SSL *ssl, void *arg) { | 
|  | CallbackType *cb_ptr = reinterpret_cast<CallbackType *>(arg); | 
|  | (*cb_ptr)(is_write, cb_version, cb_type, buf, len, ssl); | 
|  | }); | 
|  | SSL_CTX_set_msg_callback_arg(ctx, &cb); | 
|  |  | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | EXPECT_TRUE(read_seen); | 
|  | EXPECT_TRUE(write_seen); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, GetServerName) { | 
|  | ClientConfig config; | 
|  | config.servername = "host1"; | 
|  |  | 
|  | SSL_CTX_set_tlsext_servername_callback( | 
|  | server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int { | 
|  | // During the handshake, |SSL_get_servername| must match |config|. | 
|  | ClientConfig *config_p = reinterpret_cast<ClientConfig *>(arg); | 
|  | EXPECT_STREQ(config_p->servername.c_str(), | 
|  | SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name)); | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | }); | 
|  | SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), &config); | 
|  |  | 
|  | ASSERT_TRUE(Connect(config)); | 
|  | // After the handshake, it must also be available. | 
|  | EXPECT_STREQ(config.servername.c_str(), | 
|  | SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name)); | 
|  |  | 
|  | // Establish a session under host1. | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get(), config); | 
|  |  | 
|  | // If the client resumes a session with a different name, |SSL_get_servername| | 
|  | // must return the new name. | 
|  | ASSERT_TRUE(session); | 
|  | config.session = session.get(); | 
|  | config.servername = "host2"; | 
|  | ASSERT_TRUE(Connect(config)); | 
|  | EXPECT_STREQ(config.servername.c_str(), | 
|  | SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name)); | 
|  | } | 
|  |  | 
|  | // Test that session cache mode bits are honored in the client session callback. | 
|  | TEST_P(SSLVersionTest, ClientSessionCacheMode) { | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_OFF); | 
|  | EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_CLIENT); | 
|  | EXPECT_TRUE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_SERVER); | 
|  | EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); | 
|  | } | 
|  |  | 
|  | // Test that all versions survive tiny write buffers. In particular, TLS 1.3 | 
|  | // NewSessionTickets are written post-handshake. Servers that block | 
|  | // |SSL_do_handshake| on writing them will deadlock if clients are not draining | 
|  | // the buffer. Test that we do not do this. | 
|  | TEST_P(SSLVersionTest, SmallBuffer) { | 
|  | // DTLS is a datagram protocol and requires packet-sized buffers. | 
|  | if (is_dtls()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Test both flushing NewSessionTickets with a zero-sized write and | 
|  | // non-zero-sized write. | 
|  | for (bool use_zero_write : {false, true}) { | 
|  | SCOPED_TRACE(use_zero_write); | 
|  |  | 
|  | g_last_session = nullptr; | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client(SSL_new(client_ctx_.get())), | 
|  | server(SSL_new(server_ctx_.get())); | 
|  | ASSERT_TRUE(client); | 
|  | ASSERT_TRUE(server); | 
|  | SSL_set_connect_state(client.get()); | 
|  | SSL_set_accept_state(server.get()); | 
|  |  | 
|  | // Use a tiny buffer. | 
|  | BIO *bio1, *bio2; | 
|  | ASSERT_TRUE(BIO_new_bio_pair(&bio1, 1, &bio2, 1)); | 
|  |  | 
|  | // SSL_set_bio takes ownership. | 
|  | SSL_set_bio(client.get(), bio1, bio1); | 
|  | SSL_set_bio(server.get(), bio2, bio2); | 
|  |  | 
|  | ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
|  | if (version() >= TLS1_3_VERSION) { | 
|  | // The post-handshake ticket should not have been processed yet. | 
|  | EXPECT_FALSE(g_last_session); | 
|  | } | 
|  |  | 
|  | if (use_zero_write) { | 
|  | ASSERT_TRUE(FlushNewSessionTickets(client.get(), server.get())); | 
|  | EXPECT_TRUE(g_last_session); | 
|  | } | 
|  |  | 
|  | // Send some data from server to client. If |use_zero_write| is false, this | 
|  | // will also flush the NewSessionTickets. | 
|  | static const char kMessage[] = "hello world"; | 
|  | char buf[sizeof(kMessage)]; | 
|  | for (;;) { | 
|  | int server_ret = SSL_write(server.get(), kMessage, sizeof(kMessage)); | 
|  | int server_err = SSL_get_error(server.get(), server_ret); | 
|  | int client_ret = SSL_read(client.get(), buf, sizeof(buf)); | 
|  | int client_err = SSL_get_error(client.get(), client_ret); | 
|  |  | 
|  | // The server will write a single record, so every iteration should see | 
|  | // |SSL_ERROR_WANT_WRITE| and |SSL_ERROR_WANT_READ|, until the final | 
|  | // iteration, where both will complete. | 
|  | if (server_ret > 0) { | 
|  | EXPECT_EQ(server_ret, static_cast<int>(sizeof(kMessage))); | 
|  | EXPECT_EQ(client_ret, static_cast<int>(sizeof(kMessage))); | 
|  | EXPECT_EQ(Bytes(buf), Bytes(kMessage)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ASSERT_EQ(server_ret, -1); | 
|  | ASSERT_EQ(server_err, SSL_ERROR_WANT_WRITE); | 
|  | ASSERT_EQ(client_ret, -1); | 
|  | ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); | 
|  | } | 
|  |  | 
|  | // The NewSessionTickets should have been flushed and processed. | 
|  | EXPECT_TRUE(g_last_session); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, AddChainCertHack) { | 
|  | // Ensure that we don't accidently break the hack that we have in place to | 
|  | // keep curl and serf happy when they use an |X509| even after transfering | 
|  | // ownership. | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | X509 *cert = GetTestCertificate().release(); | 
|  | ASSERT_TRUE(cert); | 
|  | SSL_CTX_add0_chain_cert(ctx.get(), cert); | 
|  |  | 
|  | // This should not trigger a use-after-free. | 
|  | X509_cmp(cert, cert); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, GetCertificate) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
|  | ASSERT_TRUE(cert); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  |  | 
|  | X509 *cert2 = SSL_CTX_get0_certificate(ctx.get()); | 
|  | ASSERT_TRUE(cert2); | 
|  | X509 *cert3 = SSL_get_certificate(ssl.get()); | 
|  | ASSERT_TRUE(cert3); | 
|  |  | 
|  | // The old and new certificates must be identical. | 
|  | EXPECT_EQ(0, X509_cmp(cert.get(), cert2)); | 
|  | EXPECT_EQ(0, X509_cmp(cert.get(), cert3)); | 
|  |  | 
|  | uint8_t *der = nullptr; | 
|  | long der_len = i2d_X509(cert.get(), &der); | 
|  | ASSERT_LT(0, der_len); | 
|  | bssl::UniquePtr<uint8_t> free_der(der); | 
|  |  | 
|  | uint8_t *der2 = nullptr; | 
|  | long der2_len = i2d_X509(cert2, &der2); | 
|  | ASSERT_LT(0, der2_len); | 
|  | bssl::UniquePtr<uint8_t> free_der2(der2); | 
|  |  | 
|  | uint8_t *der3 = nullptr; | 
|  | long der3_len = i2d_X509(cert3, &der3); | 
|  | ASSERT_LT(0, der3_len); | 
|  | bssl::UniquePtr<uint8_t> free_der3(der3); | 
|  |  | 
|  | // They must also encode identically. | 
|  | EXPECT_EQ(Bytes(der, der_len), Bytes(der2, der2_len)); | 
|  | EXPECT_EQ(Bytes(der, der_len), Bytes(der3, der3_len)); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SetChainAndKeyMismatch) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
|  | ASSERT_TRUE(leaf); | 
|  | std::vector<CRYPTO_BUFFER *> chain = { | 
|  | leaf.get(), | 
|  | }; | 
|  |  | 
|  | // Should fail because |GetTestKey| doesn't match the chain-test certificate. | 
|  | ASSERT_FALSE(SSL_CTX_set_chain_and_key(ctx.get(), chain.data(), chain.size(), | 
|  | key.get(), nullptr)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, CertThenKeyMismatch) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<X509> leaf = GetChainTestCertificate(); | 
|  | ASSERT_TRUE(leaf); | 
|  |  | 
|  | // There is no key or certificate, so |SSL_CTX_check_private_key| fails. | 
|  | EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); | 
|  |  | 
|  | // With only a certificate, |SSL_CTX_check_private_key| still fails. | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf.get())); | 
|  | EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); | 
|  |  | 
|  | // The private key does not match the certificate, so it should fail. | 
|  | EXPECT_FALSE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); | 
|  |  | 
|  | // Checking the private key fails, but this is really because there is still | 
|  | // no private key. | 
|  | EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); | 
|  | EXPECT_EQ(nullptr, SSL_CTX_get0_privatekey(ctx.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, KeyThenCertMismatch) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<X509> leaf = GetChainTestCertificate(); | 
|  | ASSERT_TRUE(leaf); | 
|  |  | 
|  | // There is no key or certificate, so |SSL_CTX_check_private_key| fails. | 
|  | EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); | 
|  |  | 
|  | // With only a key, |SSL_CTX_check_private_key| still fails. | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); | 
|  | EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); | 
|  |  | 
|  | // If configuring a certificate that doesn't match the key, configuration | 
|  | // actually succeeds. We just silently drop the private key. | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf.get())); | 
|  | EXPECT_EQ(nullptr, SSL_CTX_get0_privatekey(ctx.get())); | 
|  |  | 
|  | // Some callers configure the private key, then the certificate, and then | 
|  | // expect |SSL_CTX_check_private_key| to check consistency. It does, but only | 
|  | // by way of noticing there is no private key. The actual consistency check | 
|  | // happened in |SSL_CTX_use_certificate|. | 
|  | EXPECT_FALSE(SSL_CTX_check_private_key(ctx.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, OverrideCertAndKey) { | 
|  | // It is possible to override an existing certificate by configuring | 
|  | // certificate, then key, due to |SSL_CTX_use_certificate|'s above silent | 
|  | // dropping behavior. | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<X509> leaf = GetTestCertificate(); | 
|  | ASSERT_TRUE(leaf); | 
|  | bssl::UniquePtr<EVP_PKEY> key2 = GetChainTestKey(); | 
|  | ASSERT_TRUE(key2); | 
|  | bssl::UniquePtr<X509> leaf2 = GetChainTestCertificate(); | 
|  | ASSERT_TRUE(leaf2); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf.get())); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf2.get())); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key2.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, OverrideKeyMethodWithKey) { | 
|  | // Make an SSL_PRIVATE_KEY_METHOD that should never be called. | 
|  | static const SSL_PRIVATE_KEY_METHOD kErrorMethod = { | 
|  | [](SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, | 
|  | uint16_t signature_algorithm, const uint8_t *in, | 
|  | size_t in_len) { return ssl_private_key_failure; }, | 
|  | [](SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, | 
|  | const uint8_t *in, size_t in_len) { return ssl_private_key_failure; }, | 
|  | [](SSL *ssl, uint8_t *out, size_t *out_len, size_t max_oun) { | 
|  | return ssl_private_key_failure; | 
|  | }, | 
|  | }; | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<X509> leaf = GetTestCertificate(); | 
|  | ASSERT_TRUE(leaf); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf.get())); | 
|  |  | 
|  | // Configuring an |SSL_PRIVATE_KEY_METHOD| and then overwriting it with an | 
|  | // |EVP_PKEY| should clear the |SSL_PRIVATE_KEY_METHOD|. | 
|  | SSL_CTX_set_private_key_method(ctx.get(), &kErrorMethod); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
|  | } | 
|  |  | 
|  | // Configuring a chain and then overwriting it with a different chain should | 
|  | // clear the old one. | 
|  | TEST(SSLTest, OverrideChain) { | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<X509> leaf = GetChainTestCertificate(); | 
|  | ASSERT_TRUE(leaf); | 
|  | bssl::UniquePtr<X509> ca = GetChainTestIntermediate(); | 
|  | ASSERT_TRUE(ca); | 
|  |  | 
|  | bssl::UniquePtr<STACK_OF(X509)> chain(sk_X509_new_null()); | 
|  | ASSERT_TRUE(chain); | 
|  | ASSERT_TRUE(bssl::PushToStack(chain.get(), bssl::UpRef(ca))); | 
|  |  | 
|  | bssl::UniquePtr<STACK_OF(X509)> wrong_chain(sk_X509_new_null()); | 
|  | ASSERT_TRUE(wrong_chain); | 
|  | ASSERT_TRUE(bssl::PushToStack(wrong_chain.get(), bssl::UpRef(leaf))); | 
|  | ASSERT_TRUE(bssl::PushToStack(wrong_chain.get(), bssl::UpRef(leaf))); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), leaf.get())); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); | 
|  |  | 
|  | // Configure one chain, then replace it with another. Note this API considers | 
|  | // the chain to exclude the leaf. | 
|  | ASSERT_TRUE(SSL_CTX_set1_chain(ctx.get(), wrong_chain.get())); | 
|  | ASSERT_TRUE(SSL_CTX_set1_chain(ctx.get(), chain.get())); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
|  | EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client.get()), | 
|  | {leaf.get(), ca.get()})); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, OverrideChainAndKey) { | 
|  | bssl::UniquePtr<EVP_PKEY> key1 = GetChainTestKey(); | 
|  | ASSERT_TRUE(key1); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> leaf1 = GetChainTestCertificateBuffer(); | 
|  | ASSERT_TRUE(leaf1); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> ca1 = GetChainTestIntermediateBuffer(); | 
|  | ASSERT_TRUE(ca1); | 
|  | bssl::UniquePtr<EVP_PKEY> key2 = GetECDSATestKey(); | 
|  | ASSERT_TRUE(key2); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> leaf2 = GetECDSATestCertificateBuffer(); | 
|  | ASSERT_TRUE(leaf2); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | // Configure one cert and key pair, then replace it with noather. | 
|  | std::vector<CRYPTO_BUFFER *> certs = {leaf1.get(), ca1.get()}; | 
|  | ASSERT_TRUE(SSL_CTX_set_chain_and_key(ctx.get(), certs.data(), certs.size(), | 
|  | key1.get(), nullptr)); | 
|  | certs = {leaf2.get()}; | 
|  | ASSERT_TRUE(SSL_CTX_set_chain_and_key(ctx.get(), certs.data(), certs.size(), | 
|  | key2.get(), nullptr)); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
|  | EXPECT_TRUE( | 
|  | BuffersEqual(SSL_get0_peer_certificates(client.get()), {leaf2.get()})); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, CredentialChains) { | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
|  | ASSERT_TRUE(leaf); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> ca = GetChainTestIntermediateBuffer(); | 
|  | ASSERT_TRUE(ca); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> ca_subject = | 
|  | GetChainTestIntermediateIssuerBuffer(); | 
|  | ASSERT_TRUE(ca_subject); | 
|  |  | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> testcert = GetTestCertificateBuffer(); | 
|  | ASSERT_TRUE(testcert); | 
|  | bssl::UniquePtr<EVP_PKEY> testkey = GetTestKey(); | 
|  | ASSERT_TRUE(testkey); | 
|  |  | 
|  | std::vector<CRYPTO_BUFFER *> test_chain = {testcert.get()}; | 
|  | std::vector<CRYPTO_BUFFER *> chain = {leaf.get(), ca.get()}; | 
|  | std::vector<CRYPTO_BUFFER *> wrong_chain = {leaf.get(), leaf.get(), | 
|  | leaf.get()}; | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<SSL_CREDENTIAL> cred(SSL_CREDENTIAL_new_x509()); | 
|  | ASSERT_TRUE(cred); | 
|  | bssl::UniquePtr<SSL_CREDENTIAL> cred2(SSL_CREDENTIAL_new_x509()); | 
|  | ASSERT_TRUE(cred2); | 
|  |  | 
|  | // Configure one chain (including the leaf), then replace it with another. | 
|  | ASSERT_TRUE(SSL_CREDENTIAL_set1_cert_chain(cred.get(), wrong_chain.data(), | 
|  | wrong_chain.size())); | 
|  | CBS ca_subject_cbs, ca_cbs; | 
|  | CRYPTO_BUFFER_init_CBS(ca.get(), &ca_cbs); | 
|  | ASSERT_TRUE(ssl_cert_extract_issuer(&ca_cbs, &ca_subject_cbs)); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> subject_buf( | 
|  | CRYPTO_BUFFER_new_from_CBS(&ca_subject_cbs, nullptr)); | 
|  | EXPECT_EQ(Bytes(CRYPTO_BUFFER_data(ca_subject.get()), | 
|  | CRYPTO_BUFFER_len(ca_subject.get())), | 
|  | Bytes(CRYPTO_BUFFER_data(subject_buf.get()), | 
|  | CRYPTO_BUFFER_len(subject_buf.get()))); | 
|  | #if !defined(BORINGSSL_SHARED_LIBRARY) | 
|  | ASSERT_FALSE( | 
|  | cred->ChainContainsIssuer(Span(CRYPTO_BUFFER_data(subject_buf.get()), | 
|  | CRYPTO_BUFFER_len(subject_buf.get())))); | 
|  | #endif | 
|  |  | 
|  | ASSERT_TRUE( | 
|  | SSL_CREDENTIAL_set1_cert_chain(cred.get(), chain.data(), chain.size())); | 
|  |  | 
|  | #if !defined(BORINGSSL_SHARED_LIBRARY) | 
|  | ASSERT_TRUE( | 
|  | cred->ChainContainsIssuer(Span(CRYPTO_BUFFER_data(subject_buf.get()), | 
|  | CRYPTO_BUFFER_len(subject_buf.get())))); | 
|  | #endif | 
|  |  | 
|  | ASSERT_TRUE(SSL_CREDENTIAL_set1_cert_chain(cred2.get(), test_chain.data(), | 
|  | test_chain.size())); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CREDENTIAL_set1_private_key(cred.get(), key.get())); | 
|  | ASSERT_TRUE(SSL_CREDENTIAL_set1_private_key(cred2.get(), testkey.get())); | 
|  | SSL_CREDENTIAL_set_must_match_issuer(cred.get(), 1); | 
|  | SSL_CREDENTIAL_set_must_match_issuer(cred2.get(), 1); | 
|  | ASSERT_TRUE(SSL_CTX_add1_credential(ctx.get(), cred.get())); | 
|  | ASSERT_TRUE(SSL_CTX_add1_credential(ctx.get(), cred2.get())); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  |  | 
|  | // With no CA requested by client, we should fail with only cred1 and cred2 | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
|  |  | 
|  | // Have the client request a bogus name that will not match | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> bogus_subject = GetBogusIssuerBuffer(); | 
|  | ASSERT_TRUE(bogus_subject); | 
|  | bssl::UniquePtr<SSL> client2, server2; | 
|  | ClientConfig bogus_subject_config; | 
|  | bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> bogus_subjects( | 
|  | sk_CRYPTO_BUFFER_new_null()); | 
|  | ASSERT_TRUE(bogus_subjects); | 
|  | ASSERT_TRUE(PushToStack(bogus_subjects.get(), std::move(bogus_subject))); | 
|  | bogus_subject_config.ca_names = bogus_subjects.get(); | 
|  | bogus_subjects.release(); | 
|  | // A bogus issuer that does not match should fail | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client2, &server2, ctx.get(), ctx.get(), | 
|  | bogus_subject_config)); | 
|  |  | 
|  | // Have the client request the name of the chain ca. | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> chain_subject = | 
|  | GetChainTestIntermediateIssuerBuffer(); | 
|  | ASSERT_TRUE(chain_subject); | 
|  | bssl::UniquePtr<SSL> client3, server3; | 
|  | ClientConfig chain_subject_config; | 
|  | bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain_subjects( | 
|  | sk_CRYPTO_BUFFER_new_null()); | 
|  | ASSERT_TRUE(chain_subjects); | 
|  | ASSERT_TRUE(PushToStack(chain_subjects.get(), std::move(chain_subject))); | 
|  | chain_subject_config.ca_names = chain_subjects.get(); | 
|  | chain_subjects.release(); | 
|  | // If we ask for the chain ca subject, we should get it | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client3, &server3, ctx.get(), ctx.get(), | 
|  | chain_subject_config)); | 
|  | EXPECT_TRUE(BuffersEqual(SSL_get0_peer_certificates(client3.get()), | 
|  | {leaf.get(), ca.get()})); | 
|  |  | 
|  | // Have the client request the name of the test ca. | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> test_subject = GetTestCertIssuerBuffer(); | 
|  | ASSERT_TRUE(test_subject); | 
|  | bssl::UniquePtr<SSL> client4, server4; | 
|  | ClientConfig test_subject_config; | 
|  | bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> test_subjects( | 
|  | sk_CRYPTO_BUFFER_new_null()); | 
|  | ASSERT_TRUE(test_subjects); | 
|  | ASSERT_TRUE(PushToStack(test_subjects.get(), std::move(test_subject))); | 
|  | test_subject_config.ca_names = test_subjects.get(); | 
|  | test_subjects.release(); | 
|  | // If we ask for the test ca subject, we should get it | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client4, &server4, ctx.get(), ctx.get(), | 
|  | test_subject_config)); | 
|  | EXPECT_TRUE(BuffersEqual(SSL_get0_peer_certificates(client4.get()), | 
|  | {testcert.get()})); | 
|  |  | 
|  | // Add cred3 to the CTX so we have an ubiquitous credential | 
|  | bssl::UniquePtr<SSL_CREDENTIAL> cred3(SSL_CREDENTIAL_new_x509()); | 
|  | ASSERT_TRUE(cred3); | 
|  | ASSERT_TRUE( | 
|  | SSL_CREDENTIAL_set1_cert_chain(cred3.get(), chain.data(), chain.size())); | 
|  | ASSERT_TRUE(SSL_CREDENTIAL_set1_private_key(cred3.get(), key.get())); | 
|  | ASSERT_TRUE(SSL_CTX_add1_credential(ctx.get(), cred3.get())); | 
|  |  | 
|  | // With no CA sent, we should now succeed. | 
|  | bssl::UniquePtr<SSL> client5, server5; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client5, &server5, ctx.get(), ctx.get())); | 
|  | EXPECT_TRUE(BuffersEqual(SSL_get0_peer_certificates(client5.get()), | 
|  | {leaf.get(), ca.get()})); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, CredentialCertProperties) { | 
|  | // A CertificatePropertyList containing a trust_anchors property, and an | 
|  | // unknown property 0xbb with 0 bytes of data. | 
|  | bssl::UniquePtr<SSL_CREDENTIAL> cred(SSL_CREDENTIAL_new_x509()); | 
|  | ASSERT_TRUE(cred); | 
|  | static const uint8_t kTestProperties1[] = {0x00, 0x0b, 0x00, 0x00, 0x00, | 
|  | 0x03, 0xba, 0xdb, 0x0b, 0x00, | 
|  | 0xbb, 0x00, 0x00}; | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> pl( | 
|  | CRYPTO_BUFFER_new(kTestProperties1, sizeof(kTestProperties1), nullptr)); | 
|  | ASSERT_TRUE(pl); | 
|  | EXPECT_TRUE( | 
|  | SSL_CREDENTIAL_set1_certificate_properties(cred.get(), pl.get())); | 
|  |  | 
|  | // A CertificatePropertyList containing a trust_anchors property, and an | 
|  | // unknown property 0xbb with 1 byte of data. | 
|  | static const uint8_t kTestProperties2[] = {0x00, 0x0c, 0x00, 0x00, 0x00, | 
|  | 0x03, 0xba, 0xdb, 0x0b, 0x00, | 
|  | 0xbb, 0x00, 0x01, 0xba}; | 
|  | pl.reset( | 
|  | CRYPTO_BUFFER_new(kTestProperties2, sizeof(kTestProperties2), nullptr)); | 
|  | ASSERT_TRUE(pl); | 
|  | EXPECT_TRUE( | 
|  | SSL_CREDENTIAL_set1_certificate_properties(cred.get(), pl.get())); | 
|  |  | 
|  | // A CertificatePropertyList containing a trust_anchors property, and an | 
|  | // unknown but malformed property 0xbb with missing data. | 
|  | static const uint8_t kTestProperties3[] = {0x00, 0x09, 0x00, 0x00, 0x00, 0x03, | 
|  | 0xba, 0xdb, 0x0b, 0x00, 0xbb}; | 
|  | pl.reset( | 
|  | CRYPTO_BUFFER_new(kTestProperties3, sizeof(kTestProperties3), nullptr)); | 
|  | ASSERT_TRUE(pl); | 
|  | EXPECT_FALSE( | 
|  | SSL_CREDENTIAL_set1_certificate_properties(cred.get(), pl.get())); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, | 
|  | SSL_R_INVALID_CERTIFICATE_PROPERTY_LIST)); | 
|  |  | 
|  | // A CertificatePropertyList containing a trust_anchors property, and an | 
|  | // unknown but malformed property 0xbb with incorrect length data. | 
|  | static const uint8_t kTestProperties4[] = {0x00, 0x0c, 0x00, 0x00, 0x00, | 
|  | 0x03, 0xba, 0xdb, 0x0b, 0x00, | 
|  | 0xbb, 0x00, 0x03, 0xba}; | 
|  | pl.reset( | 
|  | CRYPTO_BUFFER_new(kTestProperties4, sizeof(kTestProperties4), nullptr)); | 
|  | ASSERT_TRUE(pl); | 
|  | EXPECT_FALSE( | 
|  | SSL_CREDENTIAL_set1_certificate_properties(cred.get(), pl.get())); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, | 
|  | SSL_R_INVALID_CERTIFICATE_PROPERTY_LIST)); | 
|  |  | 
|  | // A CertificatePropertyList containing a trust_anchors property with 0 bytes | 
|  | // of data. | 
|  | static const uint8_t kTestProperties5[] = {0x00, 0x04, 0x00, | 
|  | 0x00, 0x00, 0x00}; | 
|  | pl.reset( | 
|  | CRYPTO_BUFFER_new(kTestProperties5, sizeof(kTestProperties5), nullptr)); | 
|  | ASSERT_TRUE(pl); | 
|  | EXPECT_FALSE( | 
|  | SSL_CREDENTIAL_set1_certificate_properties(cred.get(), pl.get())); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, | 
|  | SSL_R_INVALID_TRUST_ANCHOR_LIST)); | 
|  |  | 
|  | // A CertificatePropertyList containing a trust_anchors property with extra | 
|  | // data. | 
|  | static const uint8_t kTestProperties6[] = {0x00, 0x08, 0x00, 0x00, 0x00, | 
|  | 0x03, 0xba, 0xdb, 0x0b, 0xbb}; | 
|  | pl.reset( | 
|  | CRYPTO_BUFFER_new(kTestProperties6, sizeof(kTestProperties6), nullptr)); | 
|  | ASSERT_TRUE(pl); | 
|  | EXPECT_FALSE( | 
|  | SSL_CREDENTIAL_set1_certificate_properties(cred.get(), pl.get())); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, | 
|  | SSL_R_INVALID_CERTIFICATE_PROPERTY_LIST)); | 
|  |  | 
|  | // A CertificatePropertyList containing a trust_anchors property with missing | 
|  | // data. | 
|  | static const uint8_t kTestProperties7[] = {0x00, 0x06, 0x00, 0x00, | 
|  | 0x00, 0x03, 0xba, 0xdb}; | 
|  | pl.reset( | 
|  | CRYPTO_BUFFER_new(kTestProperties7, sizeof(kTestProperties7), nullptr)); | 
|  | ASSERT_TRUE(pl); | 
|  | EXPECT_FALSE( | 
|  | SSL_CREDENTIAL_set1_certificate_properties(cred.get(), pl.get())); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, | 
|  | SSL_R_INVALID_CERTIFICATE_PROPERTY_LIST)); | 
|  |  | 
|  | // A CertificatePropertyList containing only a trust_anchors property. | 
|  | static const uint8_t kTestProperties8[] = {0x00, 0x07, 0x00, 0x00, 0x00, | 
|  | 0x03, 0xba, 0xdb, 0x0b}; | 
|  | pl.reset( | 
|  | CRYPTO_BUFFER_new(kTestProperties8, sizeof(kTestProperties8), nullptr)); | 
|  | ASSERT_TRUE(pl); | 
|  | EXPECT_TRUE( | 
|  | SSL_CREDENTIAL_set1_certificate_properties(cred.get(), pl.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SetChainAndKeyCtx) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  |  | 
|  | ASSERT_EQ(nullptr, SSL_CTX_get0_chain(server_ctx.get())); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
|  | ASSERT_TRUE(leaf); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> intermediate = | 
|  | GetChainTestIntermediateBuffer(); | 
|  | ASSERT_TRUE(intermediate); | 
|  | std::vector<CRYPTO_BUFFER *> chain = { | 
|  | leaf.get(), | 
|  | intermediate.get(), | 
|  | }; | 
|  | ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), chain.data(), | 
|  | chain.size(), key.get(), nullptr)); | 
|  |  | 
|  | ASSERT_EQ(chain.size(), | 
|  | sk_CRYPTO_BUFFER_num(SSL_CTX_get0_chain(server_ctx.get()))); | 
|  |  | 
|  | SSL_CTX_set_custom_verify( | 
|  | client_ctx.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
|  | return ssl_verify_ok; | 
|  | }); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SetChainAndKeySSL) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | SSL_set_shed_handshake_config(client.get(), true); | 
|  | SSL_set_shed_handshake_config(server.get(), true); | 
|  |  | 
|  | ASSERT_EQ(nullptr, SSL_get0_chain(server.get())); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
|  | ASSERT_TRUE(leaf); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> intermediate = | 
|  | GetChainTestIntermediateBuffer(); | 
|  | ASSERT_TRUE(intermediate); | 
|  | std::vector<CRYPTO_BUFFER *> chain = { | 
|  | leaf.get(), | 
|  | intermediate.get(), | 
|  | }; | 
|  | ASSERT_TRUE(SSL_set_chain_and_key(server.get(), chain.data(), chain.size(), | 
|  | key.get(), nullptr)); | 
|  |  | 
|  | ASSERT_EQ(chain.size(), sk_CRYPTO_BUFFER_num(SSL_get0_chain(server.get()))); | 
|  |  | 
|  | SSL_set_custom_verify( | 
|  | client.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
|  | return ssl_verify_ok; | 
|  | }); | 
|  |  | 
|  | ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
|  |  | 
|  | // The server is configured to shed handshake config, so the certificate is no | 
|  | // longer available after the handshake. | 
|  | ASSERT_EQ(nullptr, SSL_get0_chain(server.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, BuffersFailWithoutCustomVerify) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
|  | ASSERT_TRUE(leaf); | 
|  | std::vector<CRYPTO_BUFFER *> chain = {leaf.get()}; | 
|  | ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), chain.data(), | 
|  | chain.size(), key.get(), nullptr)); | 
|  |  | 
|  | // Without SSL_CTX_set_custom_verify(), i.e. with everything in the default | 
|  | // configuration, certificate verification should fail. | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | // Whereas with a verifier, the connection should succeed. | 
|  | SSL_CTX_set_custom_verify( | 
|  | client_ctx.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
|  | return ssl_verify_ok; | 
|  | }); | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, CustomVerify) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
|  | ASSERT_TRUE(leaf); | 
|  | std::vector<CRYPTO_BUFFER *> chain = {leaf.get()}; | 
|  | ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), chain.data(), | 
|  | chain.size(), key.get(), nullptr)); | 
|  |  | 
|  | SSL_CTX_set_custom_verify( | 
|  | client_ctx.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
|  | return ssl_verify_ok; | 
|  | }); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | // With SSL_VERIFY_PEER, ssl_verify_invalid should result in a dropped | 
|  | // connection. | 
|  | SSL_CTX_set_custom_verify( | 
|  | client_ctx.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
|  | return ssl_verify_invalid; | 
|  | }); | 
|  |  | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | // But with SSL_VERIFY_NONE, ssl_verify_invalid should not cause a dropped | 
|  | // connection. | 
|  | SSL_CTX_set_custom_verify( | 
|  | client_ctx.get(), SSL_VERIFY_NONE, | 
|  | [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
|  | return ssl_verify_invalid; | 
|  | }); | 
|  |  | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ClientCABuffers) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer(); | 
|  | ASSERT_TRUE(leaf); | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> intermediate = | 
|  | GetChainTestIntermediateBuffer(); | 
|  | ASSERT_TRUE(intermediate); | 
|  | std::vector<CRYPTO_BUFFER *> chain = { | 
|  | leaf.get(), | 
|  | intermediate.get(), | 
|  | }; | 
|  | ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), chain.data(), | 
|  | chain.size(), key.get(), nullptr)); | 
|  |  | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> ca_name( | 
|  | CRYPTO_BUFFER_new(kTestName, sizeof(kTestName), nullptr)); | 
|  | ASSERT_TRUE(ca_name); | 
|  | bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names( | 
|  | sk_CRYPTO_BUFFER_new_null()); | 
|  | ASSERT_TRUE(ca_names); | 
|  | ASSERT_TRUE(PushToStack(ca_names.get(), std::move(ca_name))); | 
|  | SSL_CTX_set0_client_CAs(server_ctx.get(), ca_names.release()); | 
|  |  | 
|  | // Configure client and server to accept all certificates. | 
|  | SSL_CTX_set_custom_verify( | 
|  | client_ctx.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
|  | return ssl_verify_ok; | 
|  | }); | 
|  | SSL_CTX_set_custom_verify( | 
|  | server_ctx.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
|  | return ssl_verify_ok; | 
|  | }); | 
|  |  | 
|  | bool cert_cb_called = false; | 
|  | SSL_CTX_set_cert_cb( | 
|  | client_ctx.get(), | 
|  | [](SSL *ssl, void *arg) -> int { | 
|  | const STACK_OF(CRYPTO_BUFFER) *peer_names = | 
|  | SSL_get0_server_requested_CAs(ssl); | 
|  | EXPECT_EQ(1u, sk_CRYPTO_BUFFER_num(peer_names)); | 
|  | CRYPTO_BUFFER *peer_name = sk_CRYPTO_BUFFER_value(peer_names, 0); | 
|  | EXPECT_EQ(Bytes(kTestName), Bytes(CRYPTO_BUFFER_data(peer_name), | 
|  | CRYPTO_BUFFER_len(peer_name))); | 
|  | *reinterpret_cast<bool *>(arg) = true; | 
|  | return 1; | 
|  | }, | 
|  | &cert_cb_called); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | EXPECT_TRUE(cert_cb_called); | 
|  | } | 
|  |  | 
|  | // Configuring the empty cipher list, though an error, should still modify the | 
|  | // configuration. | 
|  | TEST(SSLTest, EmptyCipherList) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | // Initially, the cipher list is not empty. | 
|  | EXPECT_NE(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get()))); | 
|  |  | 
|  | // Configuring the empty cipher list fails. | 
|  | EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), "")); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // But the cipher list is still updated to empty. | 
|  | EXPECT_EQ(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get()))); | 
|  | } | 
|  |  | 
|  | // ssl_test_ticket_aead_failure_mode enumerates the possible ways in which the | 
|  | // test |SSL_TICKET_AEAD_METHOD| can fail. | 
|  | enum ssl_test_ticket_aead_failure_mode { | 
|  | ssl_test_ticket_aead_ok = 0, | 
|  | ssl_test_ticket_aead_seal_fail, | 
|  | ssl_test_ticket_aead_open_soft_fail, | 
|  | ssl_test_ticket_aead_open_hard_fail, | 
|  | }; | 
|  |  | 
|  | struct ssl_test_ticket_aead_state { | 
|  | unsigned retry_count = 0; | 
|  | ssl_test_ticket_aead_failure_mode failure_mode = ssl_test_ticket_aead_ok; | 
|  | }; | 
|  |  | 
|  | static int ssl_test_ticket_aead_ex_index_dup(CRYPTO_EX_DATA *to, | 
|  | const CRYPTO_EX_DATA *from, | 
|  | void **from_d, int index, | 
|  | long argl, void *argp) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static void ssl_test_ticket_aead_ex_index_free(void *parent, void *ptr, | 
|  | CRYPTO_EX_DATA *ad, int index, | 
|  | long argl, void *argp) { | 
|  | delete reinterpret_cast<ssl_test_ticket_aead_state *>(ptr); | 
|  | } | 
|  |  | 
|  | static CRYPTO_once_t g_ssl_test_ticket_aead_ex_index_once = CRYPTO_ONCE_INIT; | 
|  | static int g_ssl_test_ticket_aead_ex_index; | 
|  |  | 
|  | static int ssl_test_ticket_aead_get_ex_index() { | 
|  | CRYPTO_once(&g_ssl_test_ticket_aead_ex_index_once, [] { | 
|  | g_ssl_test_ticket_aead_ex_index = SSL_get_ex_new_index( | 
|  | 0, nullptr, nullptr, ssl_test_ticket_aead_ex_index_dup, | 
|  | ssl_test_ticket_aead_ex_index_free); | 
|  | }); | 
|  | return g_ssl_test_ticket_aead_ex_index; | 
|  | } | 
|  |  | 
|  | static size_t ssl_test_ticket_aead_max_overhead(SSL *ssl) { return 1; } | 
|  |  | 
|  | static int ssl_test_ticket_aead_seal(SSL *ssl, uint8_t *out, size_t *out_len, | 
|  | size_t max_out_len, const uint8_t *in, | 
|  | size_t in_len) { | 
|  | auto state = reinterpret_cast<ssl_test_ticket_aead_state *>( | 
|  | SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index())); | 
|  |  | 
|  | if (state->failure_mode == ssl_test_ticket_aead_seal_fail || | 
|  | max_out_len < in_len + 1) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | OPENSSL_memmove(out, in, in_len); | 
|  | out[in_len] = 0xff; | 
|  | *out_len = in_len + 1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static ssl_ticket_aead_result_t ssl_test_ticket_aead_open( | 
|  | SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len, | 
|  | const uint8_t *in, size_t in_len) { | 
|  | auto state = reinterpret_cast<ssl_test_ticket_aead_state *>( | 
|  | SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index())); | 
|  |  | 
|  | if (state->retry_count > 0) { | 
|  | state->retry_count--; | 
|  | return ssl_ticket_aead_retry; | 
|  | } | 
|  |  | 
|  | switch (state->failure_mode) { | 
|  | case ssl_test_ticket_aead_ok: | 
|  | break; | 
|  | case ssl_test_ticket_aead_seal_fail: | 
|  | // If |seal| failed then there shouldn't be any ticket to try and | 
|  | // decrypt. | 
|  | abort(); | 
|  | break; | 
|  | case ssl_test_ticket_aead_open_soft_fail: | 
|  | return ssl_ticket_aead_ignore_ticket; | 
|  | case ssl_test_ticket_aead_open_hard_fail: | 
|  | return ssl_ticket_aead_error; | 
|  | } | 
|  |  | 
|  | if (in_len == 0 || in[in_len - 1] != 0xff) { | 
|  | return ssl_ticket_aead_ignore_ticket; | 
|  | } | 
|  |  | 
|  | if (max_out_len < in_len - 1) { | 
|  | return ssl_ticket_aead_error; | 
|  | } | 
|  |  | 
|  | OPENSSL_memmove(out, in, in_len - 1); | 
|  | *out_len = in_len - 1; | 
|  | return ssl_ticket_aead_success; | 
|  | } | 
|  |  | 
|  | static const SSL_TICKET_AEAD_METHOD kSSLTestTicketMethod = { | 
|  | ssl_test_ticket_aead_max_overhead, | 
|  | ssl_test_ticket_aead_seal, | 
|  | ssl_test_ticket_aead_open, | 
|  | }; | 
|  |  | 
|  | static void ConnectClientAndServerWithTicketMethod( | 
|  | bssl::UniquePtr<SSL> *out_client, bssl::UniquePtr<SSL> *out_server, | 
|  | SSL_CTX *client_ctx, SSL_CTX *server_ctx, unsigned retry_count, | 
|  | ssl_test_ticket_aead_failure_mode failure_mode, SSL_SESSION *session) { | 
|  | bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx)); | 
|  | ASSERT_TRUE(client); | 
|  | ASSERT_TRUE(server); | 
|  | SSL_set_connect_state(client.get()); | 
|  | SSL_set_accept_state(server.get()); | 
|  |  | 
|  | auto state = new ssl_test_ticket_aead_state; | 
|  | state->retry_count = retry_count; | 
|  | state->failure_mode = failure_mode; | 
|  |  | 
|  | ASSERT_GE(ssl_test_ticket_aead_get_ex_index(), 0); | 
|  | ASSERT_TRUE(SSL_set_ex_data(server.get(), ssl_test_ticket_aead_get_ex_index(), | 
|  | state)); | 
|  |  | 
|  | SSL_set_session(client.get(), session); | 
|  |  | 
|  | BIO *bio1, *bio2; | 
|  | ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0)); | 
|  |  | 
|  | // SSL_set_bio takes ownership. | 
|  | SSL_set_bio(client.get(), bio1, bio1); | 
|  | SSL_set_bio(server.get(), bio2, bio2); | 
|  |  | 
|  | if (CompleteHandshakes(client.get(), server.get())) { | 
|  | *out_client = std::move(client); | 
|  | *out_server = std::move(server); | 
|  | } else { | 
|  | out_client->reset(); | 
|  | out_server->reset(); | 
|  | } | 
|  | } | 
|  |  | 
|  | using TicketAEADMethodParam = | 
|  | testing::tuple<uint16_t, unsigned, ssl_test_ticket_aead_failure_mode>; | 
|  |  | 
|  | class TicketAEADMethodTest | 
|  | : public ::testing::TestWithParam<TicketAEADMethodParam> {}; | 
|  |  | 
|  | TEST_P(TicketAEADMethodTest, Resume) { | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  |  | 
|  | const uint16_t version = testing::get<0>(GetParam()); | 
|  | const unsigned retry_count = testing::get<1>(GetParam()); | 
|  | const ssl_test_ticket_aead_failure_mode failure_mode = | 
|  | testing::get<2>(GetParam()); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), version)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), version)); | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), version)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), version)); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_current_time_cb(client_ctx.get(), FrozenTimeCallback); | 
|  | SSL_CTX_set_current_time_cb(server_ctx.get(), FrozenTimeCallback); | 
|  | SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession); | 
|  |  | 
|  | SSL_CTX_set_ticket_aead_method(server_ctx.get(), &kSSLTestTicketMethod); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_NO_FATAL_FAILURE(ConnectClientAndServerWithTicketMethod( | 
|  | &client, &server, client_ctx.get(), server_ctx.get(), retry_count, | 
|  | failure_mode, nullptr)); | 
|  | switch (failure_mode) { | 
|  | case ssl_test_ticket_aead_ok: | 
|  | case ssl_test_ticket_aead_open_hard_fail: | 
|  | case ssl_test_ticket_aead_open_soft_fail: | 
|  | ASSERT_TRUE(client); | 
|  | break; | 
|  | case ssl_test_ticket_aead_seal_fail: | 
|  | EXPECT_FALSE(client); | 
|  | return; | 
|  | } | 
|  | EXPECT_FALSE(SSL_session_reused(client.get())); | 
|  | EXPECT_FALSE(SSL_session_reused(server.get())); | 
|  |  | 
|  | ASSERT_TRUE(FlushNewSessionTickets(client.get(), server.get())); | 
|  | bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session); | 
|  | ASSERT_NO_FATAL_FAILURE(ConnectClientAndServerWithTicketMethod( | 
|  | &client, &server, client_ctx.get(), server_ctx.get(), retry_count, | 
|  | failure_mode, session.get())); | 
|  | switch (failure_mode) { | 
|  | case ssl_test_ticket_aead_ok: | 
|  | ASSERT_TRUE(client); | 
|  | EXPECT_TRUE(SSL_session_reused(client.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server.get())); | 
|  | break; | 
|  | case ssl_test_ticket_aead_seal_fail: | 
|  | abort(); | 
|  | break; | 
|  | case ssl_test_ticket_aead_open_hard_fail: | 
|  | EXPECT_FALSE(client); | 
|  | break; | 
|  | case ssl_test_ticket_aead_open_soft_fail: | 
|  | ASSERT_TRUE(client); | 
|  | EXPECT_FALSE(SSL_session_reused(client.get())); | 
|  | EXPECT_FALSE(SSL_session_reused(server.get())); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string TicketAEADMethodParamToString( | 
|  | const testing::TestParamInfo<TicketAEADMethodParam> ¶ms) { | 
|  | std::string ret = GetVersionName(std::get<0>(params.param)); | 
|  | // GTest only allows alphanumeric characters and '_' in the parameter | 
|  | // string. Additionally filter out the 'v' to get "TLS13" over "TLSv13". | 
|  | for (auto it = ret.begin(); it != ret.end();) { | 
|  | if (*it == '.' || *it == 'v') { | 
|  | it = ret.erase(it); | 
|  | } else { | 
|  | ++it; | 
|  | } | 
|  | } | 
|  | char retry_count[256]; | 
|  | snprintf(retry_count, sizeof(retry_count), "%u", std::get<1>(params.param)); | 
|  | ret += "_"; | 
|  | ret += retry_count; | 
|  | ret += "Retries_"; | 
|  | switch (std::get<2>(params.param)) { | 
|  | case ssl_test_ticket_aead_ok: | 
|  | ret += "OK"; | 
|  | break; | 
|  | case ssl_test_ticket_aead_seal_fail: | 
|  | ret += "SealFail"; | 
|  | break; | 
|  | case ssl_test_ticket_aead_open_soft_fail: | 
|  | ret += "OpenSoftFail"; | 
|  | break; | 
|  | case ssl_test_ticket_aead_open_hard_fail: | 
|  | ret += "OpenHardFail"; | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P( | 
|  | TicketAEADMethodTests, TicketAEADMethodTest, | 
|  | testing::Combine(testing::Values(TLS1_2_VERSION, TLS1_3_VERSION), | 
|  | testing::Values(0, 1, 2), | 
|  | testing::Values(ssl_test_ticket_aead_ok, | 
|  | ssl_test_ticket_aead_seal_fail, | 
|  | ssl_test_ticket_aead_open_soft_fail, | 
|  | ssl_test_ticket_aead_open_hard_fail)), | 
|  | TicketAEADMethodParamToString); | 
|  |  | 
|  | TEST(SSLTest, SelectNextProto) { | 
|  | uint8_t *result; | 
|  | uint8_t result_len; | 
|  |  | 
|  | // If there is an overlap, it should be returned. | 
|  | EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, | 
|  | SSL_select_next_proto(&result, &result_len, | 
|  | (const uint8_t *)"\1a\2bb\3ccc", 9, | 
|  | (const uint8_t *)"\1x\1y\1a\1z", 8)); | 
|  | EXPECT_EQ(Bytes("a"), Bytes(result, result_len)); | 
|  |  | 
|  | EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, | 
|  | SSL_select_next_proto(&result, &result_len, | 
|  | (const uint8_t *)"\1a\2bb\3ccc", 9, | 
|  | (const uint8_t *)"\1x\1y\2bb\1z", 9)); | 
|  | EXPECT_EQ(Bytes("bb"), Bytes(result, result_len)); | 
|  |  | 
|  | EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, | 
|  | SSL_select_next_proto(&result, &result_len, | 
|  | (const uint8_t *)"\1a\2bb\3ccc", 9, | 
|  | (const uint8_t *)"\1x\1y\3ccc\1z", 10)); | 
|  | EXPECT_EQ(Bytes("ccc"), Bytes(result, result_len)); | 
|  |  | 
|  | // Peer preference order takes precedence over local. | 
|  | EXPECT_EQ(OPENSSL_NPN_NEGOTIATED, | 
|  | SSL_select_next_proto(&result, &result_len, | 
|  | (const uint8_t *)"\1a\2bb\3ccc", 9, | 
|  | (const uint8_t *)"\3ccc\2bb\1a", 9)); | 
|  | EXPECT_EQ(Bytes("a"), Bytes(result, result_len)); | 
|  |  | 
|  | // If there is no overlap, opportunistically select the first local protocol. | 
|  | // ALPN callers should ignore this, but NPN callers may use this per | 
|  | // draft-agl-tls-nextprotoneg-03, section 6. | 
|  | EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, | 
|  | SSL_select_next_proto(&result, &result_len, | 
|  | (const uint8_t *)"\1a\2bb\3ccc", 9, | 
|  | (const uint8_t *)"\1x\2yy\3zzz", 9)); | 
|  | EXPECT_EQ(Bytes("x"), Bytes(result, result_len)); | 
|  |  | 
|  | // The peer preference order may be empty in NPN. This should be treated as no | 
|  | // overlap and continue to select an opportunistic protocol. | 
|  | EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, | 
|  | SSL_select_next_proto(&result, &result_len, nullptr, 0, | 
|  | (const uint8_t *)"\1x\2yy\3zzz", 9)); | 
|  | EXPECT_EQ(Bytes("x"), Bytes(result, result_len)); | 
|  |  | 
|  | // Although calling this function with no local protocols is a caller error, | 
|  | // it should cleanly return an empty protocol. | 
|  | EXPECT_EQ( | 
|  | OPENSSL_NPN_NO_OVERLAP, | 
|  | SSL_select_next_proto(&result, &result_len, | 
|  | (const uint8_t *)"\1a\2bb\3ccc", 9, nullptr, 0)); | 
|  | EXPECT_EQ(Bytes(""), Bytes(result, result_len)); | 
|  |  | 
|  | // Syntax errors are similarly caller errors. | 
|  | EXPECT_EQ( | 
|  | OPENSSL_NPN_NO_OVERLAP, | 
|  | SSL_select_next_proto(&result, &result_len, (const uint8_t *)"\4aaa", 4, | 
|  | (const uint8_t *)"\1a\2bb\3ccc", 9)); | 
|  | EXPECT_EQ(Bytes(""), Bytes(result, result_len)); | 
|  | EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, | 
|  | SSL_select_next_proto(&result, &result_len, | 
|  | (const uint8_t *)"\1a\2bb\3ccc", 9, | 
|  | (const uint8_t *)"\4aaa", 4)); | 
|  | EXPECT_EQ(Bytes(""), Bytes(result, result_len)); | 
|  |  | 
|  | // Protocols in protocol lists may not be empty. | 
|  | EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, | 
|  | SSL_select_next_proto(&result, &result_len, | 
|  | (const uint8_t *)"\0\2bb\3ccc", 8, | 
|  | (const uint8_t *)"\1a\2bb\3ccc", 9)); | 
|  | EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP, | 
|  | SSL_select_next_proto(&result, &result_len, | 
|  | (const uint8_t *)"\1a\2bb\3ccc", 9, | 
|  | (const uint8_t *)"\0\2bb\3ccc", 8)); | 
|  | EXPECT_EQ(Bytes(""), Bytes(result, result_len)); | 
|  | } | 
|  |  | 
|  | // The client should gracefully handle no suitable ciphers being enabled. | 
|  | TEST(SSLTest, NoCiphersAvailable) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | // Configure |client_ctx| with a cipher list that does not intersect with its | 
|  | // version configuration. | 
|  | ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( | 
|  | ctx.get(), "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256")); | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_1_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION)); | 
|  |  | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | SSL_set_connect_state(ssl.get()); | 
|  |  | 
|  | UniquePtr<BIO> rbio(BIO_new(BIO_s_mem())), wbio(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(rbio); | 
|  | ASSERT_TRUE(wbio); | 
|  | SSL_set0_rbio(ssl.get(), rbio.release()); | 
|  | SSL_set0_wbio(ssl.get(), wbio.release()); | 
|  |  | 
|  | int ret = SSL_do_handshake(ssl.get()); | 
|  | EXPECT_EQ(-1, ret); | 
|  | EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), ret)); | 
|  | EXPECT_TRUE( | 
|  | ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_NO_CIPHERS_AVAILABLE)); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, SessionVersion) { | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session); | 
|  | EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get())); | 
|  |  | 
|  | // Sessions in TLS 1.3 and later should be single-use. | 
|  | EXPECT_EQ(is_tls13(), !!SSL_SESSION_should_be_single_use(session.get())); | 
|  |  | 
|  | // Making fake sessions for testing works. | 
|  | session.reset(SSL_SESSION_new(client_ctx_.get())); | 
|  | ASSERT_TRUE(session); | 
|  | ASSERT_TRUE(SSL_SESSION_set_protocol_version(session.get(), version())); | 
|  | EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get())); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, SSLPending) { | 
|  | UniquePtr<SSL> ssl(SSL_new(client_ctx_.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | EXPECT_EQ(0, SSL_pending(ssl.get())); | 
|  |  | 
|  | ASSERT_TRUE(Connect()); | 
|  | EXPECT_EQ(0, SSL_pending(client_.get())); | 
|  | EXPECT_EQ(0, SSL_has_pending(client_.get())); | 
|  |  | 
|  | ASSERT_EQ(5, SSL_write(server_.get(), "hello", 5)); | 
|  | ASSERT_EQ(5, SSL_write(server_.get(), "world", 5)); | 
|  | EXPECT_EQ(0, SSL_pending(client_.get())); | 
|  | EXPECT_EQ(0, SSL_has_pending(client_.get())); | 
|  |  | 
|  | char buf[10]; | 
|  | ASSERT_EQ(1, SSL_peek(client_.get(), buf, 1)); | 
|  | EXPECT_EQ(5, SSL_pending(client_.get())); | 
|  | EXPECT_EQ(1, SSL_has_pending(client_.get())); | 
|  |  | 
|  | ASSERT_EQ(1, SSL_read(client_.get(), buf, 1)); | 
|  | EXPECT_EQ(4, SSL_pending(client_.get())); | 
|  | EXPECT_EQ(1, SSL_has_pending(client_.get())); | 
|  |  | 
|  | ASSERT_EQ(4, SSL_read(client_.get(), buf, 10)); | 
|  | EXPECT_EQ(0, SSL_pending(client_.get())); | 
|  | if (is_dtls()) { | 
|  | // In DTLS, the two records would have been read as a single datagram and | 
|  | // buffered inside |client_|. Thus, |SSL_has_pending| should return true. | 
|  | // | 
|  | // This test is slightly unrealistic. It relies on |ConnectClientAndServer| | 
|  | // using a |BIO| pair, which does not preserve datagram boundaries. Reading | 
|  | // 1 byte, then 4 bytes, from the first record also relies on | 
|  | // https://crbug.com/boringssl/65. But it does test the codepaths. When | 
|  | // fixing either of these bugs, this test may need to be redone. | 
|  | EXPECT_EQ(1, SSL_has_pending(client_.get())); | 
|  | } else { | 
|  | // In TLS, we do not overread, so |SSL_has_pending| should report no data is | 
|  | // buffered. | 
|  | EXPECT_EQ(0, SSL_has_pending(client_.get())); | 
|  | } | 
|  |  | 
|  | ASSERT_EQ(2, SSL_read(client_.get(), buf, 2)); | 
|  | EXPECT_EQ(3, SSL_pending(client_.get())); | 
|  | EXPECT_EQ(1, SSL_has_pending(client_.get())); | 
|  | } | 
|  |  | 
|  | // Test that post-handshake tickets consumed by |SSL_shutdown| are ignored. | 
|  | TEST(SSLTest, ShutdownIgnoresTickets) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION)); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
|  |  | 
|  | SSL_CTX_sess_set_new_cb(ctx.get(), [](SSL *ssl, SSL_SESSION *session) -> int { | 
|  | ADD_FAILURE() << "New session callback called during SSL_shutdown"; | 
|  | return 0; | 
|  | }); | 
|  |  | 
|  | // Send close_notify. | 
|  | EXPECT_EQ(0, SSL_shutdown(server.get())); | 
|  | EXPECT_EQ(0, SSL_shutdown(client.get())); | 
|  |  | 
|  | // Receive close_notify. | 
|  | EXPECT_EQ(1, SSL_shutdown(server.get())); | 
|  | EXPECT_EQ(1, SSL_shutdown(client.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SignatureAlgorithmProperties) { | 
|  | EXPECT_EQ(EVP_PKEY_NONE, SSL_get_signature_algorithm_key_type(0x1234)); | 
|  | EXPECT_EQ(nullptr, SSL_get_signature_algorithm_digest(0x1234)); | 
|  | EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(0x1234)); | 
|  |  | 
|  | EXPECT_EQ(EVP_PKEY_RSA, | 
|  | SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); | 
|  | EXPECT_EQ(EVP_md5_sha1(), | 
|  | SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); | 
|  | EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PKCS1_MD5_SHA1)); | 
|  |  | 
|  | EXPECT_EQ(EVP_PKEY_EC, SSL_get_signature_algorithm_key_type( | 
|  | SSL_SIGN_ECDSA_SECP256R1_SHA256)); | 
|  | EXPECT_EQ(EVP_sha256(), SSL_get_signature_algorithm_digest( | 
|  | SSL_SIGN_ECDSA_SECP256R1_SHA256)); | 
|  | EXPECT_FALSE( | 
|  | SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_ECDSA_SECP256R1_SHA256)); | 
|  |  | 
|  | EXPECT_EQ(EVP_PKEY_RSA, | 
|  | SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PSS_RSAE_SHA384)); | 
|  | EXPECT_EQ(EVP_sha384(), | 
|  | SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PSS_RSAE_SHA384)); | 
|  | EXPECT_TRUE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PSS_RSAE_SHA384)); | 
|  | } | 
|  |  | 
|  | static int XORCompressFunc(SSL *ssl, CBB *out, const uint8_t *in, | 
|  | size_t in_len) { | 
|  | for (size_t i = 0; i < in_len; i++) { | 
|  | if (!CBB_add_u8(out, in[i] ^ 0x55)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | SSL_set_app_data(ssl, XORCompressFunc); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int XORDecompressFunc(SSL *ssl, CRYPTO_BUFFER **out, | 
|  | size_t uncompressed_len, const uint8_t *in, | 
|  | size_t in_len) { | 
|  | if (in_len != uncompressed_len) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t *data; | 
|  | *out = CRYPTO_BUFFER_alloc(&data, uncompressed_len); | 
|  | if (*out == nullptr) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < in_len; i++) { | 
|  | data[i] = in[i] ^ 0x55; | 
|  | } | 
|  |  | 
|  | SSL_set_app_data(ssl, XORDecompressFunc); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, CertCompression) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx( | 
|  | CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_add_cert_compression_alg( | 
|  | client_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc)); | 
|  | ASSERT_TRUE(SSL_CTX_add_cert_compression_alg( | 
|  | server_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc)); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | EXPECT_TRUE(SSL_get_app_data(client.get()) == XORDecompressFunc); | 
|  | EXPECT_TRUE(SSL_get_app_data(server.get()) == XORCompressFunc); | 
|  | } | 
|  |  | 
|  | void MoveBIOs(SSL *dest, SSL *src) { | 
|  | BIO *rbio = SSL_get_rbio(src); | 
|  | BIO_up_ref(rbio); | 
|  | SSL_set0_rbio(dest, rbio); | 
|  |  | 
|  | BIO *wbio = SSL_get_wbio(src); | 
|  | BIO_up_ref(wbio); | 
|  | SSL_set0_wbio(dest, wbio); | 
|  |  | 
|  | SSL_set0_rbio(src, nullptr); | 
|  | SSL_set0_wbio(src, nullptr); | 
|  | } | 
|  |  | 
|  | void VerifyHandoff(bool use_new_alps_codepoint) { | 
|  | static const uint8_t alpn[] = {0x03, 'f', 'o', 'o'}; | 
|  | static const uint8_t proto[] = {'f', 'o', 'o'}; | 
|  | static const uint8_t alps[] = {0x04, 'a', 'l', 'p', 's'}; | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> handshaker_ctx( | 
|  | CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | ASSERT_TRUE(handshaker_ctx); | 
|  |  | 
|  | if (!use_new_alps_codepoint) { | 
|  | SetUpExpectedOldCodePoint(server_ctx.get()); | 
|  | } else { | 
|  | SetUpExpectedNewCodePoint(server_ctx.get()); | 
|  | } | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_CLIENT); | 
|  | SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession); | 
|  | SSL_CTX_set_handoff_mode(server_ctx.get(), true); | 
|  | uint8_t keys[48]; | 
|  | SSL_CTX_get_tlsext_ticket_keys(server_ctx.get(), &keys, sizeof(keys)); | 
|  | SSL_CTX_set_tlsext_ticket_keys(handshaker_ctx.get(), &keys, sizeof(keys)); | 
|  |  | 
|  | for (bool early_data : {false, true}) { | 
|  | SCOPED_TRACE(early_data); | 
|  | for (bool is_resume : {false, true}) { | 
|  | SCOPED_TRACE(is_resume); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | SSL_set_early_data_enabled(client.get(), early_data); | 
|  |  | 
|  | // Set up client ALPS settings. | 
|  | SSL_set_alps_use_new_codepoint(client.get(), use_new_alps_codepoint); | 
|  | ASSERT_TRUE(SSL_set_alpn_protos(client.get(), alpn, sizeof(alpn)) == 0); | 
|  | ASSERT_TRUE(SSL_add_application_settings(client.get(), proto, | 
|  | sizeof(proto), nullptr, 0)); | 
|  | if (is_resume) { | 
|  | ASSERT_TRUE(g_last_session); | 
|  | SSL_set_session(client.get(), g_last_session.get()); | 
|  | if (early_data) { | 
|  | EXPECT_GT(g_last_session->ticket_max_early_data, 0u); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int client_ret = SSL_do_handshake(client.get()); | 
|  | int client_err = SSL_get_error(client.get(), client_ret); | 
|  |  | 
|  | uint8_t byte_written; | 
|  | if (early_data && is_resume) { | 
|  | ASSERT_EQ(client_err, 0); | 
|  | EXPECT_TRUE(SSL_in_early_data(client.get())); | 
|  | // Attempt to write early data. | 
|  | byte_written = 43; | 
|  | EXPECT_EQ(SSL_write(client.get(), &byte_written, 1), 1); | 
|  | } else { | 
|  | ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); | 
|  | } | 
|  |  | 
|  | int server_ret = SSL_do_handshake(server.get()); | 
|  | int server_err = SSL_get_error(server.get(), server_ret); | 
|  | ASSERT_EQ(server_err, SSL_ERROR_HANDOFF); | 
|  |  | 
|  | ScopedCBB cbb; | 
|  | Array<uint8_t> handoff; | 
|  | SSL_CLIENT_HELLO hello; | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 256)); | 
|  | ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get(), &hello)); | 
|  | ASSERT_TRUE(CBBFinishArray(cbb.get(), &handoff)); | 
|  |  | 
|  | bssl::UniquePtr<SSL> handshaker(SSL_new(handshaker_ctx.get())); | 
|  | ASSERT_TRUE(handshaker); | 
|  | // Note split handshakes determines 0-RTT support, for both the current | 
|  | // handshake and newly-issued tickets, entirely by |handshaker|. There is | 
|  | // no need to call |SSL_set_early_data_enabled| on |server|. | 
|  | SSL_set_early_data_enabled(handshaker.get(), 1); | 
|  |  | 
|  | // Set up handshaker ALPS settings. | 
|  | SSL_set_alps_use_new_codepoint(handshaker.get(), use_new_alps_codepoint); | 
|  | SSL_CTX_set_alpn_select_cb( | 
|  | handshaker_ctx.get(), | 
|  | [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, | 
|  | unsigned in_len, void *arg) -> int { | 
|  | return SSL_select_next_proto(const_cast<uint8_t **>(out), out_len, | 
|  | in, in_len, alpn, | 
|  | sizeof(alpn)) == OPENSSL_NPN_NEGOTIATED | 
|  | ? SSL_TLSEXT_ERR_OK | 
|  | : SSL_TLSEXT_ERR_NOACK; | 
|  | }, | 
|  | nullptr); | 
|  | ASSERT_TRUE(SSL_add_application_settings( | 
|  | handshaker.get(), proto, sizeof(proto), alps, sizeof(alps))); | 
|  |  | 
|  | ASSERT_TRUE(SSL_apply_handoff(handshaker.get(), handoff)); | 
|  |  | 
|  | MoveBIOs(handshaker.get(), server.get()); | 
|  |  | 
|  | int handshake_ret = SSL_do_handshake(handshaker.get()); | 
|  | int handshake_err = SSL_get_error(handshaker.get(), handshake_ret); | 
|  | ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK); | 
|  |  | 
|  | // Double-check that additional calls to |SSL_do_handshake| continue | 
|  | // to get |SSL_ERROR_HANDBACK|. | 
|  | handshake_ret = SSL_do_handshake(handshaker.get()); | 
|  | handshake_err = SSL_get_error(handshaker.get(), handshake_ret); | 
|  | ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK); | 
|  |  | 
|  | ScopedCBB cbb_handback; | 
|  | Array<uint8_t> handback; | 
|  | ASSERT_TRUE(CBB_init(cbb_handback.get(), 1024)); | 
|  | ASSERT_TRUE(SSL_serialize_handback(handshaker.get(), cbb_handback.get())); | 
|  | ASSERT_TRUE(CBBFinishArray(cbb_handback.get(), &handback)); | 
|  |  | 
|  | bssl::UniquePtr<SSL> server2(SSL_new(server_ctx.get())); | 
|  | ASSERT_TRUE(server2); | 
|  | ASSERT_TRUE(SSL_apply_handback(server2.get(), handback)); | 
|  |  | 
|  | MoveBIOs(server2.get(), handshaker.get()); | 
|  | ASSERT_TRUE(CompleteHandshakes(client.get(), server2.get())); | 
|  | EXPECT_EQ(is_resume, SSL_session_reused(client.get())); | 
|  | // Verify application settings. | 
|  | ASSERT_TRUE(SSL_has_application_settings(client.get())); | 
|  |  | 
|  | if (early_data && is_resume) { | 
|  | // In this case, one byte of early data has already been written above. | 
|  | EXPECT_TRUE(SSL_early_data_accepted(client.get())); | 
|  | } else { | 
|  | byte_written = 42; | 
|  | EXPECT_EQ(SSL_write(client.get(), &byte_written, 1), 1); | 
|  | } | 
|  | uint8_t byte; | 
|  | EXPECT_EQ(SSL_read(server2.get(), &byte, 1), 1); | 
|  | EXPECT_EQ(byte_written, byte); | 
|  |  | 
|  | byte = 44; | 
|  | EXPECT_EQ(SSL_write(server2.get(), &byte, 1), 1); | 
|  | EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1); | 
|  | EXPECT_EQ(44, byte); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, Handoff) { | 
|  | for (bool use_new_alps_codepoint : {false, true}) { | 
|  | SCOPED_TRACE(use_new_alps_codepoint); | 
|  | VerifyHandoff(use_new_alps_codepoint); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, HandoffDeclined) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx( | 
|  | CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  |  | 
|  | SSL_CTX_set_handoff_mode(server_ctx.get(), true); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION)); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | int client_ret = SSL_do_handshake(client.get()); | 
|  | int client_err = SSL_get_error(client.get(), client_ret); | 
|  | ASSERT_EQ(client_err, SSL_ERROR_WANT_READ); | 
|  |  | 
|  | int server_ret = SSL_do_handshake(server.get()); | 
|  | int server_err = SSL_get_error(server.get(), server_ret); | 
|  | ASSERT_EQ(server_err, SSL_ERROR_HANDOFF); | 
|  |  | 
|  | ScopedCBB cbb; | 
|  | SSL_CLIENT_HELLO hello; | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 256)); | 
|  | ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get(), &hello)); | 
|  |  | 
|  | ASSERT_TRUE(SSL_decline_handoff(server.get())); | 
|  |  | 
|  | ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
|  |  | 
|  | uint8_t byte = 42; | 
|  | EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1); | 
|  | EXPECT_EQ(SSL_read(server.get(), &byte, 1), 1); | 
|  | EXPECT_EQ(42, byte); | 
|  |  | 
|  | byte = 43; | 
|  | EXPECT_EQ(SSL_write(server.get(), &byte, 1), 1); | 
|  | EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1); | 
|  | EXPECT_EQ(43, byte); | 
|  | } | 
|  |  | 
|  | static std::string SigAlgsToString(Span<const uint16_t> sigalgs) { | 
|  | std::string ret = "{"; | 
|  |  | 
|  | for (uint16_t v : sigalgs) { | 
|  | if (ret.size() > 1) { | 
|  | ret += ", "; | 
|  | } | 
|  |  | 
|  | char buf[8]; | 
|  | snprintf(buf, sizeof(buf) - 1, "0x%02x", v); | 
|  | buf[sizeof(buf) - 1] = 0; | 
|  | ret += std::string(buf); | 
|  | } | 
|  |  | 
|  | ret += "}"; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void ExpectSigAlgsEqual(Span<const uint16_t> expected, | 
|  | Span<const uint16_t> actual) { | 
|  | bool matches = false; | 
|  | if (expected.size() == actual.size()) { | 
|  | matches = true; | 
|  |  | 
|  | for (size_t i = 0; i < expected.size(); i++) { | 
|  | if (expected[i] != actual[i]) { | 
|  | matches = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!matches) { | 
|  | ADD_FAILURE() << "expected: " << SigAlgsToString(expected) | 
|  | << " got: " << SigAlgsToString(actual); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SigAlgs) { | 
|  | static const struct { | 
|  | std::vector<int> input; | 
|  | bool ok; | 
|  | std::vector<uint16_t> expected; | 
|  | } kTests[] = { | 
|  | {{}, true, {}}, | 
|  | {{1}, false, {}}, | 
|  | {{1, 2, 3}, false, {}}, | 
|  | {{NID_sha256, EVP_PKEY_ED25519}, false, {}}, | 
|  | {{NID_sha256, EVP_PKEY_RSA, NID_sha256, EVP_PKEY_RSA}, false, {}}, | 
|  |  | 
|  | {{NID_sha256, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA256}}, | 
|  | {{NID_sha512, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA512}}, | 
|  | {{NID_sha256, EVP_PKEY_RSA_PSS}, true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, | 
|  | {{NID_undef, EVP_PKEY_ED25519}, true, {SSL_SIGN_ED25519}}, | 
|  | {{NID_undef, EVP_PKEY_ED25519, NID_sha384, EVP_PKEY_EC}, | 
|  | true, | 
|  | {SSL_SIGN_ED25519, SSL_SIGN_ECDSA_SECP384R1_SHA384}}, | 
|  | }; | 
|  |  | 
|  | UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | unsigned n = 1; | 
|  | for (const auto &test : kTests) { | 
|  | SCOPED_TRACE(n++); | 
|  |  | 
|  | const bool ok = | 
|  | SSL_CTX_set1_sigalgs(ctx.get(), test.input.data(), test.input.size()); | 
|  | EXPECT_EQ(ok, test.ok); | 
|  |  | 
|  | if (!ok) { | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | if (!test.ok) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ExpectSigAlgsEqual(test.expected, ctx->cert->legacy_credential->sigalgs); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SigAlgsList) { | 
|  | static const struct { | 
|  | const char *input; | 
|  | bool ok; | 
|  | std::vector<uint16_t> expected; | 
|  | } kTests[] = { | 
|  | {"", false, {}}, | 
|  | {":", false, {}}, | 
|  | {"+", false, {}}, | 
|  | {"RSA", false, {}}, | 
|  | {"RSA+", false, {}}, | 
|  | {"RSA+SHA256:", false, {}}, | 
|  | {":RSA+SHA256:", false, {}}, | 
|  | {":RSA+SHA256+:", false, {}}, | 
|  | {"!", false, {}}, | 
|  | {"\x01", false, {}}, | 
|  | {"RSA+SHA256:RSA+SHA384:RSA+SHA256", false, {}}, | 
|  | {"RSA-PSS+SHA256:rsa_pss_rsae_sha256", false, {}}, | 
|  |  | 
|  | {"RSA+SHA256", true, {SSL_SIGN_RSA_PKCS1_SHA256}}, | 
|  | {"RSA+SHA256:ed25519", | 
|  | true, | 
|  | {SSL_SIGN_RSA_PKCS1_SHA256, SSL_SIGN_ED25519}}, | 
|  | {"ECDSA+SHA256:RSA+SHA512", | 
|  | true, | 
|  | {SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PKCS1_SHA512}}, | 
|  | {"ecdsa_secp256r1_sha256:rsa_pss_rsae_sha256", | 
|  | true, | 
|  | {SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PSS_RSAE_SHA256}}, | 
|  | {"RSA-PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, | 
|  | {"PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}}, | 
|  | }; | 
|  |  | 
|  | UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | unsigned n = 1; | 
|  | for (const auto &test : kTests) { | 
|  | SCOPED_TRACE(n++); | 
|  |  | 
|  | const bool ok = SSL_CTX_set1_sigalgs_list(ctx.get(), test.input); | 
|  | EXPECT_EQ(ok, test.ok); | 
|  |  | 
|  | if (!ok) { | 
|  | if (test.ok) { | 
|  | ERR_print_errors_fp(stderr); | 
|  | } | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | if (!test.ok) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ExpectSigAlgsEqual(test.expected, ctx->cert->legacy_credential->sigalgs); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ApplyHandoffRemovesUnsupportedCiphers) { | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | bssl::UniquePtr<SSL> server(SSL_new(server_ctx.get())); | 
|  | ASSERT_TRUE(server); | 
|  |  | 
|  | // handoff is a handoff message that has been artificially modified to pretend | 
|  | // that only TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f) is supported. When | 
|  | // it is applied to |server|, all ciphers but that one should be removed. | 
|  | // | 
|  | // To make a new one of these, try sticking this in the |Handoff| test above: | 
|  | // | 
|  | // hexdump(stderr, "", handoff.data(), handoff.size()); | 
|  | // sed -e 's/\(..\)/0x\1, /g' | 
|  | // | 
|  | // and modify serialize_features() to emit only cipher 0x0A. | 
|  |  | 
|  | uint8_t handoff[] = { | 
|  | 0x30, 0x81, 0x9a, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01, | 
|  | 0x00, 0x00, 0x7e, 0x03, 0x03, 0x30, 0x8e, 0x8f, 0x79, 0xd2, 0x87, 0x39, | 
|  | 0xc2, 0x23, 0x23, 0x13, 0xca, 0x3c, 0x80, 0x44, 0xfd, 0x80, 0x83, 0x62, | 
|  | 0x3c, 0xcc, 0xf8, 0x76, 0xd3, 0x62, 0xbb, 0x54, 0xe3, 0xc4, 0x39, 0x24, | 
|  | 0xa5, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, | 
|  | 0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, | 
|  | 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, | 
|  | 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, | 
|  | 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, | 
|  | 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, | 
|  | 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08, | 
|  | 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x02, 0xc0, | 
|  | 0x2f, 0x04, 0x0a, 0x00, 0x15, 0x00, 0x17, 0x00, 0x18, 0x00, 0x19, 0x00, | 
|  | 0x1d, | 
|  | }; | 
|  |  | 
|  | EXPECT_LT(1u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get()))); | 
|  | ASSERT_TRUE(SSL_apply_handoff(server.get(), handoff)); | 
|  | EXPECT_EQ(1u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get()))); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ApplyHandoffRemovesUnsupportedCurves) { | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | bssl::UniquePtr<SSL> server(SSL_new(server_ctx.get())); | 
|  | ASSERT_TRUE(server); | 
|  |  | 
|  | // handoff is a handoff message that has been artificially modified to pretend | 
|  | // that only one ECDH group is supported.  When it is applied to |server|, all | 
|  | // groups but that one should be removed. | 
|  | // | 
|  | // See |ApplyHandoffRemovesUnsupportedCiphers| for how to make a new one of | 
|  | // these. | 
|  | uint8_t handoff[] = { | 
|  | 0x30, 0x81, 0xc0, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01, | 
|  | 0x00, 0x00, 0x7e, 0x03, 0x03, 0x98, 0x30, 0xce, 0xd9, 0xb0, 0xdf, 0x5f, | 
|  | 0x82, 0x05, 0x4a, 0x43, 0x67, 0x7e, 0xdb, 0x6a, 0x4f, 0x21, 0x18, 0x4e, | 
|  | 0x0d, 0x94, 0x63, 0x18, 0x8b, 0x54, 0x89, 0xdb, 0x8b, 0x1d, 0x84, 0xbc, | 
|  | 0x09, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, | 
|  | 0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, | 
|  | 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, | 
|  | 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, | 
|  | 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, | 
|  | 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, | 
|  | 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08, | 
|  | 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x30, 0x00, | 
|  | 0x02, 0x00, 0x0a, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x8c, 0x00, 0x8d, 0x00, | 
|  | 0x9c, 0x00, 0x9d, 0x13, 0x01, 0x13, 0x02, 0x13, 0x03, 0xc0, 0x09, 0xc0, | 
|  | 0x0a, 0xc0, 0x13, 0xc0, 0x14, 0xc0, 0x2b, 0xc0, 0x2c, 0xc0, 0x2f, 0xc0, | 
|  | 0x30, 0xc0, 0x35, 0xc0, 0x36, 0xcc, 0xa8, 0xcc, 0xa9, 0xcc, 0xac, 0x04, | 
|  | 0x02, 0x00, 0x17, | 
|  | }; | 
|  |  | 
|  | // The default list of groups is used before applying the handoff. | 
|  | EXPECT_THAT(server->config->supported_group_list, | 
|  | ElementsAreArray({SSL_GROUP_X25519, SSL_GROUP_SECP256R1, | 
|  | SSL_GROUP_SECP384R1})); | 
|  | ASSERT_TRUE(SSL_apply_handoff(server.get(), handoff)); | 
|  | EXPECT_EQ(1u, server->config->supported_group_list.size()); | 
|  | EXPECT_EQ(SSL_GROUP_SECP256R1, server->config->supported_group_list[0]); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ZeroSizedWiteFlushesHandshakeMessages) { | 
|  | // If there are pending handshake mesages, an |SSL_write| of zero bytes should | 
|  | // flush them. | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx( | 
|  | CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | EXPECT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
|  | EXPECT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | EXPECT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
|  | EXPECT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | BIO *client_wbio = SSL_get_wbio(client.get()); | 
|  | EXPECT_EQ(0u, BIO_wpending(client_wbio)); | 
|  | EXPECT_TRUE(SSL_key_update(client.get(), SSL_KEY_UPDATE_NOT_REQUESTED)); | 
|  | EXPECT_EQ(0u, BIO_wpending(client_wbio)); | 
|  | EXPECT_EQ(0, SSL_write(client.get(), nullptr, 0)); | 
|  | EXPECT_NE(0u, BIO_wpending(client_wbio)); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, VerifyBeforeCertRequest) { | 
|  | // Configure the server to request client certificates. | 
|  | SSL_CTX_set_custom_verify( | 
|  | server_ctx_.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); | 
|  |  | 
|  | // Configure the client to reject the server certificate. | 
|  | SSL_CTX_set_custom_verify( | 
|  | client_ctx_.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_invalid; }); | 
|  |  | 
|  | // cert_cb should not be called. Verification should fail first. | 
|  | SSL_CTX_set_cert_cb( | 
|  | client_ctx_.get(), | 
|  | [](SSL *ssl, void *arg) { | 
|  | ADD_FAILURE() << "cert_cb unexpectedly called"; | 
|  | return 0; | 
|  | }, | 
|  | nullptr); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | EXPECT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
|  | server_ctx_.get())); | 
|  | } | 
|  |  | 
|  | // Test that ticket-based sessions on the client get fake session IDs. | 
|  | TEST_P(SSLVersionTest, FakeIDsForTickets) { | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session); | 
|  |  | 
|  | EXPECT_TRUE(SSL_SESSION_has_ticket(session.get())); | 
|  | unsigned session_id_length; | 
|  | SSL_SESSION_get_id(session.get(), &session_id_length); | 
|  | EXPECT_NE(session_id_length, 0u); | 
|  | } | 
|  |  | 
|  | // These tests test multi-threaded behavior. They are intended to run with | 
|  | // ThreadSanitizer. | 
|  | #if defined(OPENSSL_THREADS) | 
|  | TEST_P(SSLVersionTest, SessionCacheThreads) { | 
|  | SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET); | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | if (is_tls13()) { | 
|  | // Our TLS 1.3 implementation does not support stateful resumption. | 
|  | ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Establish two client sessions to test with. | 
|  | bssl::UniquePtr<SSL_SESSION> session1 = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session1); | 
|  | bssl::UniquePtr<SSL_SESSION> session2 = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session2); | 
|  |  | 
|  | auto connect_with_session = [&](SSL_SESSION *session) { | 
|  | ClientConfig config; | 
|  | config.session = session; | 
|  | UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
|  | server_ctx_.get(), config)); | 
|  | }; | 
|  |  | 
|  | // Resume sessions in parallel with establishing new ones. | 
|  | { | 
|  | std::vector<std::thread> threads; | 
|  | threads.emplace_back([&] { connect_with_session(nullptr); }); | 
|  | threads.emplace_back([&] { connect_with_session(nullptr); }); | 
|  | threads.emplace_back([&] { connect_with_session(session1.get()); }); | 
|  | threads.emplace_back([&] { connect_with_session(session1.get()); }); | 
|  | threads.emplace_back([&] { connect_with_session(session2.get()); }); | 
|  | threads.emplace_back([&] { connect_with_session(session2.get()); }); | 
|  | for (auto &thread : threads) { | 
|  | thread.join(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Hit the maximum session cache size across multiple threads, to test the | 
|  | // size enforcement logic. | 
|  | size_t limit = SSL_CTX_sess_number(server_ctx_.get()) + 2; | 
|  | SSL_CTX_sess_set_cache_size(server_ctx_.get(), limit); | 
|  | { | 
|  | std::vector<std::thread> threads; | 
|  | for (int i = 0; i < 4; i++) { | 
|  | threads.emplace_back([&]() { | 
|  | connect_with_session(nullptr); | 
|  | EXPECT_LE(SSL_CTX_sess_number(server_ctx_.get()), limit); | 
|  | }); | 
|  | } | 
|  | for (auto &thread : threads) { | 
|  | thread.join(); | 
|  | } | 
|  | EXPECT_EQ(SSL_CTX_sess_number(server_ctx_.get()), limit); | 
|  | } | 
|  |  | 
|  | // Reset the session cache, this time with a mock clock. | 
|  | ASSERT_NO_FATAL_FAILURE(ResetContexts()); | 
|  | SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET); | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback); | 
|  |  | 
|  | // Make some sessions at an arbitrary start time. Then expire them. | 
|  | g_current_time.tv_sec = 1000; | 
|  | bssl::UniquePtr<SSL_SESSION> expired_session1 = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(expired_session1); | 
|  | bssl::UniquePtr<SSL_SESSION> expired_session2 = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(expired_session2); | 
|  | g_current_time.tv_sec += 100 * SSL_DEFAULT_SESSION_TIMEOUT; | 
|  |  | 
|  | session1 = CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session1); | 
|  |  | 
|  | // Every 256 connections, we flush stale sessions from the session cache. Test | 
|  | // this logic is correctly synchronized with other connection attempts. | 
|  | static const int kNumConnections = 256; | 
|  | { | 
|  | std::vector<std::thread> threads; | 
|  | threads.emplace_back([&] { | 
|  | for (int i = 0; i < kNumConnections; i++) { | 
|  | connect_with_session(nullptr); | 
|  | } | 
|  | }); | 
|  | threads.emplace_back([&] { | 
|  | for (int i = 0; i < kNumConnections; i++) { | 
|  | connect_with_session(nullptr); | 
|  | } | 
|  | }); | 
|  | threads.emplace_back([&] { | 
|  | // Never connect with |expired_session2|. The session cache eagerly | 
|  | // removes expired sessions when it sees them. Leaving |expired_session2| | 
|  | // untouched ensures it is instead cleared by periodic flushing. | 
|  | for (int i = 0; i < kNumConnections; i++) { | 
|  | connect_with_session(expired_session1.get()); | 
|  | } | 
|  | }); | 
|  | threads.emplace_back([&] { | 
|  | for (int i = 0; i < kNumConnections; i++) { | 
|  | connect_with_session(session1.get()); | 
|  | } | 
|  | }); | 
|  | for (auto &thread : threads) { | 
|  | thread.join(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, SessionTicketThreads) { | 
|  | for (bool renew_ticket : {false, true}) { | 
|  | SCOPED_TRACE(renew_ticket); | 
|  | ASSERT_NO_FATAL_FAILURE(ResetContexts()); | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | if (renew_ticket) { | 
|  | SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback); | 
|  | } | 
|  |  | 
|  | // Establish two client sessions to test with. | 
|  | bssl::UniquePtr<SSL_SESSION> session1 = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session1); | 
|  | bssl::UniquePtr<SSL_SESSION> session2 = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session2); | 
|  |  | 
|  | auto connect_with_session = [&](SSL_SESSION *session) { | 
|  | ClientConfig config; | 
|  | config.session = session; | 
|  | UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
|  | server_ctx_.get(), config)); | 
|  | }; | 
|  |  | 
|  | // Resume sessions in parallel with establishing new ones. | 
|  | { | 
|  | std::vector<std::thread> threads; | 
|  | threads.emplace_back([&] { connect_with_session(nullptr); }); | 
|  | threads.emplace_back([&] { connect_with_session(nullptr); }); | 
|  | threads.emplace_back([&] { connect_with_session(session1.get()); }); | 
|  | threads.emplace_back([&] { connect_with_session(session1.get()); }); | 
|  | threads.emplace_back([&] { connect_with_session(session2.get()); }); | 
|  | threads.emplace_back([&] { connect_with_session(session2.get()); }); | 
|  | for (auto &thread : threads) { | 
|  | thread.join(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // SSL_CTX_get0_certificate needs to lock internally. Test this works. | 
|  | TEST(SSLTest, GetCertificateThreads) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
|  | ASSERT_TRUE(cert); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); | 
|  |  | 
|  | // Existing code expects |SSL_CTX_get0_certificate| to be callable from two | 
|  | // threads concurrently. It originally was an immutable operation. Now we | 
|  | // implement it with a thread-safe cache, so it is worth testing. | 
|  | X509 *cert2_thread; | 
|  | std::thread thread( | 
|  | [&] { cert2_thread = SSL_CTX_get0_certificate(ctx.get()); }); | 
|  | X509 *cert2 = SSL_CTX_get0_certificate(ctx.get()); | 
|  | thread.join(); | 
|  |  | 
|  | ASSERT_TRUE(cert2); | 
|  | ASSERT_TRUE(cert2_thread); | 
|  | EXPECT_EQ(cert2, cert2_thread); | 
|  | EXPECT_EQ(0, X509_cmp(cert.get(), cert2)); | 
|  | } | 
|  |  | 
|  | // Functions which access properties on the negotiated session are thread-safe | 
|  | // where needed. Prior to TLS 1.3, clients resuming sessions and servers | 
|  | // performing stateful resumption will share an underlying SSL_SESSION object, | 
|  | // potentially across threads. | 
|  | TEST_P(SSLVersionTest, SessionPropertiesThreads) { | 
|  | if (is_tls13()) { | 
|  | // Our TLS 1.3 implementation does not support stateful resumption. | 
|  | ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET); | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | ASSERT_TRUE(UseCertAndKey(client_ctx_.get())); | 
|  | ASSERT_TRUE(UseCertAndKey(server_ctx_.get())); | 
|  |  | 
|  | // Configure mutual authentication, so we have more session state. | 
|  | SSL_CTX_set_custom_verify( | 
|  | client_ctx_.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); | 
|  | SSL_CTX_set_custom_verify( | 
|  | server_ctx_.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); | 
|  |  | 
|  | // Establish a client session to test with. | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session); | 
|  |  | 
|  | // Resume with it twice. | 
|  | UniquePtr<SSL> ssls[4]; | 
|  | ClientConfig config; | 
|  | config.session = session.get(); | 
|  | ASSERT_TRUE(ConnectClientAndServer(&ssls[0], &ssls[1], client_ctx_.get(), | 
|  | server_ctx_.get(), config)); | 
|  | ASSERT_TRUE(ConnectClientAndServer(&ssls[2], &ssls[3], client_ctx_.get(), | 
|  | server_ctx_.get(), config)); | 
|  |  | 
|  | // Read properties in parallel. | 
|  | auto read_properties = [](const SSL *ssl) { | 
|  | EXPECT_TRUE(SSL_get_peer_cert_chain(ssl)); | 
|  | bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(ssl)); | 
|  | EXPECT_TRUE(peer); | 
|  | EXPECT_TRUE(SSL_get_current_cipher(ssl)); | 
|  | EXPECT_TRUE(SSL_get_group_id(ssl)); | 
|  | }; | 
|  |  | 
|  | std::vector<std::thread> threads; | 
|  | for (const auto &ssl_ptr : ssls) { | 
|  | const SSL *ssl = ssl_ptr.get(); | 
|  | threads.emplace_back([=] { read_properties(ssl); }); | 
|  | } | 
|  | for (auto &thread : threads) { | 
|  | thread.join(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void SetValueOnFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad, | 
|  | int index, long argl, void *argp) { | 
|  | if (ptr != nullptr) { | 
|  | *static_cast<long *>(ptr) = argl; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test that one thread can register ex_data while another thread is destroying | 
|  | // an object that uses it. | 
|  | TEST(SSLTest, ExDataThreads) { | 
|  | static bool already_run = false; | 
|  | if (already_run) { | 
|  | GTEST_SKIP() << "This test consumes process-global resources and can only " | 
|  | "be run once in a process. It is not compatible with " | 
|  | "--gtest_repeat."; | 
|  | } | 
|  | already_run = true; | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | // Register an initial index, so the threads can exercise having any ex_data. | 
|  | int first_index = | 
|  | SSL_get_ex_new_index(-1, nullptr, nullptr, nullptr, SetValueOnFree); | 
|  | ASSERT_GE(first_index, 0); | 
|  |  | 
|  | // Callers may register indices concurrently with using other indices. This | 
|  | // may happen if one part of an application is initializing while another part | 
|  | // is already running. | 
|  | static constexpr int kNumIndices = 3; | 
|  | static constexpr int kNumSSLs = 10; | 
|  | int index[kNumIndices]; | 
|  | long values[kNumSSLs]; | 
|  | std::fill(std::begin(values), std::end(values), -2); | 
|  | std::vector<std::thread> threads; | 
|  | for (size_t i = 0; i < kNumIndices; i++) { | 
|  | threads.emplace_back([&, i] { | 
|  | index[i] = SSL_get_ex_new_index(static_cast<long>(i), nullptr, nullptr, | 
|  | nullptr, SetValueOnFree); | 
|  | ASSERT_GE(index[i], 0); | 
|  | }); | 
|  | } | 
|  | for (size_t i = 0; i < kNumSSLs; i++) { | 
|  | threads.emplace_back([&, i] { | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | ASSERT_TRUE(SSL_set_ex_data(ssl.get(), first_index, &values[i])); | 
|  | }); | 
|  | } | 
|  | for (auto &thread : threads) { | 
|  | thread.join(); | 
|  | } | 
|  |  | 
|  | // Each of the SSL threads should have set their flag via ex_data. | 
|  | for (size_t i = 0; i < kNumSSLs; i++) { | 
|  | EXPECT_EQ(values[i], -1); | 
|  | } | 
|  |  | 
|  | // Each of the newly-registered indices should be distinct and work correctly. | 
|  | static_assert(kNumIndices <= kNumSSLs, "values buffer too small"); | 
|  | std::fill(std::begin(values), std::end(values), -2); | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  | for (size_t i = 0; i < kNumIndices; i++) { | 
|  | for (size_t j = 0; j < i; j++) { | 
|  | EXPECT_NE(index[i], index[j]); | 
|  | } | 
|  | ASSERT_TRUE(SSL_set_ex_data(ssl.get(), index[i], &values[i])); | 
|  | } | 
|  | ssl = nullptr; | 
|  | for (size_t i = 0; i < kNumIndices; i++) { | 
|  | EXPECT_EQ(values[i], static_cast<long>(i)); | 
|  | } | 
|  | } | 
|  | #endif  // OPENSSL_THREADS | 
|  |  | 
|  | constexpr size_t kNumQUICLevels = 4; | 
|  | static_assert(ssl_encryption_initial < kNumQUICLevels, | 
|  | "kNumQUICLevels is wrong"); | 
|  | static_assert(ssl_encryption_early_data < kNumQUICLevels, | 
|  | "kNumQUICLevels is wrong"); | 
|  | static_assert(ssl_encryption_handshake < kNumQUICLevels, | 
|  | "kNumQUICLevels is wrong"); | 
|  | static_assert(ssl_encryption_application < kNumQUICLevels, | 
|  | "kNumQUICLevels is wrong"); | 
|  |  | 
|  | const char *LevelToString(ssl_encryption_level_t level) { | 
|  | switch (level) { | 
|  | case ssl_encryption_initial: | 
|  | return "initial"; | 
|  | case ssl_encryption_early_data: | 
|  | return "early data"; | 
|  | case ssl_encryption_handshake: | 
|  | return "handshake"; | 
|  | case ssl_encryption_application: | 
|  | return "application"; | 
|  | } | 
|  | return "<unknown>"; | 
|  | } | 
|  |  | 
|  | class MockQUICTransport { | 
|  | public: | 
|  | enum class Role { kClient, kServer }; | 
|  |  | 
|  | explicit MockQUICTransport(Role role) : role_(role) { | 
|  | // The caller is expected to configure initial secrets. | 
|  | levels_[ssl_encryption_initial].write_secret = {1}; | 
|  | levels_[ssl_encryption_initial].read_secret = {1}; | 
|  | } | 
|  |  | 
|  | void set_peer(MockQUICTransport *peer) { peer_ = peer; } | 
|  |  | 
|  | bool has_alert() const { return has_alert_; } | 
|  | ssl_encryption_level_t alert_level() const { return alert_level_; } | 
|  | uint8_t alert() const { return alert_; } | 
|  |  | 
|  | bool PeerSecretsMatch(ssl_encryption_level_t level) const { | 
|  | return levels_[level].write_secret == peer_->levels_[level].read_secret && | 
|  | levels_[level].read_secret == peer_->levels_[level].write_secret && | 
|  | levels_[level].cipher == peer_->levels_[level].cipher; | 
|  | } | 
|  |  | 
|  | bool HasReadSecret(ssl_encryption_level_t level) const { | 
|  | return !levels_[level].read_secret.empty(); | 
|  | } | 
|  |  | 
|  | bool HasWriteSecret(ssl_encryption_level_t level) const { | 
|  | return !levels_[level].write_secret.empty(); | 
|  | } | 
|  |  | 
|  | void AllowOutOfOrderWrites() { allow_out_of_order_writes_ = true; } | 
|  |  | 
|  | bool SetReadSecret(ssl_encryption_level_t level, const SSL_CIPHER *cipher, | 
|  | Span<const uint8_t> secret) { | 
|  | if (HasReadSecret(level)) { | 
|  | ADD_FAILURE() << LevelToString(level) << " read secret configured twice"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (role_ == Role::kClient && level == ssl_encryption_early_data) { | 
|  | ADD_FAILURE() << "Unexpected early data read secret"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ssl_encryption_level_t ack_level = | 
|  | level == ssl_encryption_early_data ? ssl_encryption_application : level; | 
|  | if (!HasWriteSecret(ack_level)) { | 
|  | ADD_FAILURE() << LevelToString(level) | 
|  | << " read secret configured before ACK write secret"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (cipher == nullptr) { | 
|  | ADD_FAILURE() << "Unexpected null cipher"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (level != ssl_encryption_early_data && | 
|  | SSL_CIPHER_get_protocol_id(cipher) != levels_[level].cipher) { | 
|  | ADD_FAILURE() << "Cipher suite inconsistent"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | levels_[level].read_secret.assign(secret.begin(), secret.end()); | 
|  | levels_[level].cipher = SSL_CIPHER_get_protocol_id(cipher); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SetWriteSecret(ssl_encryption_level_t level, const SSL_CIPHER *cipher, | 
|  | Span<const uint8_t> secret) { | 
|  | if (HasWriteSecret(level)) { | 
|  | ADD_FAILURE() << LevelToString(level) << " write secret configured twice"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (role_ == Role::kServer && level == ssl_encryption_early_data) { | 
|  | ADD_FAILURE() << "Unexpected early data write secret"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (cipher == nullptr) { | 
|  | ADD_FAILURE() << "Unexpected null cipher"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | levels_[level].write_secret.assign(secret.begin(), secret.end()); | 
|  | levels_[level].cipher = SSL_CIPHER_get_protocol_id(cipher); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool WriteHandshakeData(ssl_encryption_level_t level, | 
|  | Span<const uint8_t> data) { | 
|  | if (levels_[level].write_secret.empty()) { | 
|  | ADD_FAILURE() << LevelToString(level) | 
|  | << " write secret not yet configured"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Although the levels are conceptually separate, BoringSSL finishes writing | 
|  | // data from a previous level before installing keys for the next level. | 
|  | if (!allow_out_of_order_writes_) { | 
|  | switch (level) { | 
|  | case ssl_encryption_early_data: | 
|  | ADD_FAILURE() << "unexpected handshake data at early data level"; | 
|  | return false; | 
|  | case ssl_encryption_initial: | 
|  | if (!levels_[ssl_encryption_handshake].write_secret.empty()) { | 
|  | ADD_FAILURE() | 
|  | << LevelToString(level) | 
|  | << " handshake data written after handshake keys installed"; | 
|  | return false; | 
|  | } | 
|  | [[fallthrough]]; | 
|  | case ssl_encryption_handshake: | 
|  | if (!levels_[ssl_encryption_application].write_secret.empty()) { | 
|  | ADD_FAILURE() | 
|  | << LevelToString(level) | 
|  | << " handshake data written after application keys installed"; | 
|  | return false; | 
|  | } | 
|  | [[fallthrough]]; | 
|  | case ssl_encryption_application: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | levels_[level].write_data.insert(levels_[level].write_data.end(), | 
|  | data.begin(), data.end()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SendAlert(ssl_encryption_level_t level, uint8_t alert_value) { | 
|  | if (has_alert_) { | 
|  | ADD_FAILURE() << "duplicate alert sent"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (levels_[level].write_secret.empty()) { | 
|  | ADD_FAILURE() << LevelToString(level) | 
|  | << " write secret not yet configured"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | has_alert_ = true; | 
|  | alert_level_ = level; | 
|  | alert_ = alert_value; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ReadHandshakeData(std::vector<uint8_t> *out, | 
|  | ssl_encryption_level_t level, | 
|  | size_t num = std::numeric_limits<size_t>::max()) { | 
|  | if (levels_[level].read_secret.empty()) { | 
|  | ADD_FAILURE() << "data read before keys configured in level " << level; | 
|  | return false; | 
|  | } | 
|  | // The peer may not have configured any keys yet. | 
|  | if (peer_->levels_[level].write_secret.empty()) { | 
|  | out->clear(); | 
|  | return true; | 
|  | } | 
|  | // Check the peer computed the same key. | 
|  | if (peer_->levels_[level].write_secret != levels_[level].read_secret) { | 
|  | ADD_FAILURE() << "peer write key does not match read key in level " | 
|  | << level; | 
|  | return false; | 
|  | } | 
|  | if (peer_->levels_[level].cipher != levels_[level].cipher) { | 
|  | ADD_FAILURE() << "peer cipher does not match in level " << level; | 
|  | return false; | 
|  | } | 
|  | std::vector<uint8_t> *peer_data = &peer_->levels_[level].write_data; | 
|  | num = std::min(num, peer_data->size()); | 
|  | out->assign(peer_data->begin(), peer_data->begin() + num); | 
|  | peer_data->erase(peer_data->begin(), peer_data->begin() + num); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | Role role_; | 
|  | MockQUICTransport *peer_ = nullptr; | 
|  |  | 
|  | bool allow_out_of_order_writes_ = false; | 
|  | bool has_alert_ = false; | 
|  | ssl_encryption_level_t alert_level_ = ssl_encryption_initial; | 
|  | uint8_t alert_ = 0; | 
|  |  | 
|  | struct Level { | 
|  | std::vector<uint8_t> write_data; | 
|  | std::vector<uint8_t> write_secret; | 
|  | std::vector<uint8_t> read_secret; | 
|  | uint16_t cipher = 0; | 
|  | }; | 
|  | Level levels_[kNumQUICLevels]; | 
|  | }; | 
|  |  | 
|  | class MockQUICTransportPair { | 
|  | public: | 
|  | MockQUICTransportPair() | 
|  | : client_(MockQUICTransport::Role::kClient), | 
|  | server_(MockQUICTransport::Role::kServer) { | 
|  | client_.set_peer(&server_); | 
|  | server_.set_peer(&client_); | 
|  | } | 
|  |  | 
|  | ~MockQUICTransportPair() { | 
|  | client_.set_peer(nullptr); | 
|  | server_.set_peer(nullptr); | 
|  | } | 
|  |  | 
|  | MockQUICTransport *client() { return &client_; } | 
|  | MockQUICTransport *server() { return &server_; } | 
|  |  | 
|  | bool SecretsMatch(ssl_encryption_level_t level) const { | 
|  | // We only need to check |HasReadSecret| and |HasWriteSecret| on |client_|. | 
|  | // |PeerSecretsMatch| checks that |server_| is analogously configured. | 
|  | return client_.PeerSecretsMatch(level) && client_.HasWriteSecret(level) && | 
|  | (level == ssl_encryption_early_data || client_.HasReadSecret(level)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | MockQUICTransport client_; | 
|  | MockQUICTransport server_; | 
|  | }; | 
|  |  | 
|  | class QUICMethodTest : public testing::Test { | 
|  | protected: | 
|  | void SetUp() override { | 
|  | client_ctx_.reset(SSL_CTX_new(TLS_method())); | 
|  | server_ctx_ = CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(client_ctx_); | 
|  | ASSERT_TRUE(server_ctx_); | 
|  |  | 
|  | SSL_CTX_set_min_proto_version(server_ctx_.get(), TLS1_3_VERSION); | 
|  | SSL_CTX_set_max_proto_version(server_ctx_.get(), TLS1_3_VERSION); | 
|  | SSL_CTX_set_min_proto_version(client_ctx_.get(), TLS1_3_VERSION); | 
|  | SSL_CTX_set_max_proto_version(client_ctx_.get(), TLS1_3_VERSION); | 
|  |  | 
|  | static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'}; | 
|  | ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos, | 
|  | sizeof(kALPNProtos)), | 
|  | 0); | 
|  | SSL_CTX_set_alpn_select_cb( | 
|  | server_ctx_.get(), | 
|  | [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, | 
|  | unsigned in_len, void *arg) -> int { | 
|  | return SSL_select_next_proto( | 
|  | const_cast<uint8_t **>(out), out_len, in, in_len, | 
|  | kALPNProtos, sizeof(kALPNProtos)) == OPENSSL_NPN_NEGOTIATED | 
|  | ? SSL_TLSEXT_ERR_OK | 
|  | : SSL_TLSEXT_ERR_NOACK; | 
|  | }, | 
|  | nullptr); | 
|  | } | 
|  |  | 
|  | static MockQUICTransport *TransportFromSSL(const SSL *ssl) { | 
|  | return ex_data_.Get(ssl); | 
|  | } | 
|  |  | 
|  | static bool ProvideHandshakeData( | 
|  | SSL *ssl, size_t num = std::numeric_limits<size_t>::max()) { | 
|  | MockQUICTransport *transport = TransportFromSSL(ssl); | 
|  | ssl_encryption_level_t level = SSL_quic_read_level(ssl); | 
|  | std::vector<uint8_t> data; | 
|  | return transport->ReadHandshakeData(&data, level, num) && | 
|  | SSL_provide_quic_data(ssl, level, data.data(), data.size()); | 
|  | } | 
|  |  | 
|  | void AllowOutOfOrderWrites() { allow_out_of_order_writes_ = true; } | 
|  |  | 
|  | bool CreateClientAndServer() { | 
|  | client_.reset(SSL_new(client_ctx_.get())); | 
|  | server_.reset(SSL_new(server_ctx_.get())); | 
|  | if (!client_ || !server_) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SSL_set_connect_state(client_.get()); | 
|  | SSL_set_accept_state(server_.get()); | 
|  |  | 
|  | transport_ = std::make_unique<MockQUICTransportPair>(); | 
|  | if (!ex_data_.Set(client_.get(), transport_->client()) || | 
|  | !ex_data_.Set(server_.get(), transport_->server())) { | 
|  | return false; | 
|  | } | 
|  | if (allow_out_of_order_writes_) { | 
|  | transport_->client()->AllowOutOfOrderWrites(); | 
|  | transport_->server()->AllowOutOfOrderWrites(); | 
|  | } | 
|  | static const uint8_t client_transport_params[] = {0}; | 
|  | if (!SSL_set_quic_transport_params(client_.get(), client_transport_params, | 
|  | sizeof(client_transport_params)) || | 
|  | !SSL_set_quic_transport_params(server_.get(), | 
|  | server_transport_params_.data(), | 
|  | server_transport_params_.size()) || | 
|  | !SSL_set_quic_early_data_context( | 
|  | server_.get(), server_quic_early_data_context_.data(), | 
|  | server_quic_early_data_context_.size())) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum class ExpectedError { | 
|  | kNoError, | 
|  | kClientError, | 
|  | kServerError, | 
|  | }; | 
|  |  | 
|  | // CompleteHandshakesForQUIC runs |SSL_do_handshake| on |client_| and | 
|  | // |server_| until each completes once. It returns true on success and false | 
|  | // on failure. | 
|  | bool CompleteHandshakesForQUIC() { | 
|  | return RunQUICHandshakesAndExpectError(ExpectedError::kNoError); | 
|  | } | 
|  |  | 
|  | // Runs |SSL_do_handshake| on |client_| and |server_| until each completes | 
|  | // once. If |expect_client_error| is true, it will return true only if the | 
|  | // client handshake failed. Otherwise, it returns true if both handshakes | 
|  | // succeed and false otherwise. | 
|  | bool RunQUICHandshakesAndExpectError(ExpectedError expected_error) { | 
|  | bool client_done = false, server_done = false; | 
|  | while (!client_done || !server_done) { | 
|  | if (!client_done) { | 
|  | if (!ProvideHandshakeData(client_.get())) { | 
|  | ADD_FAILURE() << "ProvideHandshakeData(client_) failed"; | 
|  | return false; | 
|  | } | 
|  | int client_ret = SSL_do_handshake(client_.get()); | 
|  | int client_err = SSL_get_error(client_.get(), client_ret); | 
|  | if (client_ret == 1) { | 
|  | client_done = true; | 
|  | } else if (client_ret != -1 || client_err != SSL_ERROR_WANT_READ) { | 
|  | if (expected_error == ExpectedError::kClientError) { | 
|  | return true; | 
|  | } | 
|  | ADD_FAILURE() << "Unexpected client output: " << client_ret << " " | 
|  | << client_err; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!server_done) { | 
|  | if (!ProvideHandshakeData(server_.get())) { | 
|  | ADD_FAILURE() << "ProvideHandshakeData(server_) failed"; | 
|  | return false; | 
|  | } | 
|  | int server_ret = SSL_do_handshake(server_.get()); | 
|  | int server_err = SSL_get_error(server_.get(), server_ret); | 
|  | if (server_ret == 1) { | 
|  | server_done = true; | 
|  | } else if (server_ret != -1 || server_err != SSL_ERROR_WANT_READ) { | 
|  | if (expected_error == ExpectedError::kServerError) { | 
|  | return true; | 
|  | } | 
|  | ADD_FAILURE() << "Unexpected server output: " << server_ret << " " | 
|  | << server_err; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return expected_error == ExpectedError::kNoError; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> CreateClientSessionForQUIC() { | 
|  | g_last_session = nullptr; | 
|  | SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
|  | if (!CreateClientAndServer() || !CompleteHandshakesForQUIC()) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // The server sent NewSessionTicket messages in the handshake. | 
|  | if (!ProvideHandshakeData(client_.get()) || | 
|  | !SSL_process_quic_post_handshake(client_.get())) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return std::move(g_last_session); | 
|  | } | 
|  |  | 
|  | void ExpectHandshakeSuccess() { | 
|  | EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_application)); | 
|  | EXPECT_EQ(ssl_encryption_application, SSL_quic_read_level(client_.get())); | 
|  | EXPECT_EQ(ssl_encryption_application, SSL_quic_write_level(client_.get())); | 
|  | EXPECT_EQ(ssl_encryption_application, SSL_quic_read_level(server_.get())); | 
|  | EXPECT_EQ(ssl_encryption_application, SSL_quic_write_level(server_.get())); | 
|  | EXPECT_FALSE(transport_->client()->has_alert()); | 
|  | EXPECT_FALSE(transport_->server()->has_alert()); | 
|  |  | 
|  | // SSL_do_handshake is now idempotent. | 
|  | EXPECT_EQ(SSL_do_handshake(client_.get()), 1); | 
|  | EXPECT_EQ(SSL_do_handshake(server_.get()), 1); | 
|  | } | 
|  |  | 
|  | // Returns a default SSL_QUIC_METHOD. Individual methods may be overwritten by | 
|  | // the test. | 
|  | SSL_QUIC_METHOD DefaultQUICMethod() { | 
|  | return SSL_QUIC_METHOD{ | 
|  | SetReadSecretCallback, SetWriteSecretCallback, AddHandshakeDataCallback, | 
|  | FlushFlightCallback,   SendAlertCallback, | 
|  | }; | 
|  | } | 
|  |  | 
|  | static int SetReadSecretCallback(SSL *ssl, ssl_encryption_level_t level, | 
|  | const SSL_CIPHER *cipher, | 
|  | const uint8_t *secret, size_t secret_len) { | 
|  | return TransportFromSSL(ssl)->SetReadSecret(level, cipher, | 
|  | Span(secret, secret_len)); | 
|  | } | 
|  |  | 
|  | static int SetWriteSecretCallback(SSL *ssl, ssl_encryption_level_t level, | 
|  | const SSL_CIPHER *cipher, | 
|  | const uint8_t *secret, size_t secret_len) { | 
|  | return TransportFromSSL(ssl)->SetWriteSecret(level, cipher, | 
|  | Span(secret, secret_len)); | 
|  | } | 
|  |  | 
|  | static int AddHandshakeDataCallback(SSL *ssl, | 
|  | enum ssl_encryption_level_t level, | 
|  | const uint8_t *data, size_t len) { | 
|  | EXPECT_EQ(level, SSL_quic_write_level(ssl)); | 
|  | return TransportFromSSL(ssl)->WriteHandshakeData(level, Span(data, len)); | 
|  | } | 
|  |  | 
|  | static int FlushFlightCallback(SSL *ssl) { return 1; } | 
|  |  | 
|  | static int SendAlertCallback(SSL *ssl, ssl_encryption_level_t level, | 
|  | uint8_t alert) { | 
|  | EXPECT_EQ(level, SSL_quic_write_level(ssl)); | 
|  | return TransportFromSSL(ssl)->SendAlert(level, alert); | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx_; | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx_; | 
|  |  | 
|  | static UnownedSSLExData<MockQUICTransport> ex_data_; | 
|  | std::unique_ptr<MockQUICTransportPair> transport_; | 
|  |  | 
|  | bssl::UniquePtr<SSL> client_; | 
|  | bssl::UniquePtr<SSL> server_; | 
|  |  | 
|  | std::vector<uint8_t> server_transport_params_ = {1}; | 
|  | std::vector<uint8_t> server_quic_early_data_context_ = {2}; | 
|  |  | 
|  | bool allow_out_of_order_writes_ = false; | 
|  | }; | 
|  |  | 
|  | UnownedSSLExData<MockQUICTransport> QUICMethodTest::ex_data_; | 
|  |  | 
|  | // Test a full handshake and resumption work. | 
|  | TEST_F(QUICMethodTest, Basic) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | g_last_session = nullptr; | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | ExpectHandshakeSuccess(); | 
|  | EXPECT_FALSE(SSL_session_reused(client_.get())); | 
|  | EXPECT_FALSE(SSL_session_reused(server_.get())); | 
|  |  | 
|  | // SSL_get_traffic_secrets is not defined for QUIC. | 
|  | Span<const uint8_t> read_secret, write_secret; | 
|  | EXPECT_FALSE( | 
|  | SSL_get_traffic_secrets(client_.get(), &read_secret, &write_secret)); | 
|  | EXPECT_FALSE( | 
|  | SSL_get_traffic_secrets(server_.get(), &read_secret, &write_secret)); | 
|  |  | 
|  | // The server sent NewSessionTicket messages in the handshake. | 
|  | EXPECT_FALSE(g_last_session); | 
|  | ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
|  | EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1); | 
|  | EXPECT_TRUE(g_last_session); | 
|  |  | 
|  | // Create a second connection to verify resumption works. | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session); | 
|  | SSL_set_session(client_.get(), session.get()); | 
|  |  | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | ExpectHandshakeSuccess(); | 
|  | EXPECT_TRUE(SSL_session_reused(client_.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server_.get())); | 
|  | } | 
|  |  | 
|  | // Test that HelloRetryRequest in QUIC works. | 
|  | TEST_F(QUICMethodTest, HelloRetryRequest) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | // BoringSSL predicts the most preferred ECDH group, so using different | 
|  | // preferences will trigger HelloRetryRequest. | 
|  | static const int kClientPrefs[] = {NID_X25519, NID_X9_62_prime256v1}; | 
|  | ASSERT_TRUE(SSL_CTX_set1_groups(client_ctx_.get(), kClientPrefs, | 
|  | std::size(kClientPrefs))); | 
|  | static const int kServerPrefs[] = {NID_X9_62_prime256v1, NID_X25519}; | 
|  | ASSERT_TRUE(SSL_CTX_set1_groups(server_ctx_.get(), kServerPrefs, | 
|  | std::size(kServerPrefs))); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  | ExpectHandshakeSuccess(); | 
|  | } | 
|  |  | 
|  | // Test that the client does not send a legacy_session_id in the ClientHello. | 
|  | TEST_F(QUICMethodTest, NoLegacySessionId) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  | // Check that the session ID length is 0 in an early callback. | 
|  | SSL_CTX_set_select_certificate_cb( | 
|  | server_ctx_.get(), | 
|  | [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
|  | EXPECT_EQ(client_hello->session_id_len, 0u); | 
|  | return ssl_select_cert_success; | 
|  | }); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | ExpectHandshakeSuccess(); | 
|  | } | 
|  |  | 
|  | // Test that, even in a 1-RTT handshake, the server installs keys at the right | 
|  | // time. Half-RTT keys are available early, but 1-RTT read keys are deferred. | 
|  | TEST_F(QUICMethodTest, HalfRTTKeys) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  |  | 
|  | // The client sends ClientHello. | 
|  | ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client_.get(), -1)); | 
|  |  | 
|  | // The server reads ClientHello and sends ServerHello..Finished. | 
|  | ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
|  | ASSERT_EQ(SSL_do_handshake(server_.get()), -1); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1)); | 
|  |  | 
|  | // At this point, the server has half-RTT write keys, but it cannot access | 
|  | // 1-RTT read keys until client Finished. | 
|  | EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application)); | 
|  | EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application)); | 
|  |  | 
|  | // Finish up the client and server handshakes. | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | // Both sides can now exchange 1-RTT data. | 
|  | ExpectHandshakeSuccess(); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, ZeroRTTAccept) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); | 
|  | SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); | 
|  | ASSERT_TRUE(session); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | SSL_set_session(client_.get(), session.get()); | 
|  |  | 
|  | // The client handshake should return immediately into the early data state. | 
|  | ASSERT_EQ(SSL_do_handshake(client_.get()), 1); | 
|  | EXPECT_TRUE(SSL_in_early_data(client_.get())); | 
|  | // The transport should have keys for sending 0-RTT data. | 
|  | EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
|  |  | 
|  | // The server will consume the ClientHello and also enter the early data | 
|  | // state. | 
|  | ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
|  | ASSERT_EQ(SSL_do_handshake(server_.get()), 1); | 
|  | EXPECT_TRUE(SSL_in_early_data(server_.get())); | 
|  | EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_early_data)); | 
|  | // At this point, the server has half-RTT write keys, but it cannot access | 
|  | // 1-RTT read keys until client Finished. | 
|  | EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application)); | 
|  | EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application)); | 
|  |  | 
|  | // Finish up the client and server handshakes. | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | // Both sides can now exchange 1-RTT data. | 
|  | ExpectHandshakeSuccess(); | 
|  | EXPECT_TRUE(SSL_session_reused(client_.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server_.get())); | 
|  | EXPECT_FALSE(SSL_in_early_data(client_.get())); | 
|  | EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
|  | EXPECT_TRUE(SSL_early_data_accepted(client_.get())); | 
|  | EXPECT_TRUE(SSL_early_data_accepted(server_.get())); | 
|  |  | 
|  | // Finish handling post-handshake messages after the first 0-RTT resumption. | 
|  | EXPECT_TRUE(ProvideHandshakeData(client_.get())); | 
|  | EXPECT_TRUE(SSL_process_quic_post_handshake(client_.get())); | 
|  |  | 
|  | // Perform a second 0-RTT resumption attempt, and confirm that 0-RTT is | 
|  | // accepted again. | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | SSL_set_session(client_.get(), g_last_session.get()); | 
|  |  | 
|  | // The client handshake should return immediately into the early data state. | 
|  | ASSERT_EQ(SSL_do_handshake(client_.get()), 1); | 
|  | EXPECT_TRUE(SSL_in_early_data(client_.get())); | 
|  | // The transport should have keys for sending 0-RTT data. | 
|  | EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
|  |  | 
|  | // The server will consume the ClientHello and also enter the early data | 
|  | // state. | 
|  | ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
|  | ASSERT_EQ(SSL_do_handshake(server_.get()), 1); | 
|  | EXPECT_TRUE(SSL_in_early_data(server_.get())); | 
|  | EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_early_data)); | 
|  | // At this point, the server has half-RTT write keys, but it cannot access | 
|  | // 1-RTT read keys until client Finished. | 
|  | EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application)); | 
|  | EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application)); | 
|  |  | 
|  | // Finish up the client and server handshakes. | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | // Both sides can now exchange 1-RTT data. | 
|  | ExpectHandshakeSuccess(); | 
|  | EXPECT_TRUE(SSL_session_reused(client_.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server_.get())); | 
|  | EXPECT_FALSE(SSL_in_early_data(client_.get())); | 
|  | EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
|  | EXPECT_TRUE(SSL_early_data_accepted(client_.get())); | 
|  | EXPECT_TRUE(SSL_early_data_accepted(server_.get())); | 
|  | EXPECT_EQ(SSL_get_early_data_reason(client_.get()), ssl_early_data_accepted); | 
|  | EXPECT_EQ(SSL_get_early_data_reason(server_.get()), ssl_early_data_accepted); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, ZeroRTTRejectMismatchedParameters) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); | 
|  | SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); | 
|  | ASSERT_TRUE(session); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | static const uint8_t new_context[] = {4}; | 
|  | ASSERT_TRUE(SSL_set_quic_early_data_context(server_.get(), new_context, | 
|  | sizeof(new_context))); | 
|  | SSL_set_session(client_.get(), session.get()); | 
|  |  | 
|  | // The client handshake should return immediately into the early data | 
|  | // state. | 
|  | ASSERT_EQ(SSL_do_handshake(client_.get()), 1); | 
|  | EXPECT_TRUE(SSL_in_early_data(client_.get())); | 
|  | // The transport should have keys for sending 0-RTT data. | 
|  | EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
|  |  | 
|  | // The server will consume the ClientHello, but it will not accept 0-RTT. | 
|  | ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
|  | ASSERT_EQ(SSL_do_handshake(server_.get()), -1); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1)); | 
|  | EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
|  | EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_early_data)); | 
|  |  | 
|  | // The client consumes the server response and signals 0-RTT rejection. | 
|  | for (;;) { | 
|  | ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
|  | ASSERT_EQ(-1, SSL_do_handshake(client_.get())); | 
|  | int err = SSL_get_error(client_.get(), -1); | 
|  | if (err == SSL_ERROR_EARLY_DATA_REJECTED) { | 
|  | break; | 
|  | } | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, err); | 
|  | } | 
|  |  | 
|  | // As in TLS over TCP, 0-RTT rejection is sticky. | 
|  | ASSERT_EQ(-1, SSL_do_handshake(client_.get())); | 
|  | ASSERT_EQ(SSL_ERROR_EARLY_DATA_REJECTED, SSL_get_error(client_.get(), -1)); | 
|  |  | 
|  | // Finish up the client and server handshakes. | 
|  | SSL_reset_early_data_reject(client_.get()); | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | // Both sides can now exchange 1-RTT data. | 
|  | ExpectHandshakeSuccess(); | 
|  | EXPECT_TRUE(SSL_session_reused(client_.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server_.get())); | 
|  | EXPECT_FALSE(SSL_in_early_data(client_.get())); | 
|  | EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
|  | EXPECT_FALSE(SSL_early_data_accepted(client_.get())); | 
|  | EXPECT_FALSE(SSL_early_data_accepted(server_.get())); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, NoZeroRTTTicketWithoutEarlyDataContext) { | 
|  | server_quic_early_data_context_ = {}; | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); | 
|  | SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); | 
|  | ASSERT_TRUE(session); | 
|  | EXPECT_FALSE(SSL_SESSION_early_data_capable(session.get())); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, ZeroRTTReject) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); | 
|  | SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); | 
|  | ASSERT_TRUE(session); | 
|  |  | 
|  | for (bool reject_hrr : {false, true}) { | 
|  | SCOPED_TRACE(reject_hrr); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | if (reject_hrr) { | 
|  | // Configure the server to prefer P-256, which will reject 0-RTT via | 
|  | // HelloRetryRequest. | 
|  | int p256 = NID_X9_62_prime256v1; | 
|  | ASSERT_TRUE(SSL_set1_groups(server_.get(), &p256, 1)); | 
|  | } else { | 
|  | // Disable 0-RTT on the server, so it will reject it. | 
|  | SSL_set_early_data_enabled(server_.get(), 0); | 
|  | } | 
|  | SSL_set_session(client_.get(), session.get()); | 
|  |  | 
|  | // The client handshake should return immediately into the early data state. | 
|  | ASSERT_EQ(SSL_do_handshake(client_.get()), 1); | 
|  | EXPECT_TRUE(SSL_in_early_data(client_.get())); | 
|  | // The transport should have keys for sending 0-RTT data. | 
|  | EXPECT_TRUE( | 
|  | transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
|  |  | 
|  | // The server will consume the ClientHello, but it will not accept 0-RTT. | 
|  | ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
|  | ASSERT_EQ(SSL_do_handshake(server_.get()), -1); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1)); | 
|  | EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
|  | EXPECT_FALSE( | 
|  | transport_->server()->HasReadSecret(ssl_encryption_early_data)); | 
|  |  | 
|  | // The client consumes the server response and signals 0-RTT rejection. | 
|  | for (;;) { | 
|  | ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
|  | ASSERT_EQ(-1, SSL_do_handshake(client_.get())); | 
|  | int err = SSL_get_error(client_.get(), -1); | 
|  | if (err == SSL_ERROR_EARLY_DATA_REJECTED) { | 
|  | break; | 
|  | } | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, err); | 
|  | } | 
|  |  | 
|  | // As in TLS over TCP, 0-RTT rejection is sticky. | 
|  | ASSERT_EQ(-1, SSL_do_handshake(client_.get())); | 
|  | ASSERT_EQ(SSL_ERROR_EARLY_DATA_REJECTED, SSL_get_error(client_.get(), -1)); | 
|  |  | 
|  | // Finish up the client and server handshakes. | 
|  | SSL_reset_early_data_reject(client_.get()); | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | // Both sides can now exchange 1-RTT data. | 
|  | ExpectHandshakeSuccess(); | 
|  | EXPECT_TRUE(SSL_session_reused(client_.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server_.get())); | 
|  | EXPECT_FALSE(SSL_in_early_data(client_.get())); | 
|  | EXPECT_FALSE(SSL_in_early_data(server_.get())); | 
|  | EXPECT_FALSE(SSL_early_data_accepted(client_.get())); | 
|  | EXPECT_FALSE(SSL_early_data_accepted(server_.get())); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, NoZeroRTTKeysBeforeReverify) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1); | 
|  | SSL_CTX_set_reverify_on_resume(client_ctx_.get(), 1); | 
|  | SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC(); | 
|  | ASSERT_TRUE(session); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | SSL_set_session(client_.get(), session.get()); | 
|  |  | 
|  | // Configure the certificate (re)verification to never complete. The client | 
|  | // handshake should pause. | 
|  | SSL_set_custom_verify( | 
|  | client_.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
|  | return ssl_verify_retry; | 
|  | }); | 
|  | ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), -1), | 
|  | SSL_ERROR_WANT_CERTIFICATE_VERIFY); | 
|  |  | 
|  | // The early data keys have not yet been released. | 
|  | EXPECT_FALSE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
|  |  | 
|  | // After the verification completes, the handshake progresses to the 0-RTT | 
|  | // point and releases keys. | 
|  | SSL_set_custom_verify( | 
|  | client_.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
|  | return ssl_verify_ok; | 
|  | }); | 
|  | ASSERT_EQ(SSL_do_handshake(client_.get()), 1); | 
|  | EXPECT_TRUE(SSL_in_early_data(client_.get())); | 
|  | EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data)); | 
|  | } | 
|  |  | 
|  | // Test only releasing data to QUIC one byte at a time on request, to maximize | 
|  | // state machine pauses. Additionally, test that existing asynchronous callbacks | 
|  | // still work. | 
|  | TEST_F(QUICMethodTest, Async) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  |  | 
|  | // Install an asynchronous certificate callback. | 
|  | bool cert_cb_ok = false; | 
|  | SSL_set_cert_cb( | 
|  | server_.get(), | 
|  | [](SSL *, void *arg) -> int { | 
|  | return *static_cast<bool *>(arg) ? 1 : -1; | 
|  | }, | 
|  | &cert_cb_ok); | 
|  |  | 
|  | for (;;) { | 
|  | int client_ret = SSL_do_handshake(client_.get()); | 
|  | if (client_ret != 1) { | 
|  | ASSERT_EQ(client_ret, -1); | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), client_ret), SSL_ERROR_WANT_READ); | 
|  | ASSERT_TRUE(ProvideHandshakeData(client_.get(), 1)); | 
|  | } | 
|  |  | 
|  | int server_ret = SSL_do_handshake(server_.get()); | 
|  | if (server_ret != 1) { | 
|  | ASSERT_EQ(server_ret, -1); | 
|  | int ssl_err = SSL_get_error(server_.get(), server_ret); | 
|  | switch (ssl_err) { | 
|  | case SSL_ERROR_WANT_READ: | 
|  | ASSERT_TRUE(ProvideHandshakeData(server_.get(), 1)); | 
|  | break; | 
|  | case SSL_ERROR_WANT_X509_LOOKUP: | 
|  | ASSERT_FALSE(cert_cb_ok); | 
|  | cert_cb_ok = true; | 
|  | break; | 
|  | default: | 
|  | FAIL() << "Unexpected SSL_get_error result: " << ssl_err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (client_ret == 1 && server_ret == 1) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ExpectHandshakeSuccess(); | 
|  | } | 
|  |  | 
|  | // Test buffering write data until explicit flushes. | 
|  | TEST_F(QUICMethodTest, Buffered) { | 
|  | AllowOutOfOrderWrites(); | 
|  |  | 
|  | struct BufferedFlight { | 
|  | std::vector<uint8_t> data[kNumQUICLevels]; | 
|  | }; | 
|  | static UnownedSSLExData<BufferedFlight> buffered_flights; | 
|  |  | 
|  | auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level, | 
|  | const uint8_t *data, size_t len) -> int { | 
|  | BufferedFlight *flight = buffered_flights.Get(ssl); | 
|  | flight->data[level].insert(flight->data[level].end(), data, data + len); | 
|  | return 1; | 
|  | }; | 
|  |  | 
|  | auto flush_flight = [](SSL *ssl) -> int { | 
|  | BufferedFlight *flight = buffered_flights.Get(ssl); | 
|  | for (size_t level = 0; level < kNumQUICLevels; level++) { | 
|  | if (!flight->data[level].empty()) { | 
|  | if (!TransportFromSSL(ssl)->WriteHandshakeData( | 
|  | static_cast<ssl_encryption_level_t>(level), | 
|  | flight->data[level])) { | 
|  | return 0; | 
|  | } | 
|  | flight->data[level].clear(); | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | }; | 
|  |  | 
|  | SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  | quic_method.add_handshake_data = add_handshake_data; | 
|  | quic_method.flush_flight = flush_flight; | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  |  | 
|  | BufferedFlight client_flight, server_flight; | 
|  | ASSERT_TRUE(buffered_flights.Set(client_.get(), &client_flight)); | 
|  | ASSERT_TRUE(buffered_flights.Set(server_.get(), &server_flight)); | 
|  |  | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | ExpectHandshakeSuccess(); | 
|  | } | 
|  |  | 
|  | // Test that excess data at one level is rejected. That is, if a single | 
|  | // |SSL_provide_quic_data| call included both ServerHello and | 
|  | // EncryptedExtensions in a single chunk, BoringSSL notices and rejects this on | 
|  | // key change. | 
|  | TEST_F(QUICMethodTest, ExcessProvidedData) { | 
|  | AllowOutOfOrderWrites(); | 
|  |  | 
|  | auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level, | 
|  | const uint8_t *data, size_t len) -> int { | 
|  | // Switch everything to the initial level. | 
|  | return TransportFromSSL(ssl)->WriteHandshakeData(ssl_encryption_initial, | 
|  | Span(data, len)); | 
|  | }; | 
|  |  | 
|  | SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  | quic_method.add_handshake_data = add_handshake_data; | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  |  | 
|  | // Send the ClientHello and ServerHello through Finished. | 
|  | ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); | 
|  | ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
|  | ASSERT_EQ(SSL_do_handshake(server_.get()), -1); | 
|  | ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ); | 
|  |  | 
|  | // The client is still waiting for the ServerHello at initial | 
|  | // encryption. | 
|  | ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get())); | 
|  |  | 
|  | // |add_handshake_data| incorrectly wrote everything at the initial level, so | 
|  | // this queues up ServerHello through Finished in one chunk. | 
|  | ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
|  |  | 
|  | // The client reads ServerHello successfully, but then rejects the buffered | 
|  | // EncryptedExtensions on key change. | 
|  | ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_SSL); | 
|  | EXPECT_TRUE( | 
|  | ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_EXCESS_HANDSHAKE_DATA)); | 
|  |  | 
|  | // The client sends an alert in response to this. The alert is sent at | 
|  | // handshake level because we install write secrets before read secrets and | 
|  | // the error is discovered when installing the read secret. (How to send | 
|  | // alerts on protocol syntax errors near key changes is ambiguous in general.) | 
|  | ASSERT_TRUE(transport_->client()->has_alert()); | 
|  | EXPECT_EQ(transport_->client()->alert_level(), ssl_encryption_handshake); | 
|  | EXPECT_EQ(transport_->client()->alert(), SSL_AD_UNEXPECTED_MESSAGE); | 
|  |  | 
|  | // Sanity-check handshake secrets. The error is discovered while setting the | 
|  | // read secret, so only the write secret has been installed. | 
|  | EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_handshake)); | 
|  | EXPECT_FALSE(transport_->client()->HasReadSecret(ssl_encryption_handshake)); | 
|  | } | 
|  |  | 
|  | // Test that |SSL_provide_quic_data| will reject data at the wrong level. | 
|  | TEST_F(QUICMethodTest, ProvideWrongLevel) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  |  | 
|  | // Send the ClientHello and ServerHello through Finished. | 
|  | ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); | 
|  | ASSERT_TRUE(ProvideHandshakeData(server_.get())); | 
|  | ASSERT_EQ(SSL_do_handshake(server_.get()), -1); | 
|  | ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ); | 
|  |  | 
|  | // The client is still waiting for the ServerHello at initial | 
|  | // encryption. | 
|  | ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get())); | 
|  |  | 
|  | // Data cannot be provided at the next level. | 
|  | std::vector<uint8_t> data; | 
|  | ASSERT_TRUE( | 
|  | transport_->client()->ReadHandshakeData(&data, ssl_encryption_initial)); | 
|  | ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_handshake, | 
|  | data.data(), data.size())); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // Progress to EncryptedExtensions. | 
|  | ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial, | 
|  | data.data(), data.size())); | 
|  | ASSERT_EQ(SSL_do_handshake(client_.get()), -1); | 
|  | ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ); | 
|  | ASSERT_EQ(ssl_encryption_handshake, SSL_quic_read_level(client_.get())); | 
|  |  | 
|  | // Data cannot be provided at the previous level. | 
|  | ASSERT_TRUE( | 
|  | transport_->client()->ReadHandshakeData(&data, ssl_encryption_handshake)); | 
|  | ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial, | 
|  | data.data(), data.size())); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, TooMuchData) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  |  | 
|  | size_t limit = | 
|  | SSL_quic_max_handshake_flight_len(client_.get(), ssl_encryption_initial); | 
|  | uint8_t b = 0; | 
|  | for (size_t i = 0; i < limit; i++) { | 
|  | ASSERT_TRUE( | 
|  | SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1)); | 
|  | } | 
|  |  | 
|  | EXPECT_FALSE( | 
|  | SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1)); | 
|  | } | 
|  |  | 
|  | // Provide invalid post-handshake data. | 
|  | TEST_F(QUICMethodTest, BadPostHandshake) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | g_last_session = nullptr; | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | EXPECT_EQ(SSL_do_handshake(client_.get()), 1); | 
|  | EXPECT_EQ(SSL_do_handshake(server_.get()), 1); | 
|  | EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_application)); | 
|  | EXPECT_FALSE(transport_->client()->has_alert()); | 
|  | EXPECT_FALSE(transport_->server()->has_alert()); | 
|  |  | 
|  | // Junk sent as part of post-handshake data should cause an error. | 
|  | uint8_t kJunk[] = {0x17, 0x0, 0x0, 0x4, 0xB, 0xE, 0xE, 0xF}; | 
|  | ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_application, | 
|  | kJunk, sizeof(kJunk))); | 
|  | EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 0); | 
|  | } | 
|  |  | 
|  | static void ExpectReceivedTransportParamsEqual(const SSL *ssl, | 
|  | Span<const uint8_t> expected) { | 
|  | const uint8_t *received; | 
|  | size_t received_len; | 
|  | SSL_get_peer_quic_transport_params(ssl, &received, &received_len); | 
|  | ASSERT_EQ(received_len, expected.size()); | 
|  | EXPECT_EQ(Bytes(received, received_len), Bytes(expected)); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, SetTransportParameters) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | uint8_t kClientParams[] = {1, 2, 3, 4}; | 
|  | uint8_t kServerParams[] = {5, 6, 7}; | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
|  | sizeof(kClientParams))); | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, | 
|  | sizeof(kServerParams))); | 
|  |  | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  | ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); | 
|  | ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, SetTransportParamsInCallback) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | uint8_t kClientParams[] = {1, 2, 3, 4}; | 
|  | static uint8_t kServerParams[] = {5, 6, 7}; | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
|  | sizeof(kClientParams))); | 
|  | SSL_CTX_set_tlsext_servername_callback( | 
|  | server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int { | 
|  | EXPECT_TRUE(SSL_set_quic_transport_params(ssl, kServerParams, | 
|  | sizeof(kServerParams))); | 
|  | return SSL_TLSEXT_ERR_OK; | 
|  | }); | 
|  |  | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  | ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); | 
|  | ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, ForbidCrossProtocolResumptionClient) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | g_last_session = nullptr; | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | ExpectHandshakeSuccess(); | 
|  | EXPECT_FALSE(SSL_session_reused(client_.get())); | 
|  | EXPECT_FALSE(SSL_session_reused(server_.get())); | 
|  |  | 
|  | // The server sent NewSessionTicket messages in the handshake. | 
|  | EXPECT_FALSE(g_last_session); | 
|  | ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
|  | EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1); | 
|  | ASSERT_TRUE(g_last_session); | 
|  |  | 
|  | // Pretend that g_last_session came from a TLS-over-TCP connection. | 
|  | g_last_session->is_quic = false; | 
|  |  | 
|  | // Create a second connection and verify that resumption does not occur with | 
|  | // a session from a non-QUIC connection. This tests that the client does not | 
|  | // offer over QUIC a session believed to be received over TCP. The server | 
|  | // believes this is a QUIC session, so if the client offered the session, the | 
|  | // server would have resumed it. | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session); | 
|  | SSL_set_session(client_.get(), session.get()); | 
|  |  | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  | ExpectHandshakeSuccess(); | 
|  | EXPECT_FALSE(SSL_session_reused(client_.get())); | 
|  | EXPECT_FALSE(SSL_session_reused(server_.get())); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, ForbidCrossProtocolResumptionServer) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  |  | 
|  | g_last_session = nullptr; | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  |  | 
|  | ExpectHandshakeSuccess(); | 
|  | EXPECT_FALSE(SSL_session_reused(client_.get())); | 
|  | EXPECT_FALSE(SSL_session_reused(server_.get())); | 
|  |  | 
|  | // The server sent NewSessionTicket messages in the handshake. | 
|  | EXPECT_FALSE(g_last_session); | 
|  | ASSERT_TRUE(ProvideHandshakeData(client_.get())); | 
|  | EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1); | 
|  | ASSERT_TRUE(g_last_session); | 
|  |  | 
|  | // Attempt a resumption with g_last_session using TLS_method. | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), nullptr)); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client(SSL_new(client_ctx.get())), | 
|  | server(SSL_new(server_ctx_.get())); | 
|  | ASSERT_TRUE(client); | 
|  | ASSERT_TRUE(server); | 
|  | SSL_set_connect_state(client.get()); | 
|  | SSL_set_accept_state(server.get()); | 
|  |  | 
|  | // The TLS-over-TCP client will refuse to resume with a quic session, so | 
|  | // mark is_quic = false to bypass the client check to test the server check. | 
|  | g_last_session->is_quic = false; | 
|  | SSL_set_session(client.get(), g_last_session.get()); | 
|  |  | 
|  | BIO *bio1, *bio2; | 
|  | ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0)); | 
|  |  | 
|  | // SSL_set_bio takes ownership. | 
|  | SSL_set_bio(client.get(), bio1, bio1); | 
|  | SSL_set_bio(server.get(), bio2, bio2); | 
|  | ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
|  |  | 
|  | EXPECT_FALSE(SSL_session_reused(client.get())); | 
|  | EXPECT_FALSE(SSL_session_reused(server.get())); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, ClientRejectsMissingTransportParams) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), nullptr, 0)); | 
|  | ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError)); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, ServerRejectsMissingTransportParams) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), nullptr, 0)); | 
|  | ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kClientError)); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, QuicLegacyCodepointEnabled) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | uint8_t kClientParams[] = {1, 2, 3, 4}; | 
|  | uint8_t kServerParams[] = {5, 6, 7}; | 
|  | SSL_set_quic_use_legacy_codepoint(client_.get(), 1); | 
|  | SSL_set_quic_use_legacy_codepoint(server_.get(), 1); | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
|  | sizeof(kClientParams))); | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, | 
|  | sizeof(kServerParams))); | 
|  |  | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  | ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); | 
|  | ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, QuicLegacyCodepointDisabled) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | uint8_t kClientParams[] = {1, 2, 3, 4}; | 
|  | uint8_t kServerParams[] = {5, 6, 7}; | 
|  | SSL_set_quic_use_legacy_codepoint(client_.get(), 0); | 
|  | SSL_set_quic_use_legacy_codepoint(server_.get(), 0); | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
|  | sizeof(kClientParams))); | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, | 
|  | sizeof(kServerParams))); | 
|  |  | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  | ExpectReceivedTransportParamsEqual(client_.get(), kServerParams); | 
|  | ExpectReceivedTransportParamsEqual(server_.get(), kClientParams); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, QuicLegacyCodepointClientOnly) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | uint8_t kClientParams[] = {1, 2, 3, 4}; | 
|  | uint8_t kServerParams[] = {5, 6, 7}; | 
|  | SSL_set_quic_use_legacy_codepoint(client_.get(), 1); | 
|  | SSL_set_quic_use_legacy_codepoint(server_.get(), 0); | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
|  | sizeof(kClientParams))); | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, | 
|  | sizeof(kServerParams))); | 
|  |  | 
|  | ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError)); | 
|  | } | 
|  |  | 
|  | TEST_F(QUICMethodTest, QuicLegacyCodepointServerOnly) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | uint8_t kClientParams[] = {1, 2, 3, 4}; | 
|  | uint8_t kServerParams[] = {5, 6, 7}; | 
|  | SSL_set_quic_use_legacy_codepoint(client_.get(), 0); | 
|  | SSL_set_quic_use_legacy_codepoint(server_.get(), 1); | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams, | 
|  | sizeof(kClientParams))); | 
|  | ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams, | 
|  | sizeof(kServerParams))); | 
|  |  | 
|  | ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError)); | 
|  | } | 
|  |  | 
|  | // Test that the default QUIC code point is consistent with | 
|  | // |TLSEXT_TYPE_quic_transport_parameters|. This test ensures we remember to | 
|  | // update the two values together. | 
|  | TEST_F(QUICMethodTest, QuicCodePointDefault) { | 
|  | const SSL_QUIC_METHOD quic_method = DefaultQUICMethod(); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method)); | 
|  | ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method)); | 
|  | SSL_CTX_set_select_certificate_cb( | 
|  | server_ctx_.get(), | 
|  | [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | if (!SSL_early_callback_ctx_extension_get( | 
|  | client_hello, TLSEXT_TYPE_quic_transport_parameters, &data, | 
|  | &len)) { | 
|  | ADD_FAILURE() << "Could not find quic_transport_parameters extension"; | 
|  | return ssl_select_cert_error; | 
|  | } | 
|  | return ssl_select_cert_success; | 
|  | }); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer()); | 
|  | ASSERT_TRUE(CompleteHandshakesForQUIC()); | 
|  | } | 
|  |  | 
|  | extern "C" { | 
|  | int BORINGSSL_enum_c_type_test(void); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, EnumTypes) { | 
|  | EXPECT_EQ(sizeof(int), sizeof(ssl_private_key_result_t)); | 
|  | EXPECT_EQ(1, BORINGSSL_enum_c_type_test()); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, DoubleSSLError) { | 
|  | // Connect the inner SSL connections. | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | // Make a pair of |BIO|s which wrap |client_| and |server_|. | 
|  | UniquePtr<BIO_METHOD> bio_method(BIO_meth_new(0, nullptr)); | 
|  | ASSERT_TRUE(bio_method); | 
|  | ASSERT_TRUE(BIO_meth_set_read( | 
|  | bio_method.get(), [](BIO *bio, char *out, int len) -> int { | 
|  | SSL *ssl = static_cast<SSL *>(BIO_get_data(bio)); | 
|  | int ret = SSL_read(ssl, out, len); | 
|  | int ssl_ret = SSL_get_error(ssl, ret); | 
|  | if (ssl_ret == SSL_ERROR_WANT_READ) { | 
|  | BIO_set_retry_read(bio); | 
|  | } | 
|  | return ret; | 
|  | })); | 
|  | ASSERT_TRUE(BIO_meth_set_write( | 
|  | bio_method.get(), [](BIO *bio, const char *in, int len) -> int { | 
|  | SSL *ssl = static_cast<SSL *>(BIO_get_data(bio)); | 
|  | int ret = SSL_write(ssl, in, len); | 
|  | int ssl_ret = SSL_get_error(ssl, ret); | 
|  | if (ssl_ret == SSL_ERROR_WANT_WRITE) { | 
|  | BIO_set_retry_write(bio); | 
|  | } | 
|  | return ret; | 
|  | })); | 
|  | ASSERT_TRUE(BIO_meth_set_ctrl( | 
|  | bio_method.get(), [](BIO *bio, int cmd, long larg, void *parg) -> long { | 
|  | // |SSL| objects require |BIO_flush| support. | 
|  | if (cmd == BIO_CTRL_FLUSH) { | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | })); | 
|  |  | 
|  | UniquePtr<BIO> client_bio(BIO_new(bio_method.get())); | 
|  | ASSERT_TRUE(client_bio); | 
|  | BIO_set_data(client_bio.get(), client_.get()); | 
|  | BIO_set_init(client_bio.get(), 1); | 
|  |  | 
|  | UniquePtr<BIO> server_bio(BIO_new(bio_method.get())); | 
|  | ASSERT_TRUE(server_bio); | 
|  | BIO_set_data(server_bio.get(), server_.get()); | 
|  | BIO_set_init(server_bio.get(), 1); | 
|  |  | 
|  | // Wrap the inner connections in another layer of SSL. | 
|  | UniquePtr<SSL> client_outer(SSL_new(client_ctx_.get())); | 
|  | ASSERT_TRUE(client_outer); | 
|  | SSL_set_connect_state(client_outer.get()); | 
|  | SSL_set_bio(client_outer.get(), client_bio.get(), client_bio.get()); | 
|  | client_bio.release();  // |SSL_set_bio| takes ownership. | 
|  |  | 
|  | UniquePtr<SSL> server_outer(SSL_new(server_ctx_.get())); | 
|  | ASSERT_TRUE(server_outer); | 
|  | SSL_set_accept_state(server_outer.get()); | 
|  | SSL_set_bio(server_outer.get(), server_bio.get(), server_bio.get()); | 
|  | server_bio.release();  // |SSL_set_bio| takes ownership. | 
|  |  | 
|  | // Configure |client_outer| to reject the server certificate. | 
|  | SSL_set_custom_verify( | 
|  | client_outer.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t { | 
|  | return ssl_verify_invalid; | 
|  | }); | 
|  |  | 
|  | for (;;) { | 
|  | int client_ret = SSL_do_handshake(client_outer.get()); | 
|  | int client_err = SSL_get_error(client_outer.get(), client_ret); | 
|  | if (client_err != SSL_ERROR_WANT_READ && | 
|  | client_err != SSL_ERROR_WANT_WRITE) { | 
|  | // The client handshake should terminate on a certificate verification | 
|  | // error. | 
|  | EXPECT_EQ(SSL_ERROR_SSL, client_err); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_peek_error(), ERR_LIB_SSL, | 
|  | SSL_R_CERTIFICATE_VERIFY_FAILED)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Run the server handshake and continue. | 
|  | int server_ret = SSL_do_handshake(server_outer.get()); | 
|  | int server_err = SSL_get_error(server_outer.get(), server_ret); | 
|  | ASSERT_TRUE(server_err == SSL_ERROR_NONE || | 
|  | server_err == SSL_ERROR_WANT_READ || | 
|  | server_err == SSL_ERROR_WANT_WRITE); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, SameKeyResume) { | 
|  | uint8_t key[48]; | 
|  | RAND_bytes(key, sizeof(key)); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); | 
|  | ASSERT_TRUE(server_ctx2); | 
|  | ASSERT_TRUE(UseCertAndKey(server_ctx2.get())); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_set_tlsext_ticket_keys(server_ctx_.get(), key, sizeof(key))); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_set_tlsext_ticket_keys(server_ctx2.get(), key, sizeof(key))); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | // Establish a session for |server_ctx_|. | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session); | 
|  | ClientConfig config; | 
|  | config.session = session.get(); | 
|  |  | 
|  | // Resuming with |server_ctx_| again works. | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
|  | server_ctx_.get(), config)); | 
|  | EXPECT_TRUE(SSL_session_reused(client.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server.get())); | 
|  |  | 
|  | // Resuming with |server_ctx2| also works. | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
|  | server_ctx2.get(), config)); | 
|  | EXPECT_TRUE(SSL_session_reused(client.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server.get())); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, DifferentKeyNoResume) { | 
|  | uint8_t key1[48], key2[48]; | 
|  | RAND_bytes(key1, sizeof(key1)); | 
|  | RAND_bytes(key2, sizeof(key2)); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); | 
|  | ASSERT_TRUE(server_ctx2); | 
|  | ASSERT_TRUE(UseCertAndKey(server_ctx2.get())); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_set_tlsext_ticket_keys(server_ctx_.get(), key1, sizeof(key1))); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_set_tlsext_ticket_keys(server_ctx2.get(), key2, sizeof(key2))); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | // Establish a session for |server_ctx_|. | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session); | 
|  | ClientConfig config; | 
|  | config.session = session.get(); | 
|  |  | 
|  | // Resuming with |server_ctx_| again works. | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
|  | server_ctx_.get(), config)); | 
|  | EXPECT_TRUE(SSL_session_reused(client.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server.get())); | 
|  |  | 
|  | // Resuming with |server_ctx2| does not work. | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
|  | server_ctx2.get(), config)); | 
|  | EXPECT_FALSE(SSL_session_reused(client.get())); | 
|  | EXPECT_FALSE(SSL_session_reused(server.get())); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, UnrelatedServerNoResume) { | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext(); | 
|  | ASSERT_TRUE(server_ctx2); | 
|  | ASSERT_TRUE(UseCertAndKey(server_ctx2.get())); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | // Establish a session for |server_ctx_|. | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  | ASSERT_TRUE(session); | 
|  | ClientConfig config; | 
|  | config.session = session.get(); | 
|  |  | 
|  | // Resuming with |server_ctx_| again works. | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
|  | server_ctx_.get(), config)); | 
|  | EXPECT_TRUE(SSL_session_reused(client.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server.get())); | 
|  |  | 
|  | // Resuming with |server_ctx2| does not work. | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
|  | server_ctx2.get(), config)); | 
|  | EXPECT_FALSE(SSL_session_reused(client.get())); | 
|  | EXPECT_FALSE(SSL_session_reused(server.get())); | 
|  | } | 
|  |  | 
|  | Span<const uint8_t> SessionIDOf(const SSL *ssl) { | 
|  | const SSL_SESSION *session = SSL_get_session(ssl); | 
|  | unsigned len; | 
|  | const uint8_t *data = SSL_SESSION_get_id(session, &len); | 
|  | return Span(data, len); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, TicketSessionIDsMatch) { | 
|  | // This checks that the session IDs at client and server match after a ticket | 
|  | // resumption. It's unclear whether this should be true, but Envoy depends | 
|  | // on it in their tests so this will give an early signal if we break it. | 
|  | SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx_.get(), server_ctx_.get()); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ClientConfig config; | 
|  | config.session = session.get(); | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(), | 
|  | server_ctx_.get(), config)); | 
|  | EXPECT_TRUE(SSL_session_reused(client.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(server.get())); | 
|  |  | 
|  | EXPECT_EQ(Bytes(SessionIDOf(client.get())), Bytes(SessionIDOf(server.get()))); | 
|  | } | 
|  |  | 
|  | static void WriteHelloRequest(SSL *server) { | 
|  | // This function assumes TLS 1.2 with ChaCha20-Poly1305. | 
|  | ASSERT_EQ(SSL_version(server), TLS1_2_VERSION); | 
|  | ASSERT_EQ(SSL_CIPHER_get_cipher_nid(SSL_get_current_cipher(server)), | 
|  | NID_chacha20_poly1305); | 
|  |  | 
|  | // Encrypt a HelloRequest. | 
|  | uint8_t in[] = {SSL3_MT_HELLO_REQUEST, 0, 0, 0}; | 
|  | // Extract key material from |server|. | 
|  | static const size_t kKeyLen = 32; | 
|  | static const size_t kNonceLen = 12; | 
|  | ASSERT_EQ(2u * (kKeyLen + kNonceLen), SSL_get_key_block_len(server)); | 
|  | uint8_t key_block[2u * (kKeyLen + kNonceLen)]; | 
|  | ASSERT_TRUE(SSL_generate_key_block(server, key_block, sizeof(key_block))); | 
|  | Span<uint8_t> key = Span(key_block).subspan(kKeyLen, kKeyLen); | 
|  | Span<uint8_t> nonce = | 
|  | Span(key_block).subspan(kKeyLen + kKeyLen + kNonceLen, kNonceLen); | 
|  |  | 
|  | uint8_t ad[13]; | 
|  | uint64_t seq = SSL_get_write_sequence(server); | 
|  | for (size_t i = 0; i < 8; i++) { | 
|  | // The nonce is XORed with the sequence number. | 
|  | nonce[11 - i] ^= uint8_t(seq); | 
|  | ad[7 - i] = uint8_t(seq); | 
|  | seq >>= 8; | 
|  | } | 
|  |  | 
|  | ad[8] = SSL3_RT_HANDSHAKE; | 
|  | ad[9] = 3; | 
|  | ad[10] = 3;  // TLS 1.2 | 
|  | ad[11] = 0; | 
|  | ad[12] = sizeof(in); | 
|  |  | 
|  | uint8_t record[5 + sizeof(in) + 16]; | 
|  | record[0] = SSL3_RT_HANDSHAKE; | 
|  | record[1] = 3; | 
|  | record[2] = 3;  // TLS 1.2 | 
|  | record[3] = 0; | 
|  | record[4] = sizeof(record) - 5; | 
|  |  | 
|  | ScopedEVP_AEAD_CTX aead; | 
|  | ASSERT_TRUE(EVP_AEAD_CTX_init(aead.get(), EVP_aead_chacha20_poly1305(), | 
|  | key.data(), key.size(), | 
|  | EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)); | 
|  | size_t len; | 
|  | ASSERT_TRUE(EVP_AEAD_CTX_seal(aead.get(), record + 5, &len, | 
|  | sizeof(record) - 5, nonce.data(), nonce.size(), | 
|  | in, sizeof(in), ad, sizeof(ad))); | 
|  | ASSERT_EQ(sizeof(record) - 5, len); | 
|  |  | 
|  | ASSERT_EQ(int(sizeof(record)), | 
|  | BIO_write(SSL_get_wbio(server), record, sizeof(record))); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, WriteWhileExplicitRenegotiate) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_2_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_2_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( | 
|  | ctx.get(), "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256")); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
|  | SSL_set_renegotiate_mode(client.get(), ssl_renegotiate_explicit); | 
|  | ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
|  |  | 
|  | static const uint8_t kInput[] = {'h', 'e', 'l', 'l', 'o'}; | 
|  |  | 
|  | // Write "hello" until the buffer is full, so |client| has a pending write. | 
|  | size_t num_writes = 0; | 
|  | for (;;) { | 
|  | int ret = SSL_write(client.get(), kInput, sizeof(kInput)); | 
|  | if (ret != int(sizeof(kInput))) { | 
|  | ASSERT_EQ(-1, ret); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_WRITE, SSL_get_error(client.get(), ret)); | 
|  | break; | 
|  | } | 
|  | num_writes++; | 
|  | } | 
|  |  | 
|  | ASSERT_NO_FATAL_FAILURE(WriteHelloRequest(server.get())); | 
|  |  | 
|  | // |SSL_read| should pick up the HelloRequest. | 
|  | uint8_t byte; | 
|  | ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_RENEGOTIATE, SSL_get_error(client.get(), -1)); | 
|  |  | 
|  | // Drain the data from the |client|. | 
|  | uint8_t buf[sizeof(kInput)]; | 
|  | for (size_t i = 0; i < num_writes; i++) { | 
|  | ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes(buf), Bytes(kInput)); | 
|  | } | 
|  |  | 
|  | // |client| should be able to finish the pending write and continue to write, | 
|  | // despite the paused HelloRequest. | 
|  | ASSERT_EQ(int(sizeof(kInput)), | 
|  | SSL_write(client.get(), kInput, sizeof(kInput))); | 
|  | ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes(buf), Bytes(kInput)); | 
|  |  | 
|  | ASSERT_EQ(int(sizeof(kInput)), | 
|  | SSL_write(client.get(), kInput, sizeof(kInput))); | 
|  | ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes(buf), Bytes(kInput)); | 
|  |  | 
|  | // |SSL_read| is stuck until we acknowledge the HelloRequest. | 
|  | ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_RENEGOTIATE, SSL_get_error(client.get(), -1)); | 
|  |  | 
|  | ASSERT_TRUE(SSL_renegotiate(client.get())); | 
|  | ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); | 
|  |  | 
|  | // We never renegotiate as a server. | 
|  | ASSERT_EQ(-1, SSL_read(server.get(), buf, sizeof(buf))); | 
|  | ASSERT_EQ(SSL_ERROR_SSL, SSL_get_error(server.get(), -1)); | 
|  | EXPECT_TRUE( | 
|  | ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_NO_RENEGOTIATION)); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ConnectionPropertiesDuringRenegotiate) { | 
|  | // Configure known connection properties, so we can check against them. | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
|  | ASSERT_TRUE(cert); | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_2_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_2_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( | 
|  | ctx.get(), "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256")); | 
|  | ASSERT_TRUE(SSL_CTX_set1_groups_list(ctx.get(), "X25519")); | 
|  | ASSERT_TRUE(SSL_CTX_set1_sigalgs_list(ctx.get(), "rsa_pkcs1_sha256")); | 
|  |  | 
|  | // Connect a client and server that accept renegotiation. | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
|  | SSL_set_renegotiate_mode(client.get(), ssl_renegotiate_freely); | 
|  | ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
|  |  | 
|  | auto check_properties = [&] { | 
|  | EXPECT_EQ(SSL_version(client.get()), TLS1_2_VERSION); | 
|  | const SSL_CIPHER *cipher = SSL_get_current_cipher(client.get()); | 
|  | ASSERT_TRUE(cipher); | 
|  | EXPECT_EQ(SSL_CIPHER_get_protocol_id(cipher), | 
|  | uint16_t{SSL_CIPHER_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256}); | 
|  | EXPECT_EQ(SSL_CIPHER_get_id(cipher), | 
|  | uint32_t{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256}); | 
|  | EXPECT_EQ(SSL_get_group_id(client.get()), SSL_GROUP_X25519); | 
|  | EXPECT_EQ(SSL_get_negotiated_group(client.get()), NID_X25519); | 
|  | EXPECT_EQ(SSL_get_peer_signature_algorithm(client.get()), | 
|  | SSL_SIGN_RSA_PKCS1_SHA256); | 
|  | bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client.get())); | 
|  | ASSERT_TRUE(peer); | 
|  | EXPECT_EQ(X509_cmp(cert.get(), peer.get()), 0); | 
|  | }; | 
|  | check_properties(); | 
|  |  | 
|  | // The server sends a HelloRequest. | 
|  | ASSERT_NO_FATAL_FAILURE(WriteHelloRequest(server.get())); | 
|  |  | 
|  | // Reading from the client will consume the HelloRequest, start a | 
|  | // renegotiation, and then block on a ServerHello from the server. | 
|  | uint8_t byte; | 
|  | ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1)); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); | 
|  |  | 
|  | // Connection properties should continue to report values from the original | 
|  | // handshake. | 
|  | check_properties(); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, CopyWithoutEarlyData) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx( | 
|  | CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_early_data_enabled(client_ctx.get(), 1); | 
|  | SSL_CTX_set_early_data_enabled(server_ctx.get(), 1); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx.get(), server_ctx.get()); | 
|  | ASSERT_TRUE(session); | 
|  |  | 
|  | // The client should attempt early data with |session|. | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | SSL_set_session(client.get(), session.get()); | 
|  | SSL_set_early_data_enabled(client.get(), 1); | 
|  | ASSERT_EQ(1, SSL_do_handshake(client.get())); | 
|  | EXPECT_TRUE(SSL_in_early_data(client.get())); | 
|  |  | 
|  | // |SSL_SESSION_copy_without_early_data| should disable early data but | 
|  | // still resume the session. | 
|  | bssl::UniquePtr<SSL_SESSION> session2( | 
|  | SSL_SESSION_copy_without_early_data(session.get())); | 
|  | ASSERT_TRUE(session2); | 
|  | EXPECT_NE(session.get(), session2.get()); | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | SSL_set_session(client.get(), session2.get()); | 
|  | SSL_set_early_data_enabled(client.get(), 1); | 
|  | EXPECT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
|  | EXPECT_TRUE(SSL_session_reused(client.get())); | 
|  | EXPECT_EQ(ssl_early_data_unsupported_for_session, | 
|  | SSL_get_early_data_reason(client.get())); | 
|  |  | 
|  | // |SSL_SESSION_copy_without_early_data| should be a reference count increase | 
|  | // when passed an early-data-incapable session. | 
|  | bssl::UniquePtr<SSL_SESSION> session3( | 
|  | SSL_SESSION_copy_without_early_data(session2.get())); | 
|  | EXPECT_EQ(session2.get(), session3.get()); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ProcessTLS13NewSessionTicket) { | 
|  | // Configure client and server to negotiate TLS 1.3 only. | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx( | 
|  | CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | EXPECT_EQ(TLS1_3_VERSION, SSL_version(client.get())); | 
|  |  | 
|  | // Process a TLS 1.3 NewSessionTicket. | 
|  | static const uint8_t kTicket[] = { | 
|  | 0x04, 0x00, 0x00, 0xb2, 0x00, 0x02, 0xa3, 0x00, 0x04, 0x03, 0x02, 0x01, | 
|  | 0x01, 0x00, 0x00, 0xa0, 0x01, 0x06, 0x09, 0x11, 0x16, 0x19, 0x21, 0x26, | 
|  | 0x29, 0x31, 0x36, 0x39, 0x41, 0x46, 0x49, 0x51, 0x03, 0x06, 0x09, 0x13, | 
|  | 0x16, 0x19, 0x23, 0x26, 0x29, 0x33, 0x36, 0x39, 0x43, 0x46, 0x49, 0x53, | 
|  | 0xf7, 0x00, 0x29, 0xec, 0xf2, 0xc4, 0xa4, 0x41, 0xfc, 0x30, 0x17, 0x2e, | 
|  | 0x9f, 0x7c, 0xa8, 0xaf, 0x75, 0x70, 0xf0, 0x1f, 0xc7, 0x98, 0xf7, 0xcf, | 
|  | 0x5a, 0x5a, 0x6b, 0x5b, 0xfe, 0xf1, 0xe7, 0x3a, 0xe8, 0xf7, 0x6c, 0xd2, | 
|  | 0xa8, 0xa6, 0x92, 0x5b, 0x96, 0x8d, 0xde, 0xdb, 0xd3, 0x20, 0x6a, 0xcb, | 
|  | 0x69, 0x06, 0xf4, 0x91, 0x85, 0x2e, 0xe6, 0x5e, 0x0c, 0x59, 0xf2, 0x9e, | 
|  | 0x9b, 0x79, 0x91, 0x24, 0x7e, 0x4a, 0x32, 0x3d, 0xbe, 0x4b, 0x80, 0x70, | 
|  | 0xaf, 0xd0, 0x1d, 0xe2, 0xca, 0x05, 0x35, 0x09, 0x09, 0x05, 0x0f, 0xbb, | 
|  | 0xc4, 0xae, 0xd7, 0xc4, 0xed, 0xd7, 0xae, 0x35, 0xc8, 0x73, 0x63, 0x78, | 
|  | 0x64, 0xc9, 0x7a, 0x1f, 0xed, 0x7a, 0x9a, 0x47, 0x44, 0xfd, 0x50, 0xf7, | 
|  | 0xb7, 0xe0, 0x64, 0xa9, 0x02, 0xc1, 0x5c, 0x23, 0x18, 0x3f, 0xc4, 0xcf, | 
|  | 0x72, 0x02, 0x59, 0x2d, 0xe1, 0xaa, 0x61, 0x72, 0x00, 0x04, 0x5a, 0x5a, | 
|  | 0x00, 0x00, | 
|  | }; | 
|  | bssl::UniquePtr<SSL_SESSION> session(SSL_process_tls13_new_session_ticket( | 
|  | client.get(), kTicket, sizeof(kTicket))); | 
|  | ASSERT_TRUE(session); | 
|  | ASSERT_TRUE(SSL_SESSION_has_ticket(session.get())); | 
|  |  | 
|  | uint8_t *session_buf = nullptr; | 
|  | size_t session_length = 0; | 
|  | ASSERT_TRUE( | 
|  | SSL_SESSION_to_bytes(session.get(), &session_buf, &session_length)); | 
|  | bssl::UniquePtr<uint8_t> session_buf_free(session_buf); | 
|  | ASSERT_TRUE(session_buf); | 
|  | ASSERT_GT(session_length, 0u); | 
|  |  | 
|  | // Servers cannot call |SSL_process_tls13_new_session_ticket|. | 
|  | ASSERT_FALSE(SSL_process_tls13_new_session_ticket(server.get(), kTicket, | 
|  | sizeof(kTicket))); | 
|  |  | 
|  | // Clients cannot call |SSL_process_tls13_new_session_ticket| before the | 
|  | // handshake completes. | 
|  | bssl::UniquePtr<SSL> client2(SSL_new(client_ctx.get())); | 
|  | ASSERT_TRUE(client2); | 
|  | SSL_set_connect_state(client2.get()); | 
|  | ASSERT_FALSE(SSL_process_tls13_new_session_ticket(client2.get(), kTicket, | 
|  | sizeof(kTicket))); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, BIO) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx( | 
|  | CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  |  | 
|  | for (bool take_ownership : {true, false}) { | 
|  | // For simplicity, get the handshake out of the way first. | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | // Wrap |client| in an SSL BIO. | 
|  | bssl::UniquePtr<BIO> client_bio(BIO_new(BIO_f_ssl())); | 
|  | ASSERT_TRUE(client_bio); | 
|  | ASSERT_EQ(1, BIO_set_ssl(client_bio.get(), client.get(), take_ownership)); | 
|  | if (take_ownership) { | 
|  | client.release(); | 
|  | } | 
|  |  | 
|  | // Flushing the BIO should not crash. | 
|  | EXPECT_EQ(1, BIO_flush(client_bio.get())); | 
|  |  | 
|  | // Exchange some data. | 
|  | EXPECT_EQ(5, BIO_write(client_bio.get(), "hello", 5)); | 
|  | uint8_t buf[5]; | 
|  | ASSERT_EQ(5, SSL_read(server.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes("hello"), Bytes(buf)); | 
|  |  | 
|  | EXPECT_EQ(5, SSL_write(server.get(), "world", 5)); | 
|  | ASSERT_EQ(5, BIO_read(client_bio.get(), buf, sizeof(buf))); | 
|  | EXPECT_EQ(Bytes("world"), Bytes(buf)); | 
|  |  | 
|  | // |BIO_should_read| should work. | 
|  | EXPECT_EQ(-1, BIO_read(client_bio.get(), buf, sizeof(buf))); | 
|  | EXPECT_TRUE(BIO_should_read(client_bio.get())); | 
|  |  | 
|  | // Writing data should eventually exceed the buffer size and fail, reporting | 
|  | // |BIO_should_write|. | 
|  | int ret; | 
|  | for (int i = 0; i < 1024; i++) { | 
|  | const uint8_t kZeros[1024] = {0}; | 
|  | ret = BIO_write(client_bio.get(), kZeros, sizeof(kZeros)); | 
|  | if (ret <= 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPECT_EQ(-1, ret); | 
|  | EXPECT_TRUE(BIO_should_write(client_bio.get())); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ALPNConfig) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
|  | ASSERT_TRUE(cert); | 
|  | ASSERT_TRUE(key); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); | 
|  |  | 
|  | // Set up some machinery to check the configured ALPN against what is actually | 
|  | // sent over the wire. Note that the ALPN callback is only called when the | 
|  | // client offers ALPN. | 
|  | std::vector<uint8_t> observed_alpn; | 
|  | SSL_CTX_set_alpn_select_cb( | 
|  | ctx.get(), | 
|  | [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, | 
|  | unsigned in_len, void *arg) -> int { | 
|  | std::vector<uint8_t> *observed_alpn_ptr = | 
|  | static_cast<std::vector<uint8_t> *>(arg); | 
|  | observed_alpn_ptr->assign(in, in + in_len); | 
|  | return SSL_TLSEXT_ERR_NOACK; | 
|  | }, | 
|  | &observed_alpn); | 
|  | auto check_alpn_proto = [&](Span<const uint8_t> expected) { | 
|  | observed_alpn.clear(); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get())); | 
|  | EXPECT_EQ(Bytes(expected), Bytes(observed_alpn)); | 
|  | }; | 
|  |  | 
|  | // Note that |SSL_CTX_set_alpn_protos|'s return value is reversed. | 
|  | static const uint8_t kValidList[] = {0x03, 'f', 'o', 'o', | 
|  | 0x03, 'b', 'a', 'r'}; | 
|  | EXPECT_EQ(0, | 
|  | SSL_CTX_set_alpn_protos(ctx.get(), kValidList, sizeof(kValidList))); | 
|  | check_alpn_proto(kValidList); | 
|  |  | 
|  | // Invalid lists are rejected. | 
|  | static const uint8_t kInvalidList[] = {0x04, 'f', 'o', 'o'}; | 
|  | EXPECT_EQ(1, SSL_CTX_set_alpn_protos(ctx.get(), kInvalidList, | 
|  | sizeof(kInvalidList))); | 
|  |  | 
|  | // Empty lists are valid and are interpreted as disabling ALPN. | 
|  | EXPECT_EQ(0, SSL_CTX_set_alpn_protos(ctx.get(), nullptr, 0)); | 
|  | check_alpn_proto({}); | 
|  | } | 
|  |  | 
|  | // This is a basic unit-test class to verify completing handshake successfully, | 
|  | // sending the correct codepoint extension and having correct application | 
|  | // setting on different combination of ALPS codepoint settings. More integration | 
|  | // tests on runner.go. | 
|  | class AlpsNewCodepointTest : public testing::Test { | 
|  | protected: | 
|  | void SetUp() override { | 
|  | client_ctx_.reset(SSL_CTX_new(TLS_method())); | 
|  | server_ctx_ = CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(client_ctx_); | 
|  | ASSERT_TRUE(server_ctx_); | 
|  | } | 
|  |  | 
|  | void SetUpApplicationSetting() { | 
|  | static const uint8_t alpn[] = {0x03, 'f', 'o', 'o'}; | 
|  | static const uint8_t proto[] = {'f', 'o', 'o'}; | 
|  | static const uint8_t alps[] = {0x04, 'a', 'l', 'p', 's'}; | 
|  | // SSL_set_alpn_protos's return value is backwards. It returns zero on | 
|  | // success and one on failure. | 
|  | ASSERT_FALSE(SSL_set_alpn_protos(client_.get(), alpn, sizeof(alpn))); | 
|  | SSL_CTX_set_alpn_select_cb( | 
|  | server_ctx_.get(), | 
|  | [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, | 
|  | unsigned in_len, void *arg) -> int { | 
|  | return SSL_select_next_proto(const_cast<uint8_t **>(out), out_len, in, | 
|  | in_len, alpn, | 
|  | sizeof(alpn)) == OPENSSL_NPN_NEGOTIATED | 
|  | ? SSL_TLSEXT_ERR_OK | 
|  | : SSL_TLSEXT_ERR_NOACK; | 
|  | }, | 
|  | nullptr); | 
|  | ASSERT_TRUE(SSL_add_application_settings(client_.get(), proto, | 
|  | sizeof(proto), nullptr, 0)); | 
|  | ASSERT_TRUE(SSL_add_application_settings( | 
|  | server_.get(), proto, sizeof(proto), alps, sizeof(alps))); | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx_; | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx_; | 
|  |  | 
|  | bssl::UniquePtr<SSL> client_; | 
|  | bssl::UniquePtr<SSL> server_; | 
|  | }; | 
|  |  | 
|  | TEST_F(AlpsNewCodepointTest, Enabled) { | 
|  | SetUpExpectedNewCodePoint(server_ctx_.get()); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), | 
|  | server_ctx_.get())); | 
|  |  | 
|  | SSL_set_alps_use_new_codepoint(client_.get(), 1); | 
|  | SSL_set_alps_use_new_codepoint(server_.get(), 1); | 
|  |  | 
|  | SetUpApplicationSetting(); | 
|  | ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
|  | ASSERT_TRUE(SSL_has_application_settings(client_.get())); | 
|  | } | 
|  |  | 
|  | TEST_F(AlpsNewCodepointTest, ClientExplictServerDefault) { | 
|  | SetUpExpectedNewCodePoint(server_ctx_.get()); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), | 
|  | server_ctx_.get())); | 
|  |  | 
|  | SSL_set_alps_use_new_codepoint(client_.get(), 1); | 
|  |  | 
|  | SetUpApplicationSetting(); | 
|  | ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
|  | ASSERT_TRUE(SSL_has_application_settings(client_.get())); | 
|  | } | 
|  |  | 
|  | TEST_F(AlpsNewCodepointTest, ClientDefaultServerExplicit) { | 
|  | SetUpExpectedNewCodePoint(server_ctx_.get()); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), | 
|  | server_ctx_.get())); | 
|  |  | 
|  | SSL_set_alps_use_new_codepoint(server_.get(), 1); | 
|  |  | 
|  | SetUpApplicationSetting(); | 
|  | ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
|  | ASSERT_TRUE(SSL_has_application_settings(client_.get())); | 
|  | } | 
|  |  | 
|  | TEST_F(AlpsNewCodepointTest, Disabled) { | 
|  | // Both client and server disable alps new codepoint. | 
|  | SetUpExpectedOldCodePoint(server_ctx_.get()); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), | 
|  | server_ctx_.get())); | 
|  |  | 
|  | SSL_set_alps_use_new_codepoint(client_.get(), 0); | 
|  | SSL_set_alps_use_new_codepoint(server_.get(), 0); | 
|  |  | 
|  | SetUpApplicationSetting(); | 
|  | ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
|  | ASSERT_TRUE(SSL_has_application_settings(client_.get())); | 
|  | } | 
|  |  | 
|  | TEST_F(AlpsNewCodepointTest, ClientOnly) { | 
|  | // If client set new codepoint but server doesn't set, server ignores it. | 
|  | SetUpExpectedNewCodePoint(server_ctx_.get()); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), | 
|  | server_ctx_.get())); | 
|  |  | 
|  | SSL_set_alps_use_new_codepoint(client_.get(), 1); | 
|  | SSL_set_alps_use_new_codepoint(server_.get(), 0); | 
|  |  | 
|  | SetUpApplicationSetting(); | 
|  | ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
|  | ASSERT_FALSE(SSL_has_application_settings(client_.get())); | 
|  | } | 
|  |  | 
|  | TEST_F(AlpsNewCodepointTest, ServerOnly) { | 
|  | // If client doesn't set new codepoint, while server set. | 
|  | SetUpExpectedOldCodePoint(server_ctx_.get()); | 
|  |  | 
|  | ASSERT_TRUE(CreateClientAndServer(&client_, &server_, client_ctx_.get(), | 
|  | server_ctx_.get())); | 
|  |  | 
|  | SSL_set_alps_use_new_codepoint(client_.get(), 0); | 
|  | SSL_set_alps_use_new_codepoint(server_.get(), 1); | 
|  |  | 
|  | SetUpApplicationSetting(); | 
|  | ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get())); | 
|  | ASSERT_FALSE(SSL_has_application_settings(client_.get())); | 
|  | } | 
|  |  | 
|  | // Test that the key usage checker can correctly handle issuerUID and | 
|  | // subjectUID. See https://crbug.com/1199744. | 
|  | TEST(SSLTest, KeyUsageWithUIDs) { | 
|  | static const char kGoodKeyUsage[] = R"( | 
|  | -----BEGIN CERTIFICATE----- | 
|  | MIIB7DCCAZOgAwIBAgIJANlMBNpJfb/rMAoGCCqGSM49BAMCMEUxCzAJBgNVBAYT | 
|  | AkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRn | 
|  | aXRzIFB0eSBMdGQwHhcNMTQwNDIzMjMyMTU3WhcNMTQwNTIzMjMyMTU3WjBFMQsw | 
|  | CQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJu | 
|  | ZXQgV2lkZ2l0cyBQdHkgTHRkMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp | 
|  | 4r9ln5e+Lx4NlIpM1Zdrt6keDUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsW | 
|  | Ghz1HX7xlC1Lz3IiwYEEABI0VoIEABI0VqNgMF4wHQYDVR0OBBYEFKuE0qyrlfCC | 
|  | ThZ4B1VXX+QmjYLRMB8GA1UdIwQYMBaAFKuE0qyrlfCCThZ4B1VXX+QmjYLRMA4G | 
|  | A1UdDwEB/wQEAwIHgDAMBgNVHRMEBTADAQH/MAoGCCqGSM49BAMCA0cAMEQCIEWJ | 
|  | 34EcqW5MHwLIA1hZ2Tj/jV2QjN02KLxis9mFsqDKAiAMlMTkzsM51vVs9Ohqa+Rc | 
|  | 4Z7qDhjIhiF4dM0uEDYRVA== | 
|  | -----END CERTIFICATE----- | 
|  | )"; | 
|  | static const char kBadKeyUsage[] = R"( | 
|  | -----BEGIN CERTIFICATE----- | 
|  | MIIB7jCCAZOgAwIBAgIJANlMBNpJfb/rMAoGCCqGSM49BAMCMEUxCzAJBgNVBAYT | 
|  | AkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRn | 
|  | aXRzIFB0eSBMdGQwHhcNMTQwNDIzMjMyMTU3WhcNMTQwNTIzMjMyMTU3WjBFMQsw | 
|  | CQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJu | 
|  | ZXQgV2lkZ2l0cyBQdHkgTHRkMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp | 
|  | 4r9ln5e+Lx4NlIpM1Zdrt6keDUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsW | 
|  | Ghz1HX7xlC1Lz3IiwYEEABI0VoIEABI0VqNgMF4wHQYDVR0OBBYEFKuE0qyrlfCC | 
|  | ThZ4B1VXX+QmjYLRMB8GA1UdIwQYMBaAFKuE0qyrlfCCThZ4B1VXX+QmjYLRMA4G | 
|  | A1UdDwEB/wQEAwIDCDAMBgNVHRMEBTADAQH/MAoGCCqGSM49BAMCA0kAMEYCIQC6 | 
|  | taYBUDu2gcZC6EMk79FBHArYI0ucF+kzvETegZCbBAIhANtObFec5gtso/47moPD | 
|  | RHrQbWsFUakETXL9QMlegh5t | 
|  | -----END CERTIFICATE----- | 
|  | )"; | 
|  |  | 
|  | bssl::UniquePtr<X509> good = CertFromPEM(kGoodKeyUsage); | 
|  | ASSERT_TRUE(good); | 
|  | bssl::UniquePtr<X509> bad = CertFromPEM(kBadKeyUsage); | 
|  | ASSERT_TRUE(bad); | 
|  |  | 
|  | // We check key usage when configuring EC certificates to distinguish ECDSA | 
|  | // and ECDH. | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | EXPECT_TRUE(SSL_CTX_use_certificate(ctx.get(), good.get())); | 
|  | EXPECT_FALSE(SSL_CTX_use_certificate(ctx.get(), bad.get())); | 
|  | } | 
|  |  | 
|  | // Test that |SSL_can_release_private_key| reports true as early as expected. | 
|  | // The internal asserts in the library check we do not report true too early. | 
|  | TEST(SSLTest, CanReleasePrivateKey) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | // Note this assumes the transport buffer is large enough to fit the client | 
|  | // and server first flights. We check this with |SSL_ERROR_WANT_READ|. If the | 
|  | // transport buffer was too small it would return |SSL_ERROR_WANT_WRITE|. | 
|  | auto check_first_server_round_trip = [&](SSL *client, SSL *server) { | 
|  | // Write the ClientHello. | 
|  | ASSERT_EQ(-1, SSL_do_handshake(client)); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client, -1)); | 
|  |  | 
|  | // Consume the ClientHello and write the server flight. | 
|  | ASSERT_EQ(-1, SSL_do_handshake(server)); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server, -1)); | 
|  |  | 
|  | EXPECT_TRUE(SSL_can_release_private_key(server)); | 
|  | }; | 
|  |  | 
|  | { | 
|  | SCOPED_TRACE("TLS 1.2 ECDHE"); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx( | 
|  | CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_strict_cipher_list( | 
|  | server_ctx.get(), "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256")); | 
|  | // Configure the server to request client certificates, so we can also test | 
|  | // the client half. | 
|  | SSL_CTX_set_custom_verify( | 
|  | server_ctx.get(), SSL_VERIFY_PEER, | 
|  | [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; }); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | check_first_server_round_trip(client.get(), server.get()); | 
|  |  | 
|  | // Consume the server flight and write the client response. The client still | 
|  | // has a Finished message to consume but can also release its key early. | 
|  | ASSERT_EQ(-1, SSL_do_handshake(client.get())); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); | 
|  | EXPECT_TRUE(SSL_can_release_private_key(client.get())); | 
|  |  | 
|  | // However, a client that has not disabled renegotiation can never release | 
|  | // the key. | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | SSL_set_renegotiate_mode(client.get(), ssl_renegotiate_freely); | 
|  | check_first_server_round_trip(client.get(), server.get()); | 
|  | ASSERT_EQ(-1, SSL_do_handshake(client.get())); | 
|  | ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1)); | 
|  | EXPECT_FALSE(SSL_can_release_private_key(client.get())); | 
|  | } | 
|  |  | 
|  | { | 
|  | SCOPED_TRACE("TLS 1.2 resumption"); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx( | 
|  | CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION)); | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx.get(), server_ctx.get()); | 
|  | ASSERT_TRUE(session); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | SSL_set_session(client.get(), session.get()); | 
|  | check_first_server_round_trip(client.get(), server.get()); | 
|  | } | 
|  |  | 
|  | { | 
|  | SCOPED_TRACE("TLS 1.3 1-RTT"); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx( | 
|  | CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | check_first_server_round_trip(client.get(), server.get()); | 
|  | } | 
|  |  | 
|  | { | 
|  | SCOPED_TRACE("TLS 1.3 resumption"); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx( | 
|  | CreateContextWithTestCertificate(TLS_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION)); | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx.get(), server_ctx.get()); | 
|  | ASSERT_TRUE(session); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | SSL_set_session(client.get(), session.get()); | 
|  | check_first_server_round_trip(client.get(), server.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // GetExtensionOrder sets |*out| to the list of extensions a client attached to | 
|  | // |ctx| will send in the ClientHello. If |ech_keys| is non-null, the client | 
|  | // will offer ECH with the public component. If |decrypt_ech| is true, |*out| | 
|  | // will be set to the ClientHelloInner's extensions, rather than | 
|  | // ClientHelloOuter. | 
|  | static bool GetExtensionOrder(SSL_CTX *client_ctx, std::vector<uint16_t> *out, | 
|  | SSL_ECH_KEYS *ech_keys, bool decrypt_ech) { | 
|  | struct AppData { | 
|  | std::vector<uint16_t> *out; | 
|  | bool decrypt_ech; | 
|  | bool callback_done = false; | 
|  | }; | 
|  | AppData app_data; | 
|  | app_data.out = out; | 
|  | app_data.decrypt_ech = decrypt_ech; | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | if (!server_ctx ||  // | 
|  | !SSL_CTX_set_app_data(server_ctx.get(), &app_data) || | 
|  | (decrypt_ech && !SSL_CTX_set1_ech_keys(server_ctx.get(), ech_keys))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Configure the server to record the ClientHello extension order. We use a | 
|  | // server rather than |GetClientHello| so it can decrypt ClientHelloInner. | 
|  | SSL_CTX_set_select_certificate_cb( | 
|  | server_ctx.get(), | 
|  | [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t { | 
|  | AppData *app_data_ptr = static_cast<AppData *>( | 
|  | SSL_CTX_get_app_data(SSL_get_SSL_CTX(client_hello->ssl))); | 
|  | EXPECT_EQ(app_data_ptr->decrypt_ech ? 1 : 0, | 
|  | SSL_ech_accepted(client_hello->ssl)); | 
|  |  | 
|  | app_data_ptr->out->clear(); | 
|  | CBS extensions; | 
|  | CBS_init(&extensions, client_hello->extensions, | 
|  | client_hello->extensions_len); | 
|  | while (CBS_len(&extensions)) { | 
|  | uint16_t type; | 
|  | CBS body; | 
|  | if (!CBS_get_u16(&extensions, &type) || | 
|  | !CBS_get_u16_length_prefixed(&extensions, &body)) { | 
|  | return ssl_select_cert_error; | 
|  | } | 
|  | app_data_ptr->out->push_back(type); | 
|  | } | 
|  |  | 
|  | // Don't bother completing the handshake. | 
|  | app_data_ptr->callback_done = true; | 
|  | return ssl_select_cert_error; | 
|  | }); | 
|  |  | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | if (!CreateClientAndServer(&client, &server, client_ctx, server_ctx.get()) || | 
|  | (ech_keys != nullptr && !InstallECHConfigList(client.get(), ech_keys))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Run the handshake far enough to process the ClientHello. | 
|  | SSL_do_handshake(client.get()); | 
|  | SSL_do_handshake(server.get()); | 
|  | return app_data.callback_done; | 
|  | } | 
|  |  | 
|  | // Test that, when extension permutation is enabled, the ClientHello extension | 
|  | // order changes, both with and without ECH, and in both ClientHelloInner and | 
|  | // ClientHelloOuter. | 
|  | TEST(SSLTest, PermuteExtensions) { | 
|  | bssl::UniquePtr<SSL_ECH_KEYS> keys = MakeTestECHKeys(); | 
|  | ASSERT_TRUE(keys); | 
|  | for (bool offer_ech : {false, true}) { | 
|  | SCOPED_TRACE(offer_ech); | 
|  | SSL_ECH_KEYS *maybe_keys = offer_ech ? keys.get() : nullptr; | 
|  | for (bool decrypt_ech : {false, true}) { | 
|  | SCOPED_TRACE(decrypt_ech); | 
|  | if (!offer_ech && decrypt_ech) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // When extension permutation is disabled, the order should be consistent. | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | std::vector<uint16_t> order1, order2; | 
|  | ASSERT_TRUE( | 
|  | GetExtensionOrder(ctx.get(), &order1, maybe_keys, decrypt_ech)); | 
|  | ASSERT_TRUE( | 
|  | GetExtensionOrder(ctx.get(), &order2, maybe_keys, decrypt_ech)); | 
|  | EXPECT_EQ(order1, order2); | 
|  |  | 
|  | ctx.reset(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | SSL_CTX_set_permute_extensions(ctx.get(), 1); | 
|  |  | 
|  | // When extension permutation is enabled, each ClientHello should have a | 
|  | // different order. | 
|  | // | 
|  | // This test is inherently flaky, so we run it multiple times. We send at | 
|  | // least five extensions by default from TLS 1.3: supported_versions, | 
|  | // key_share, supported_groups, psk_key_exchange_modes, and | 
|  | // signature_algorithms. That means the probability of a false negative is | 
|  | // at most 1/120. Repeating the test 14 times lowers false negative rate | 
|  | // to under 2^-96. | 
|  | ASSERT_TRUE( | 
|  | GetExtensionOrder(ctx.get(), &order1, maybe_keys, decrypt_ech)); | 
|  | EXPECT_GE(order1.size(), 5u); | 
|  | static const int kNumIterations = 14; | 
|  | bool passed = false; | 
|  | for (int i = 0; i < kNumIterations; i++) { | 
|  | ASSERT_TRUE( | 
|  | GetExtensionOrder(ctx.get(), &order2, maybe_keys, decrypt_ech)); | 
|  | if (order1 != order2) { | 
|  | passed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPECT_TRUE(passed) << "Extensions were not permuted"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, HostMatching) { | 
|  | static const char kCertPEM[] = R"( | 
|  | -----BEGIN CERTIFICATE----- | 
|  | MIIB9jCCAZ2gAwIBAgIQeudG9R61BOxUvWkeVhU5DTAKBggqhkjOPQQDAjApMRAw | 
|  | DgYDVQQKEwdBY21lIENvMRUwEwYDVQQDEwxleGFtcGxlMy5jb20wHhcNMjExMjA2 | 
|  | MjA1NjU2WhcNMjIxMjA2MjA1NjU2WjApMRAwDgYDVQQKEwdBY21lIENvMRUwEwYD | 
|  | VQQDEwxleGFtcGxlMy5jb20wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAS7l2VO | 
|  | Bl2TjVm9WfGk24+hMbVFUNB+RVHWbCvFvNZAoWiIJ2z34RLGInyZvCZ8xLAvsuaW | 
|  | ULDDaoeDl1M0t4Hmo4GmMIGjMA4GA1UdDwEB/wQEAwIChDATBgNVHSUEDDAKBggr | 
|  | BgEFBQcDATAPBgNVHRMBAf8EBTADAQH/MB0GA1UdDgQWBBTTJWurcc1t+VPQBko3 | 
|  | Gsw6cbcWSTBMBgNVHREERTBDggxleGFtcGxlMS5jb22CDGV4YW1wbGUyLmNvbYIP | 
|  | YSouZXhhbXBsZTQuY29tgg4qLmV4YW1wbGU1LmNvbYcEAQIDBDAKBggqhkjOPQQD | 
|  | AgNHADBEAiAAv0ljHJGrgyzZDkG6XvNZ5ewxRfnXcZuD0Y7E4giCZgIgNK1qjilu | 
|  | 5DyVbfKeeJhOCtGxqE1dWLXyJBnoRomSYBY= | 
|  | -----END CERTIFICATE----- | 
|  | )"; | 
|  | bssl::UniquePtr<X509> cert(CertFromPEM(kCertPEM)); | 
|  | ASSERT_TRUE(cert); | 
|  | static const char kCertNoSANsPEM[] = R"( | 
|  | -----BEGIN CERTIFICATE----- | 
|  | MIIBqzCCAVGgAwIBAgIQeudG9R61BOxUvWkeVhU5DTAKBggqhkjOPQQDAjArMRIw | 
|  | EAYDVQQKEwlBY21lIENvIDIxFTATBgNVBAMTDGV4YW1wbGUzLmNvbTAeFw0yMTEy | 
|  | MDYyMDU2NTZaFw0yMjEyMDYyMDU2NTZaMCsxEjAQBgNVBAoTCUFjbWUgQ28gMjEV | 
|  | MBMGA1UEAxMMZXhhbXBsZTMuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE | 
|  | u5dlTgZdk41ZvVnxpNuPoTG1RVDQfkVR1mwrxbzWQKFoiCds9+ESxiJ8mbwmfMSw | 
|  | L7LmllCww2qHg5dTNLeB5qNXMFUwDgYDVR0PAQH/BAQDAgKEMBMGA1UdJQQMMAoG | 
|  | CCsGAQUFBwMBMA8GA1UdEwEB/wQFMAMBAf8wHQYDVR0OBBYEFNMla6txzW35U9AG | 
|  | SjcazDpxtxZJMAoGCCqGSM49BAMCA0gAMEUCIG3YWGWtpVhbcGV7wFKQwTfmvwHW | 
|  | pw4qCFZlool4hCwsAiEA+2fc6NfSbNpFEtQkDOMJW2ANiScAVEmImNqPfb2klz4= | 
|  | -----END CERTIFICATE----- | 
|  | )"; | 
|  | bssl::UniquePtr<X509> cert_no_sans(CertFromPEM(kCertNoSANsPEM)); | 
|  | ASSERT_TRUE(cert_no_sans); | 
|  |  | 
|  | static const char kKeyPEM[] = R"( | 
|  | -----BEGIN PRIVATE KEY----- | 
|  | MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQghsaSZhUzZAcQlLyJ | 
|  | MDuy7WPdyqNsAX9rmEP650LF/q2hRANCAAS7l2VOBl2TjVm9WfGk24+hMbVFUNB+ | 
|  | RVHWbCvFvNZAoWiIJ2z34RLGInyZvCZ8xLAvsuaWULDDaoeDl1M0t4Hm | 
|  | -----END PRIVATE KEY----- | 
|  | )"; | 
|  | bssl::UniquePtr<EVP_PKEY> key(KeyFromPEM(kKeyPEM)); | 
|  | ASSERT_TRUE(key); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx.get()), | 
|  | cert.get())); | 
|  | ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx.get()), | 
|  | cert_no_sans.get())); | 
|  | SSL_CTX_set_verify(client_ctx.get(), | 
|  | SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, | 
|  | nullptr); | 
|  | X509_VERIFY_PARAM_set_flags(SSL_CTX_get0_param(client_ctx.get()), | 
|  | X509_V_FLAG_NO_CHECK_TIME); | 
|  |  | 
|  | struct TestCase { | 
|  | X509 *cert; | 
|  | std::string hostname; | 
|  | unsigned flags; | 
|  | bool should_match; | 
|  | }; | 
|  | std::vector<TestCase> kTests = { | 
|  | // These two names are present as SANs in the certificate. | 
|  | {cert.get(), "example1.com", 0, true}, | 
|  | {cert.get(), "example2.com", 0, true}, | 
|  | // This is the CN of the certificate, but that shouldn't matter if a SAN | 
|  | // extension is present. | 
|  | {cert.get(), "example3.com", 0, false}, | 
|  | // If the SAN is not present, we, for now, look for DNS names in the CN. | 
|  | {cert_no_sans.get(), "example3.com", 0, true}, | 
|  | // ... but this can be turned off. | 
|  | {cert_no_sans.get(), "example3.com", X509_CHECK_FLAG_NEVER_CHECK_SUBJECT, | 
|  | false}, | 
|  | // a*.example4.com is a SAN, but is invalid. | 
|  | {cert.get(), "abc.example4.com", 0, false}, | 
|  | // *.example5.com is a SAN in the certificate, which is a normal and valid | 
|  | // wildcard. | 
|  | {cert.get(), "abc.example5.com", 0, true}, | 
|  | // This name is not present. | 
|  | {cert.get(), "notexample1.com", 0, false}, | 
|  | // The IPv4 address 1.2.3.4 is a SAN, but that shouldn't match against a | 
|  | // hostname that happens to be its textual representation. | 
|  | {cert.get(), "1.2.3.4", 0, false}, | 
|  | }; | 
|  |  | 
|  | for (const TestCase &test : kTests) { | 
|  | SCOPED_TRACE(test.hostname); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), test.cert)); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); | 
|  |  | 
|  | ClientConfig config; | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | config.verify_hostname = test.hostname; | 
|  | config.hostflags = test.flags; | 
|  | EXPECT_EQ(test.should_match, | 
|  | ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get(), config)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, NumTickets) { | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
|  | ASSERT_TRUE(cert); | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get())); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  | static size_t ticket_count; | 
|  | SSL_CTX_sess_set_new_cb(client_ctx.get(), [](SSL *, SSL_SESSION *) -> int { | 
|  | ticket_count++; | 
|  | return 0; | 
|  | }); | 
|  |  | 
|  | auto count_tickets = [&]() -> size_t { | 
|  | ticket_count = 0; | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | if (!ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get()) || | 
|  | !FlushNewSessionTickets(client.get(), server.get())) { | 
|  | ADD_FAILURE() << "Could not run handshake"; | 
|  | return 0; | 
|  | } | 
|  | return ticket_count; | 
|  | }; | 
|  |  | 
|  | // By default, we should send two tickets. | 
|  | EXPECT_EQ(count_tickets(), 2u); | 
|  |  | 
|  | for (size_t num_tickets : {0, 1, 2, 3, 4, 5}) { | 
|  | SCOPED_TRACE(num_tickets); | 
|  | ASSERT_TRUE(SSL_CTX_set_num_tickets(server_ctx.get(), num_tickets)); | 
|  | EXPECT_EQ(SSL_CTX_get_num_tickets(server_ctx.get()), num_tickets); | 
|  | EXPECT_EQ(count_tickets(), num_tickets); | 
|  | } | 
|  |  | 
|  | // Configuring too many tickets causes us to stop at some point. | 
|  | ASSERT_TRUE(SSL_CTX_set_num_tickets(server_ctx.get(), 100000)); | 
|  | EXPECT_EQ(SSL_CTX_get_num_tickets(server_ctx.get()), 16u); | 
|  | EXPECT_EQ(count_tickets(), 16u); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, CertSubjectsToStack) { | 
|  | const std::string kCert1 = R"( | 
|  | -----BEGIN CERTIFICATE----- | 
|  | MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC | 
|  | QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp | 
|  | dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ | 
|  | BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l | 
|  | dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni | 
|  | v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa | 
|  | HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw | 
|  | HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ | 
|  | BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E | 
|  | BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ= | 
|  | -----END CERTIFICATE----- | 
|  | )"; | 
|  | const std::vector<uint8_t> kName1 = { | 
|  | 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, | 
|  | 0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, | 
|  | 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, | 
|  | 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, | 
|  | 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, | 
|  | 0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64}; | 
|  | const std::string kCert2 = R"( | 
|  | -----BEGIN CERTIFICATE----- | 
|  | MIICXjCCAcegAwIBAgIIWjO48ufpunYwDQYJKoZIhvcNAQELBQAwNjEaMBgGA1UE | 
|  | ChMRQm9yaW5nU1NMIFRFU1RJTkcxGDAWBgNVBAMTD0ludGVybWVkaWF0ZSBDQTAg | 
|  | Fw0xNTAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowMjEaMBgGA1UEChMRQm9y | 
|  | aW5nU1NMIFRFU1RJTkcxFDASBgNVBAMTC2V4YW1wbGUuY29tMIGfMA0GCSqGSIb3 | 
|  | DQEBAQUAA4GNADCBiQKBgQDD0U0ZYgqShJ7oOjsyNKyVXEHqeafmk/bAoPqY/h1c | 
|  | oPw2E8KmeqiUSoTPjG5IXSblOxcqpbAXgnjPzo8DI3GNMhAf8SYNYsoH7gc7Uy7j | 
|  | 5x8bUrisGnuTHqkqH6d4/e7ETJ7i3CpR8bvK16DggEvQTudLipz8FBHtYhFakfdh | 
|  | TwIDAQABo3cwdTAOBgNVHQ8BAf8EBAMCBaAwHQYDVR0lBBYwFAYIKwYBBQUHAwEG | 
|  | CCsGAQUFBwMCMAwGA1UdEwEB/wQCMAAwGQYDVR0OBBIEEKN5pvbur7mlXjeMEYA0 | 
|  | 4nUwGwYDVR0jBBQwEoAQjBpoqLV2211Xex+NFLIGozANBgkqhkiG9w0BAQsFAAOB | 
|  | gQBj/p+JChp//LnXWC1k121LM/ii7hFzQzMrt70bny406SGz9jAjaPOX4S3gt38y | 
|  | rhjpPukBlSzgQXFg66y6q5qp1nQTD1Cw6NkKBe9WuBlY3iYfmsf7WT8nhlT1CttU | 
|  | xNCwyMX9mtdXdQicOfNjIGUCD5OLV5PgHFPRKiHHioBAhg== | 
|  | -----END CERTIFICATE----- | 
|  | )"; | 
|  | const std::vector<uint8_t> kName2 = { | 
|  | 0x30, 0x32, 0x31, 0x1a, 0x30, 0x18, 0x06, 0x03, 0x55, 0x04, 0x0a, | 
|  | 0x13, 0x11, 0x42, 0x6f, 0x72, 0x69, 0x6e, 0x67, 0x53, 0x53, 0x4c, | 
|  | 0x20, 0x54, 0x45, 0x53, 0x54, 0x49, 0x4e, 0x47, 0x31, 0x14, 0x30, | 
|  | 0x12, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x0b, 0x65, 0x78, 0x61, | 
|  | 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f, 0x6d}; | 
|  |  | 
|  | const struct { | 
|  | std::vector<std::vector<uint8_t>> existing; | 
|  | std::string pem; | 
|  | std::vector<std::vector<uint8_t>> expected; | 
|  | } kTests[] = { | 
|  | // Do nothing. | 
|  | {{}, "", {}}, | 
|  | // Append to an empty list, skipping duplicates. | 
|  | {{}, kCert1 + kCert2 + kCert1, {kName1, kName2}}, | 
|  | // One of the names was already present. | 
|  | {{kName1}, kCert1 + kCert2, {kName1, kName2}}, | 
|  | // Both names were already present. | 
|  | {{kName1, kName2}, kCert1 + kCert2, {kName1, kName2}}, | 
|  | // Preserve existing duplicates. | 
|  | {{kName1, kName2, kName2}, kCert1 + kCert2, {kName1, kName2, kName2}}, | 
|  | }; | 
|  | for (size_t i = 0; i < std::size(kTests); i++) { | 
|  | SCOPED_TRACE(i); | 
|  | const auto &t = kTests[i]; | 
|  |  | 
|  | bssl::UniquePtr<STACK_OF(X509_NAME)> stack(sk_X509_NAME_new_null()); | 
|  | ASSERT_TRUE(stack); | 
|  | for (const auto &name : t.existing) { | 
|  | const uint8_t *inp = name.data(); | 
|  | bssl::UniquePtr<X509_NAME> name_obj( | 
|  | d2i_X509_NAME(nullptr, &inp, name.size())); | 
|  | ASSERT_TRUE(name_obj); | 
|  | EXPECT_EQ(inp, name.data() + name.size()); | 
|  | ASSERT_TRUE(bssl::PushToStack(stack.get(), std::move(name_obj))); | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(t.pem.data(), t.pem.size())); | 
|  | ASSERT_TRUE(bio); | 
|  | ASSERT_TRUE(SSL_add_bio_cert_subjects_to_stack(stack.get(), bio.get())); | 
|  |  | 
|  | // The function should have left |stack|'s comparison function alone. | 
|  | EXPECT_EQ(nullptr, sk_X509_NAME_set_cmp_func(stack.get(), nullptr)); | 
|  |  | 
|  | std::vector<std::vector<uint8_t>> expected = t.expected, result; | 
|  | for (X509_NAME *name : stack.get()) { | 
|  | uint8_t *der = nullptr; | 
|  | int der_len = i2d_X509_NAME(name, &der); | 
|  | ASSERT_GE(der_len, 0); | 
|  | result.push_back(std::vector<uint8_t>(der, der + der_len)); | 
|  | OPENSSL_free(der); | 
|  | } | 
|  |  | 
|  | // |SSL_add_bio_cert_subjects_to_stack| does not return the output in a | 
|  | // well-defined order. | 
|  | std::sort(expected.begin(), expected.end()); | 
|  | std::sort(result.begin(), result.end()); | 
|  | EXPECT_EQ(result, expected); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, EmptyClientCAList) { | 
|  | if (SkipTempFileTests()) { | 
|  | GTEST_SKIP(); | 
|  | } | 
|  |  | 
|  | TemporaryFile empty; | 
|  | ASSERT_TRUE(empty.Init()); | 
|  | bssl::UniquePtr<STACK_OF(X509_NAME)> names( | 
|  | SSL_load_client_CA_file(empty.path().c_str())); | 
|  | EXPECT_FALSE(names); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, CertificatesFromFile) { | 
|  | if (SkipTempFileTests()) { | 
|  | GTEST_SKIP(); | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<X509> cert = GetChainTestCertificate(); | 
|  | ASSERT_TRUE(cert); | 
|  | bssl::UniquePtr<X509> ca = GetChainTestIntermediate(); | 
|  | ASSERT_TRUE(ca); | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<EVP_PKEY> wrong_key = GetTestKey(); | 
|  | ASSERT_TRUE(wrong_key); | 
|  |  | 
|  | // Picking up a single certificate with the chain and single-certificate APIs. | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kChainTestCertificatePEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_EQ(X509_cmp(cert.get(), SSL_CTX_get0_certificate(ctx.get())), 0); | 
|  | STACK_OF(X509) *chain = nullptr; | 
|  | ASSERT_TRUE(SSL_CTX_get0_chain_certs(ctx.get(), &chain)); | 
|  | EXPECT_EQ(sk_X509_num(chain), 0u); | 
|  | } | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kChainTestCertificatePEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_use_certificate_chain_file(ctx.get(), file.path().c_str())); | 
|  | EXPECT_EQ(X509_cmp(cert.get(), SSL_CTX_get0_certificate(ctx.get())), 0); | 
|  | STACK_OF(X509) *chain = nullptr; | 
|  | ASSERT_TRUE(SSL_CTX_get0_chain_certs(ctx.get(), &chain)); | 
|  | EXPECT_EQ(sk_X509_num(chain), 0u); | 
|  | } | 
|  |  | 
|  | // Picking up a certificate chain. | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(std::string(kChainTestCertificatePEM) + | 
|  | kChainTestIntermediatePEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_use_certificate_chain_file(ctx.get(), file.path().c_str())); | 
|  | EXPECT_EQ(X509_cmp(cert.get(), SSL_CTX_get0_certificate(ctx.get())), 0); | 
|  | STACK_OF(X509) *chain = nullptr; | 
|  | ASSERT_TRUE(SSL_CTX_get0_chain_certs(ctx.get(), &chain)); | 
|  | ASSERT_EQ(sk_X509_num(chain), 1u); | 
|  | EXPECT_EQ(X509_cmp(ca.get(), sk_X509_value(chain, 0)), 0); | 
|  | } | 
|  |  | 
|  | // The single-certificate API will only pick up the leaf. | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(std::string(kChainTestCertificatePEM) + | 
|  | kChainTestIntermediatePEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_EQ(X509_cmp(cert.get(), SSL_CTX_get0_certificate(ctx.get())), 0); | 
|  | STACK_OF(X509) *chain = nullptr; | 
|  | ASSERT_TRUE(SSL_CTX_get0_chain_certs(ctx.get(), &chain)); | 
|  | EXPECT_EQ(sk_X509_num(chain), 0u); | 
|  | } | 
|  |  | 
|  | // If there is already a chain, |SSL_CTX_use_certificate_chain_file| should | 
|  | // clear it, not append to it. (Run the function twice.) | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(std::string(kChainTestCertificatePEM) + | 
|  | kChainTestIntermediatePEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_use_certificate_chain_file(ctx.get(), file.path().c_str())); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_use_certificate_chain_file(ctx.get(), file.path().c_str())); | 
|  | EXPECT_EQ(X509_cmp(cert.get(), SSL_CTX_get0_certificate(ctx.get())), 0); | 
|  | STACK_OF(X509) *chain = nullptr; | 
|  | ASSERT_TRUE(SSL_CTX_get0_chain_certs(ctx.get(), &chain)); | 
|  | ASSERT_EQ(sk_X509_num(chain), 1u); | 
|  | EXPECT_EQ(X509_cmp(ca.get(), sk_X509_value(chain, 0)), 0); | 
|  | } | 
|  |  | 
|  | // If there is already a private key, the key is retained if it matches. | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kChainTestCertificatePEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_EQ(X509_cmp(cert.get(), SSL_CTX_get0_certificate(ctx.get())), 0); | 
|  | EXPECT_EQ(SSL_CTX_get0_privatekey(ctx.get()), key.get()); | 
|  | } | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kChainTestCertificatePEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get())); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_use_certificate_chain_file(ctx.get(), file.path().c_str())); | 
|  | EXPECT_EQ(X509_cmp(cert.get(), SSL_CTX_get0_certificate(ctx.get())), 0); | 
|  | EXPECT_EQ(SSL_CTX_get0_privatekey(ctx.get()), key.get()); | 
|  | } | 
|  |  | 
|  | // If the private key does not match, it is silently discarded. | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kChainTestCertificatePEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), wrong_key.get())); | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_EQ(X509_cmp(cert.get(), SSL_CTX_get0_certificate(ctx.get())), 0); | 
|  | EXPECT_EQ(SSL_CTX_get0_privatekey(ctx.get()), nullptr); | 
|  | } | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kChainTestCertificatePEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), wrong_key.get())); | 
|  | ASSERT_TRUE( | 
|  | SSL_CTX_use_certificate_chain_file(ctx.get(), file.path().c_str())); | 
|  | EXPECT_EQ(X509_cmp(cert.get(), SSL_CTX_get0_certificate(ctx.get())), 0); | 
|  | EXPECT_EQ(SSL_CTX_get0_privatekey(ctx.get()), nullptr); | 
|  | } | 
|  |  | 
|  | // Private keys can be configured from files. | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kChainTestKeyPEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_EQ(EVP_PKEY_cmp(SSL_CTX_get0_privatekey(ctx.get()), key.get()), 1); | 
|  | } | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kChainTestKeyPEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | ASSERT_TRUE(SSL_CTX_use_RSAPrivateKey_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_EQ(EVP_PKEY_cmp(SSL_CTX_get0_privatekey(ctx.get()), key.get()), 1); | 
|  | } | 
|  |  | 
|  | // Empty files are errors. | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init()); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | EXPECT_FALSE(SSL_CTX_use_certificate_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_PEM, PEM_R_NO_START_LINE)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init()); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | EXPECT_FALSE( | 
|  | SSL_CTX_use_certificate_chain_file(ctx.get(), file.path().c_str())); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_PEM, PEM_R_NO_START_LINE)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init()); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | EXPECT_FALSE(SSL_CTX_use_PrivateKey_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_PEM, PEM_R_NO_START_LINE)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init()); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | EXPECT_FALSE(SSL_CTX_use_RSAPrivateKey_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_PEM, PEM_R_NO_START_LINE)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | // As are broken PEM blocks. | 
|  | static const char kInvalidPEM[] = "-----BEGIN CERTIFICATE-----\n"; | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kInvalidPEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | EXPECT_FALSE(SSL_CTX_use_certificate_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_PEM, PEM_R_BAD_END_LINE)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kInvalidPEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | EXPECT_FALSE( | 
|  | SSL_CTX_use_certificate_chain_file(ctx.get(), file.path().c_str())); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_PEM, PEM_R_BAD_END_LINE)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kInvalidPEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | EXPECT_FALSE(SSL_CTX_use_PrivateKey_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_PEM, PEM_R_BAD_END_LINE)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(kInvalidPEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | EXPECT_FALSE(SSL_CTX_use_RSAPrivateKey_file(ctx.get(), file.path().c_str(), | 
|  | SSL_FILETYPE_PEM)); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_PEM, PEM_R_BAD_END_LINE)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | // SSL_CTX_use_certificate_chain_file reads multiple PEM blocks. Errors after | 
|  | // the first should be caught. | 
|  | { | 
|  | TemporaryFile file; | 
|  | ASSERT_TRUE(file.Init(std::string(kChainTestCertificatePEM) + | 
|  | kChainTestIntermediatePEM + kInvalidPEM)); | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx.get()); | 
|  | EXPECT_FALSE( | 
|  | SSL_CTX_use_certificate_chain_file(ctx.get(), file.path().c_str())); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_PEM, PEM_R_BAD_END_LINE)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, EmptyWriteBlockedOnHandshakeData) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | // Configure only TLS 1.3. This test requires post-handshake NewSessionTicket. | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION)); | 
|  |  | 
|  | // Connect a client and server with tiny buffer between the two. | 
|  | bssl::UniquePtr<SSL> client(SSL_new(client_ctx.get())), | 
|  | server(SSL_new(server_ctx.get())); | 
|  | ASSERT_TRUE(client); | 
|  | ASSERT_TRUE(server); | 
|  | SSL_set_connect_state(client.get()); | 
|  | SSL_set_accept_state(server.get()); | 
|  | BIO *bio1, *bio2; | 
|  | ASSERT_TRUE(BIO_new_bio_pair(&bio1, 1, &bio2, 1)); | 
|  | SSL_set_bio(client.get(), bio1, bio1); | 
|  | SSL_set_bio(server.get(), bio2, bio2); | 
|  | ASSERT_TRUE(CompleteHandshakes(client.get(), server.get())); | 
|  |  | 
|  | // We defer NewSessionTicket to the first write, so the server has a pending | 
|  | // NewSessionTicket. See https://boringssl-review.googlesource.com/34948. This | 
|  | // means an empty write will flush the ticket. However, the transport only | 
|  | // allows one byte through, so this will fail with |SSL_ERROR_WANT_WRITE|. | 
|  | int ret = SSL_write(server.get(), nullptr, 0); | 
|  | ASSERT_EQ(ret, -1); | 
|  | ASSERT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_WANT_WRITE); | 
|  |  | 
|  | // Attempting to write non-zero data should not trip |SSL_R_BAD_WRITE_RETRY|. | 
|  | const uint8_t kData[] = {'h', 'e', 'l', 'l', 'o'}; | 
|  | ret = SSL_write(server.get(), kData, sizeof(kData)); | 
|  | ASSERT_EQ(ret, -1); | 
|  | ASSERT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_WANT_WRITE); | 
|  |  | 
|  | // Byte by byte, the data should eventually get through. | 
|  | uint8_t buf[sizeof(kData)]; | 
|  | for (;;) { | 
|  | ret = SSL_read(client.get(), buf, sizeof(buf)); | 
|  | ASSERT_EQ(ret, -1); | 
|  | ASSERT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_WANT_READ); | 
|  |  | 
|  | ret = SSL_write(server.get(), kData, sizeof(kData)); | 
|  | if (ret > 0) { | 
|  | ASSERT_EQ(ret, 5); | 
|  | break; | 
|  | } | 
|  | ASSERT_EQ(ret, -1); | 
|  | ASSERT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_WANT_WRITE); | 
|  | } | 
|  |  | 
|  | ret = SSL_read(client.get(), buf, sizeof(buf)); | 
|  | ASSERT_EQ(ret, static_cast<int>(sizeof(kData))); | 
|  | ASSERT_EQ(Bytes(buf, ret), Bytes(kData)); | 
|  | } | 
|  |  | 
|  | // Test that |SSL_ERROR_SYSCALL| continues to work after a close_notify. | 
|  | TEST(SSLTest, ErrorSyscallAfterCloseNotify) { | 
|  | // Make a custom |BIO| where writes fail, but without pushing to the error | 
|  | // queue. | 
|  | bssl::UniquePtr<BIO_METHOD> method(BIO_meth_new(0, nullptr)); | 
|  | ASSERT_TRUE(method); | 
|  | BIO_meth_set_create(method.get(), [](BIO *b) -> int { | 
|  | BIO_set_init(b, 1); | 
|  | return 1; | 
|  | }); | 
|  | static bool write_failed = false; | 
|  | BIO_meth_set_write(method.get(), [](BIO *, const char *, int) -> int { | 
|  | // Fail the operation and don't add to the error queue. | 
|  | write_failed = true; | 
|  | return -1; | 
|  | }); | 
|  | bssl::UniquePtr<BIO> wbio_silent_error(BIO_new(method.get())); | 
|  | ASSERT_TRUE(wbio_silent_error); | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | // Replace the write |BIO| with |wbio_silent_error|. | 
|  | SSL_set0_wbio(client.get(), wbio_silent_error.release()); | 
|  |  | 
|  | // Writes should fail. There is nothing in the error queue, so | 
|  | // |SSL_ERROR_SYSCALL| indicates the caller needs to check out-of-band. | 
|  | const uint8_t data[1] = {0}; | 
|  | int ret = SSL_write(client.get(), data, sizeof(data)); | 
|  | EXPECT_EQ(ret, -1); | 
|  | EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); | 
|  | EXPECT_TRUE(write_failed); | 
|  | write_failed = false; | 
|  |  | 
|  | // Send a close_notify from the server. It should return 0 because | 
|  | // close_notify was sent, but not received. Confusingly, this is a success | 
|  | // output for |SSL_shutdown|'s API. | 
|  | EXPECT_EQ(SSL_shutdown(server.get()), 0); | 
|  |  | 
|  | // Read the close_notify on the client. | 
|  | uint8_t buf[1]; | 
|  | ret = SSL_read(client.get(), buf, sizeof(buf)); | 
|  | EXPECT_EQ(ret, 0); | 
|  | EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_ZERO_RETURN); | 
|  |  | 
|  | // Further calls to |SSL_read| continue to report |SSL_ERROR_ZERO_RETURN|. | 
|  | ret = SSL_read(client.get(), buf, sizeof(buf)); | 
|  | EXPECT_EQ(ret, 0); | 
|  | EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_ZERO_RETURN); | 
|  |  | 
|  | // Although the client has seen close_notify, it should continue to report | 
|  | // |SSL_ERROR_SYSCALL| when its writes fail. | 
|  | ret = SSL_write(client.get(), data, sizeof(data)); | 
|  | EXPECT_EQ(ret, -1); | 
|  | EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); | 
|  | EXPECT_TRUE(write_failed); | 
|  | write_failed = false; | 
|  |  | 
|  | // Cause |BIO_write| to fail with a return value of zero instead. | 
|  | // |SSL_get_error| should not misinterpret this as a close_notify. | 
|  | // | 
|  | // This is not actually a correct implementation of |BIO_write|, but the rest | 
|  | // of the code treats zero from |BIO_write| as an error, so ensure it does so | 
|  | // correctly. Fixing https://crbug.com/boringssl/503 will make this case moot. | 
|  | BIO_meth_set_write(method.get(), [](BIO *, const char *, int) -> int { | 
|  | write_failed = true; | 
|  | return 0; | 
|  | }); | 
|  | ret = SSL_write(client.get(), data, sizeof(data)); | 
|  | EXPECT_EQ(ret, 0); | 
|  | EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); | 
|  | EXPECT_TRUE(write_failed); | 
|  | write_failed = false; | 
|  | } | 
|  |  | 
|  | // Test that |SSL_shutdown|, when quiet shutdown is enabled, simulates receiving | 
|  | // a close_notify, down to |SSL_read| reporting |SSL_ERROR_ZERO_RETURN|. | 
|  | TEST(SSLTest, QuietShutdown) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | SSL_CTX_set_quiet_shutdown(server_ctx.get(), 1); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | // Quiet shutdown is enabled, so |SSL_shutdown| on the server should | 
|  | // immediately return that bidirectional shutdown "completed". | 
|  | EXPECT_EQ(SSL_shutdown(server.get()), 1); | 
|  |  | 
|  | // Shut down writes so the client gets an EOF. | 
|  | EXPECT_TRUE(BIO_shutdown_wr(SSL_get_wbio(server.get()))); | 
|  |  | 
|  | // Confirm no close notify was actually sent. Client reads should report a | 
|  | // transport EOF, not a close_notify. (Both have zero return, but | 
|  | // |SSL_get_error| is different.) | 
|  | char buf[1]; | 
|  | int ret = SSL_read(client.get(), buf, sizeof(buf)); | 
|  | EXPECT_EQ(ret, 0); | 
|  | EXPECT_EQ(SSL_get_error(client.get(), ret), SSL_ERROR_SYSCALL); | 
|  |  | 
|  | // The server believes bidirectional shutdown completed, so reads should | 
|  | // replay the (simulated) close_notify. | 
|  | ret = SSL_read(server.get(), buf, sizeof(buf)); | 
|  | EXPECT_EQ(ret, 0); | 
|  | EXPECT_EQ(SSL_get_error(server.get(), ret), SSL_ERROR_ZERO_RETURN); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, InvalidSignatureAlgorithm) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | static const uint16_t kInvalidPrefs[] = {1234}; | 
|  | EXPECT_FALSE(SSL_CTX_set_signing_algorithm_prefs(ctx.get(), kInvalidPrefs, | 
|  | std::size(kInvalidPrefs))); | 
|  | EXPECT_FALSE(SSL_CTX_set_verify_algorithm_prefs(ctx.get(), kInvalidPrefs, | 
|  | std::size(kInvalidPrefs))); | 
|  |  | 
|  | static const uint16_t kDuplicatePrefs[] = {SSL_SIGN_RSA_PKCS1_SHA256, | 
|  | SSL_SIGN_RSA_PKCS1_SHA256}; | 
|  | EXPECT_FALSE(SSL_CTX_set_signing_algorithm_prefs(ctx.get(), kDuplicatePrefs, | 
|  | std::size(kDuplicatePrefs))); | 
|  | EXPECT_FALSE(SSL_CTX_set_verify_algorithm_prefs(ctx.get(), kDuplicatePrefs, | 
|  | std::size(kDuplicatePrefs))); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, InvalidGroups) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | static const uint16_t kInvalidIDs[] = {1234}; | 
|  | EXPECT_FALSE( | 
|  | SSL_CTX_set1_group_ids(ctx.get(), kInvalidIDs, std::size(kInvalidIDs))); | 
|  |  | 
|  | // This is a valid NID, but it is not a valid group. | 
|  | static const int kInvalidNIDs[] = {NID_rsaEncryption}; | 
|  | EXPECT_FALSE( | 
|  | SSL_CTX_set1_groups(ctx.get(), kInvalidNIDs, std::size(kInvalidNIDs))); | 
|  |  | 
|  | // Duplicates are not allowed. | 
|  | static const uint16_t kDuplicateIDs[] = {SSL_GROUP_X25519_MLKEM768, | 
|  | SSL_GROUP_X25519, SSL_GROUP_X25519}; | 
|  | EXPECT_FALSE(SSL_CTX_set1_group_ids(ctx.get(), kDuplicateIDs, | 
|  | std::size(kDuplicateIDs))); | 
|  | static const int kDuplicateNIDs[] = {NID_X25519, NID_X9_62_prime256v1, | 
|  | NID_X25519}; | 
|  | EXPECT_FALSE(SSL_CTX_set1_groups(ctx.get(), kDuplicateNIDs, | 
|  | std::size(kDuplicateNIDs))); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, NameLists) { | 
|  | struct { | 
|  | size_t (*func)(const char **, size_t); | 
|  | std::vector<std::string> expected; | 
|  | } kTests[] = { | 
|  | {SSL_get_all_version_names, {"TLSv1.3", "DTLSv1.2", "unknown"}}, | 
|  | {SSL_get_all_standard_cipher_names, | 
|  | {"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", "TLS_AES_128_GCM_SHA256"}}, | 
|  | {SSL_get_all_cipher_names, | 
|  | {"ECDHE-ECDSA-AES128-GCM-SHA256", "TLS_AES_128_GCM_SHA256", "(NONE)"}}, | 
|  | {SSL_get_all_group_names, {"P-256", "X25519"}}, | 
|  | {SSL_get_all_signature_algorithm_names, | 
|  | {"rsa_pkcs1_sha256", "ecdsa_secp256r1_sha256", "ecdsa_sha256"}}, | 
|  | }; | 
|  | for (const auto &t : kTests) { | 
|  | size_t num = t.func(nullptr, 0); | 
|  | EXPECT_GT(num, 0u); | 
|  |  | 
|  | std::vector<const char *> list(num); | 
|  | EXPECT_EQ(num, t.func(list.data(), list.size())); | 
|  |  | 
|  | // Check the expected values are in the list. | 
|  | for (const auto &s : t.expected) { | 
|  | EXPECT_NE(list.end(), std::find(list.begin(), list.end(), s)) | 
|  | << "Could not find " << s; | 
|  | } | 
|  |  | 
|  | // Passing in a larger buffer should leave excess space alone. | 
|  | std::vector<const char *> list2(num + 1, "placeholder"); | 
|  | EXPECT_EQ(num, t.func(list2.data(), list2.size())); | 
|  | for (size_t i = 0; i < num; i++) { | 
|  | EXPECT_STREQ(list[i], list2[i]); | 
|  | } | 
|  | EXPECT_STREQ(list2.back(), "placeholder"); | 
|  |  | 
|  | // Passing in a shorter buffer should truncate the list. | 
|  | for (size_t l = 0; l < num; l++) { | 
|  | SCOPED_TRACE(l); | 
|  | list2.resize(l); | 
|  | EXPECT_EQ(num, t.func(list2.data(), list2.size())); | 
|  | for (size_t i = 0; i < l; i++) { | 
|  | EXPECT_STREQ(list[i], list2[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test that it is possible for the certificate to be configured on a mix of | 
|  | // SSL_CTX and SSL. This ensures that we do not inadvertently overshare objects | 
|  | // in SSL_new. | 
|  | TEST(SSLTest, MixContextAndConnection) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<X509> cert = GetTestCertificate(); | 
|  | ASSERT_TRUE(cert); | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  |  | 
|  | // Configure the certificate, but not the private key, on the context. | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get())); | 
|  |  | 
|  | bssl::UniquePtr<SSL> ssl1(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl1.get()); | 
|  | bssl::UniquePtr<SSL> ssl2(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl2.get()); | 
|  |  | 
|  | // There is no private key configured yet. | 
|  | EXPECT_FALSE(SSL_CTX_get0_privatekey(ctx.get())); | 
|  | EXPECT_FALSE(SSL_get_privatekey(ssl1.get())); | 
|  | EXPECT_FALSE(SSL_get_privatekey(ssl2.get())); | 
|  |  | 
|  | // Configuring the private key on |ssl1| works. | 
|  | ASSERT_TRUE(SSL_use_PrivateKey(ssl1.get(), key.get())); | 
|  | EXPECT_TRUE(SSL_get_privatekey(ssl1.get())); | 
|  |  | 
|  | // It does not impact the other connection or the context. | 
|  | EXPECT_FALSE(SSL_CTX_get0_privatekey(ctx.get())); | 
|  | EXPECT_FALSE(SSL_get_privatekey(ssl2.get())); | 
|  | } | 
|  |  | 
|  | // Test that the server handshake cleanly fails if it had no certificate | 
|  | // configured, at all versions. | 
|  | TEST_P(SSLVersionTest, NoCertOrKey) { | 
|  | bssl::UniquePtr<X509> cert = GetChainTestCertificate(); | 
|  | ASSERT_TRUE(cert); | 
|  | bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate(); | 
|  | ASSERT_TRUE(intermediate); | 
|  | bssl::UniquePtr<STACK_OF(X509)> chain(sk_X509_new_null()); | 
|  | ASSERT_TRUE(chain); | 
|  | ASSERT_TRUE(bssl::PushToStack(chain.get(), std::move(intermediate))); | 
|  |  | 
|  | const struct { | 
|  | bool has_cert; | 
|  | bool has_key; | 
|  | bool has_chain; | 
|  | } kTests[] = { | 
|  | // If nothing is configured, there is unambiguously no certificate. | 
|  | {/*has_cert=*/false, /*has_key=*/false, /*has_chain=*/false}, | 
|  |  | 
|  | // If only one of the key and certificate is configured, it is still | 
|  | // treated | 
|  | // as if there is no certificate. | 
|  | {/*has_cert=*/true, /*has_key=*/false, /*has_chain=*/false}, | 
|  | {/*has_cert=*/false, /*has_key=*/true, /*has_chain=*/false}, | 
|  |  | 
|  | // The key and intermediates may be configured, but without a leaf there | 
|  | // is | 
|  | // no certificate. This case is interesting because we internally store | 
|  | // the | 
|  | // chain with a somewhat fragile null fist entry. | 
|  | {/*has_cert=*/false, /*has_key=*/true, /*has_chain=*/true}, | 
|  | }; | 
|  | for (const auto &t : kTests) { | 
|  | SCOPED_TRACE(testing::Message() << "has_cert = " << t.has_cert); | 
|  | SCOPED_TRACE(testing::Message() << "has_key = " << t.has_key); | 
|  | SCOPED_TRACE(testing::Message() << "has_chain = " << t.has_chain); | 
|  | for (bool client : {false, true}) { | 
|  | SCOPED_TRACE(testing::Message() << "client = " << client); | 
|  |  | 
|  | EXPECT_NO_FATAL_FAILURE(ResetContexts()); | 
|  | if (client) { | 
|  | // Request client certificates from the server. | 
|  | SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER, nullptr); | 
|  | SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, | 
|  | nullptr); | 
|  | } else { | 
|  | // Recreate the server context. ResetContexts automatically adds server | 
|  | // certificates. | 
|  | server_ctx_ = CreateContext(); | 
|  | ASSERT_TRUE(server_ctx_); | 
|  | } | 
|  |  | 
|  | SSL_CTX *ctx = client ? client_ctx_.get() : server_ctx_.get(); | 
|  | if (t.has_cert) { | 
|  | ASSERT_TRUE(SSL_CTX_use_certificate(ctx, cert.get())); | 
|  | } | 
|  | if (t.has_key) { | 
|  | ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx, key.get())); | 
|  | } | 
|  | if (t.has_chain) { | 
|  | ASSERT_TRUE(SSL_CTX_set1_chain(ctx, chain.get())); | 
|  | } | 
|  |  | 
|  | // In each of these cases, |SSL_CTX_check_private_key| should report the | 
|  | // certificate was not configured. | 
|  | EXPECT_FALSE(SSL_CTX_check_private_key(ctx)); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | if (client) { | 
|  | // The client should cleanly handshake without asserting a certificate. | 
|  | EXPECT_TRUE(Connect()); | 
|  | EXPECT_FALSE(SSL_get0_peer_certificates(server_.get())); | 
|  | } else { | 
|  | // Servers cannot be anonymous. The connection should fail. | 
|  | EXPECT_FALSE(Connect()); | 
|  | // Depending on the TLS version, this should either appear as | 
|  | // NO_SHARED_CIPHER (TLS 1.2) or NO_CERTIFICATE_SET (TLS 1.3). | 
|  | uint32_t err = ERR_get_error(); | 
|  | if (!ErrorEquals(err, ERR_LIB_SSL, SSL_R_NO_SHARED_CIPHER)) { | 
|  | EXPECT_TRUE(ErrorEquals(err, ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_SET)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, KeyLog) { | 
|  | using KeyLog = std::map<std::string, std::vector<uint8_t>>; | 
|  | KeyLog client_log, server_log; | 
|  |  | 
|  | SSL_CTX_set_app_data(client_ctx_.get(), &client_log); | 
|  | SSL_CTX_set_app_data(server_ctx_.get(), &server_log); | 
|  |  | 
|  | auto keylog_callback = [](const SSL *ssl, const char *line) { | 
|  | SSL_CTX *ctx = SSL_get_SSL_CTX(ssl); | 
|  | KeyLog *log = static_cast<KeyLog *>(SSL_CTX_get_app_data(ctx)); | 
|  | ASSERT_TRUE(log); | 
|  |  | 
|  | const char *space1 = strchr(line, ' '); | 
|  | ASSERT_TRUE(space1); | 
|  | std::string name(line, space1 - line); | 
|  | space1++; | 
|  | const char *space2 = strchr(space1, ' '); | 
|  | ASSERT_TRUE(space2); | 
|  | bssl::Span<const char> client_random_hex(space1, space2 - space1); | 
|  | space2++; | 
|  | bssl::Span<const char> secret_hex(space2, strlen(space2)); | 
|  |  | 
|  | std::vector<uint8_t> client_random, secret; | 
|  | ASSERT_TRUE(DecodeLowerHex(&client_random, client_random_hex)); | 
|  | ASSERT_TRUE(DecodeLowerHex(&secret, secret_hex)); | 
|  |  | 
|  | // The client_random field identifies the connection. Check it matches | 
|  | // the connection. | 
|  | uint8_t expected_random[SSL3_RANDOM_SIZE]; | 
|  | ASSERT_EQ( | 
|  | sizeof(expected_random), | 
|  | SSL_get_client_random(ssl, expected_random, sizeof(expected_random))); | 
|  | ASSERT_EQ(Bytes(expected_random), Bytes(client_random)); | 
|  |  | 
|  | ASSERT_EQ(log->count(name), 0u) << "duplicate name " << name; | 
|  | log->emplace(std::move(name), std::move(secret)); | 
|  | }; | 
|  | SSL_CTX_set_keylog_callback(client_ctx_.get(), keylog_callback); | 
|  | SSL_CTX_set_keylog_callback(server_ctx_.get(), keylog_callback); | 
|  |  | 
|  | // Connect and capture the various secrets. | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | // Check that we logged the secrets we expected to log. | 
|  | if (is_tls13()) { | 
|  | EXPECT_THAT(client_log, ElementsAre(Key("CLIENT_HANDSHAKE_TRAFFIC_SECRET"), | 
|  | Key("CLIENT_TRAFFIC_SECRET_0"), | 
|  | Key("EXPORTER_SECRET"), | 
|  | Key("SERVER_HANDSHAKE_TRAFFIC_SECRET"), | 
|  | Key("SERVER_TRAFFIC_SECRET_0"))); | 
|  |  | 
|  | Span<const uint8_t> read_secret, write_secret; | 
|  | if (is_dtls()) { | 
|  | // The first application data epoch is 3. | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | ASSERT_TRUE(SSL_get_dtls_read_traffic_secret(client_.get(), &data, &len, | 
|  | /*epoch=*/3)); | 
|  | read_secret = Span(data, len); | 
|  | ASSERT_TRUE(SSL_get_dtls_write_traffic_secret(client_.get(), &data, &len, | 
|  | /*epoch=*/3)); | 
|  | write_secret = Span(data, len); | 
|  | } else { | 
|  | ASSERT_TRUE( | 
|  | SSL_get_traffic_secrets(client_.get(), &read_secret, &write_secret)); | 
|  | } | 
|  | // Ideally we'd check the other values, but those are harder to check | 
|  | // without actually decrypting the records. | 
|  | EXPECT_EQ(Bytes(read_secret), Bytes(client_log["SERVER_TRAFFIC_SECRET_0"])); | 
|  | EXPECT_EQ(Bytes(write_secret), | 
|  | Bytes(client_log["CLIENT_TRAFFIC_SECRET_0"])); | 
|  | } else { | 
|  | EXPECT_THAT(client_log, ElementsAre(Key("CLIENT_RANDOM"))); | 
|  |  | 
|  | size_t len = | 
|  | SSL_SESSION_get_master_key(SSL_get0_session(client_.get()), nullptr, 0); | 
|  | std::vector<uint8_t> expected(len); | 
|  | ASSERT_EQ(SSL_SESSION_get_master_key(SSL_get0_session(client_.get()), | 
|  | expected.data(), expected.size()), | 
|  | expected.size()); | 
|  | EXPECT_EQ(Bytes(expected), Bytes(client_log["CLIENT_RANDOM"])); | 
|  | } | 
|  |  | 
|  | // The server should have logged the same secrets as the client. | 
|  | EXPECT_EQ(client_log, server_log); | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, GetTrafficSecrets) { | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | Span<const uint8_t> client_read, client_write, server_read, server_write; | 
|  | bool client_ok = | 
|  | SSL_get_traffic_secrets(client_.get(), &client_read, &client_write); | 
|  | bool server_ok = | 
|  | SSL_get_traffic_secrets(server_.get(), &server_read, &server_write); | 
|  | if (!is_dtls() && version() >= TLS1_3_VERSION) { | 
|  | ASSERT_TRUE(client_ok); | 
|  | ASSERT_TRUE(server_ok); | 
|  | EXPECT_EQ(Bytes(client_read), Bytes(server_write)); | 
|  | EXPECT_EQ(Bytes(server_read), Bytes(client_write)); | 
|  | } else { | 
|  | EXPECT_FALSE(client_ok); | 
|  | EXPECT_FALSE(server_ok); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(SSLVersionTest, GetIVs) { | 
|  | std::vector<const char *> ciphers; | 
|  | if (version() == TLS1_2_VERSION || version() == DTLS1_2_VERSION) { | 
|  | // Try both CBC and AEAD ciphers. | 
|  | ciphers = {"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", | 
|  | "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"}; | 
|  | } else { | 
|  | // The defaults are fine to test. In 1.0 and 1.1, all remaining supported | 
|  | // ciphers are CBC. In 1.3, all ciphers are AEADs. | 
|  | ciphers = {"ALL"}; | 
|  | } | 
|  |  | 
|  | for (const char *cipher : ciphers) { | 
|  | SCOPED_TRACE(cipher); | 
|  |  | 
|  | ASSERT_NO_FATAL_FAILURE(ResetContexts()); | 
|  | ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(client_ctx_.get(), cipher)); | 
|  | ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(server_ctx_.get(), cipher)); | 
|  | ASSERT_TRUE(Connect()); | 
|  |  | 
|  | const uint8_t *client_read_iv, *client_write_iv, *server_read_iv, | 
|  | *server_write_iv; | 
|  | size_t client_iv_len, server_iv_len; | 
|  | bool client_ivs_ok = SSL_get_ivs(client_.get(), &client_read_iv, | 
|  | &client_write_iv, &client_iv_len); | 
|  | bool server_ivs_ok = SSL_get_ivs(server_.get(), &server_read_iv, | 
|  | &server_write_iv, &server_iv_len); | 
|  |  | 
|  | // Only TLS 1.0 should support |SSL_get_ivs|. Other cases should cleanly | 
|  | // fail this operation. | 
|  | if (version() == TLS1_VERSION) { | 
|  | ASSERT_TRUE(client_ivs_ok); | 
|  | ASSERT_TRUE(server_ivs_ok); | 
|  | EXPECT_EQ(Bytes(client_write_iv, client_iv_len), | 
|  | Bytes(server_read_iv, server_iv_len)); | 
|  | EXPECT_EQ(Bytes(client_read_iv, client_iv_len), | 
|  | Bytes(server_write_iv, server_iv_len)); | 
|  | } else { | 
|  | EXPECT_FALSE(client_ivs_ok); | 
|  | EXPECT_FALSE(server_ivs_ok); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, EarlyDataVersionMismatch) { | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | SSL_CTX_set_early_data_enabled(client_ctx.get(), 1); | 
|  | SSL_CTX_set_early_data_enabled(server_ctx.get(), 1); | 
|  | SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx.get(), server_ctx.get()); | 
|  | ASSERT_TRUE(session); | 
|  | EXPECT_TRUE(SSL_SESSION_early_data_capable(session.get())); | 
|  |  | 
|  | // Turn off TLS 1.3 at the server. | 
|  | SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | SSL_set_session(client.get(), session.get()); | 
|  |  | 
|  | // Send the ClientHello. The client should immediately treat the handshake as | 
|  | // successful and offer early data. | 
|  | EXPECT_EQ(1, SSL_do_handshake(client.get())); | 
|  | EXPECT_TRUE(SSL_in_early_data(client.get())); | 
|  |  | 
|  | // In the early data state, we report the predicted version, so that callers | 
|  | // see self-consistent connection properties. | 
|  | EXPECT_EQ(SSL_version(client.get()), TLS1_3_VERSION); | 
|  | EXPECT_NE(SSL_get0_peer_certificates(client.get()), nullptr); | 
|  |  | 
|  | // Read the ClientHello and send the ServerHello. The server will (implicitly | 
|  | // by negotiating TLS 1.2) reject early data. | 
|  | EXPECT_EQ(-1, SSL_do_handshake(server.get())); | 
|  | EXPECT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server.get(), -1)); | 
|  |  | 
|  | // Read the ServerHello. The client will now see the ServerHello and report a | 
|  | // version mismatch. Unlike other 0-RTT rejections, this is fatal, because a | 
|  | // TLS 1.2 server cannot recover from 0-RTT rejection. | 
|  | EXPECT_EQ(-1, SSL_do_handshake(client.get())); | 
|  | EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(client.get(), -1)); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, | 
|  | SSL_R_WRONG_VERSION_ON_EARLY_DATA)); | 
|  |  | 
|  | // |SSL_version| should continue reporting self-consistent state until the | 
|  | // caller calls |SSL_reset_early_data_reject|. | 
|  | // | 
|  | // TLS 1.3 to TLS 1.2 is not the most interesting version-related 0-RTT | 
|  | // rejection because it is fatal to the connection anyway. Once there are two | 
|  | // post-TLS-1.3 versions, or if we implement DTLS 1.3 0-RTT (where a DTLS 1.2 | 
|  | // server will skip over early data naturally), those will make for better | 
|  | // tests. In particular, early_data accept is signaled in EncryptedExtensions, | 
|  | // but the new version is learned at ServerHello. Though an implementation | 
|  | // could already infer based on the version that early data will be rejected. | 
|  | EXPECT_EQ(SSL_version(client.get()), TLS1_3_VERSION); | 
|  | EXPECT_NE(SSL_get0_peer_certificates(client.get()), nullptr); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, EarlyDataDisabledInDTLS13) { | 
|  | // Set up some 0-RTT-enabled contexts. | 
|  | bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(DTLS_method())); | 
|  | bssl::UniquePtr<SSL_CTX> server_ctx = | 
|  | CreateContextWithTestCertificate(DTLS_method()); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | ASSERT_TRUE(server_ctx); | 
|  |  | 
|  | SSL_CTX_set_early_data_enabled(client_ctx.get(), true); | 
|  | SSL_CTX_set_early_data_enabled(server_ctx.get(), true); | 
|  | SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  | SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH); | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), DTLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), DTLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), DTLS1_3_VERSION)); | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), DTLS1_3_VERSION)); | 
|  |  | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(client_ctx.get(), server_ctx.get()); | 
|  | ASSERT_TRUE(session); | 
|  | EXPECT_FALSE(SSL_SESSION_early_data_capable(session.get())); | 
|  | } | 
|  |  | 
|  | // ID-only TLS 1.3 sessions are impossible and should not be resumable. | 
|  | TEST(SSLTest, IDOnlyTLS13Session) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx = CreateContextWithTestCertificate(TLS_method()); | 
|  | ASSERT_TRUE(ctx); | 
|  | SSL_CTX_set_session_cache_mode(ctx.get(), | 
|  | SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_SERVER); | 
|  |  | 
|  | ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION)); | 
|  | bssl::UniquePtr<SSL_SESSION> session = | 
|  | CreateClientSession(ctx.get(), ctx.get()); | 
|  | ASSERT_TRUE(session); | 
|  | EXPECT_TRUE(SSL_SESSION_is_resumable(session.get())); | 
|  |  | 
|  | session->ticket.Reset(); | 
|  | session->session_id.Resize(32); | 
|  | EXPECT_FALSE(SSL_SESSION_is_resumable(session.get())); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, DTLSReadTimeoutExpired) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(DTLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  |  | 
|  | // Mock the clock. | 
|  | g_current_time.tv_sec = 1000; | 
|  | SSL_CTX_set_current_time_cb(ctx.get(), CurrentTimeCallback); | 
|  | auto advance = [](timeval delta) { | 
|  | g_current_time.tv_sec += delta.tv_sec; | 
|  | g_current_time.tv_usec += delta.tv_usec; | 
|  | if (g_current_time.tv_usec >= 1000000) { | 
|  | g_current_time.tv_usec -= 1000000; | 
|  | g_current_time.tv_sec++; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Create a client and don't connect it to anything. | 
|  | bssl::UniquePtr<SSL> client(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(client); | 
|  | SSL_set_connect_state(client.get()); | 
|  | bssl::UniquePtr<BIO> rbio(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(rbio); | 
|  | SSL_set0_rbio(client.get(), rbio.release()); | 
|  | bssl::UniquePtr<BIO> wbio(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(wbio); | 
|  | SSL_set0_wbio(client.get(), wbio.release()); | 
|  |  | 
|  | // Write the ClientHello and wait for a ServerHello. | 
|  | EXPECT_EQ(SSL_do_handshake(client.get()), -1); | 
|  | EXPECT_EQ(SSL_get_error(client.get(), -1), SSL_ERROR_WANT_READ); | 
|  |  | 
|  | for (;;) { | 
|  | // There should be a retransmit timer. | 
|  | timeval timeout; | 
|  | ASSERT_TRUE(DTLSv1_get_timeout(client.get(), &timeout)); | 
|  | EXPECT_TRUE(timeout.tv_sec != 0 || timeout.tv_usec != 0); | 
|  |  | 
|  | // Retransmit. At some point, the client will give up and fail. | 
|  | advance(timeout); | 
|  | int ret = DTLSv1_handle_timeout(client.get()); | 
|  | if (ret < 0) { | 
|  | break; | 
|  | } | 
|  | ASSERT_EQ(ret, 1); | 
|  | } | 
|  |  | 
|  | // The retransmit should have failed with |SSL_R_READ_TIMEOUT_EXPIRED|. | 
|  | EXPECT_EQ(SSL_get_error(client.get(), -1), SSL_ERROR_SSL); | 
|  | EXPECT_TRUE( | 
|  | ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_READ_TIMEOUT_EXPIRED)); | 
|  |  | 
|  | // There should not continue to be a timeout. Otherwise, a caller that forgets | 
|  | // to check |DTLSv1_handle_timeout|'s error will infinite loop. See | 
|  | // https://crbug.com/42224241. | 
|  | timeval timeout; | 
|  | EXPECT_FALSE(DTLSv1_get_timeout(client.get(), &timeout)); | 
|  |  | 
|  | // The error should also be returned from |SSL_do_handshake|. This ensures | 
|  | // that, if the caller missed the return from |DTLSv1_handle_timeout|, it will | 
|  | // be picked up from a more normal codepath. | 
|  | EXPECT_EQ(SSL_do_handshake(client.get()), -1); | 
|  | EXPECT_EQ(SSL_get_error(client.get(), -1), SSL_ERROR_SSL); | 
|  | EXPECT_TRUE( | 
|  | ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_READ_TIMEOUT_EXPIRED)); | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, SetGetCompliancePolicy) { | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | EXPECT_EQ(SSL_CTX_get_compliance_policy(ctx.get()), | 
|  | ssl_compliance_policy_none); | 
|  |  | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | EXPECT_EQ(SSL_get_compliance_policy(ssl.get()), ssl_compliance_policy_none); | 
|  |  | 
|  | for (const auto policy : {ssl_compliance_policy_fips_202205,      // | 
|  | ssl_compliance_policy_wpa3_192_202304,  // | 
|  | ssl_compliance_policy_cnsa_202407}) { | 
|  | SSL_CTX_set_compliance_policy(ctx.get(), policy); | 
|  | EXPECT_EQ(SSL_CTX_get_compliance_policy(ctx.get()), policy); | 
|  | SSL_set_compliance_policy(ssl.get(), policy); | 
|  | EXPECT_EQ(SSL_get_compliance_policy(ssl.get()), policy); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SSLTest, ParseClientHello) { | 
|  | for (bool dtls : {false, true}) { | 
|  | SCOPED_TRACE(dtls); | 
|  | bssl::UniquePtr<SSL_CTX> ctx( | 
|  | SSL_CTX_new(dtls ? DTLS_method() : TLS_method())); | 
|  | ASSERT_TRUE(ctx); | 
|  | bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); | 
|  | ASSERT_TRUE(ssl); | 
|  |  | 
|  | // From draft-ietf-tls-tls13-vectors-06, Section 7, annotated. | 
|  | static const uint8_t kClientHelloTLS[] = { | 
|  | // legacy_version | 
|  | 0x03, 0x03, | 
|  | // random | 
|  | 0x37, 0xb0, 0x76, 0xd2, 0xfa, 0x50, 0x94, 0x39, 0x5e, 0x99, 0x71, 0xd7, | 
|  | 0x53, 0xc3, 0xc4, 0xcf, 0x07, 0x56, 0xb9, 0x40, 0x70, 0x13, 0xcb, 0xca, | 
|  | 0xc7, 0xf4, 0x4a, 0xc3, 0x28, 0x13, 0xf6, 0x0f, | 
|  | // legacy_session_id | 
|  | 0x20, 0x91, 0x41, 0xb7, 0x89, 0x83, 0xd3, 0x67, 0xa0, 0xfe, 0x97, 0x08, | 
|  | 0xdf, 0x32, 0xf5, 0xb9, 0x88, 0x8f, 0xe5, 0x9e, 0xde, 0x4e, 0x61, 0x2c, | 
|  | 0xf6, 0xbd, 0xb1, 0xfb, 0xbe, 0xe6, 0xf9, 0xef, 0xfe, | 
|  | // cipher_suites | 
|  | 0x00, 0x06, 0x13, 0x01, 0x13, 0x03, 0x13, 0x02, | 
|  | // legacy_compression_methods | 
|  | 0x01, 0x00, | 
|  | // extensions | 
|  | 0x00, 0x8d, | 
|  | // server_name | 
|  | 0x00, 0x00, 0x00, 0x0b, 0x00, 0x09, 0x00, 0x00, 0x06, 0x73, 0x65, 0x72, | 
|  | 0x76, 0x65, 0x72, | 
|  | // renegotiation_info | 
|  | 0xff, 0x01, 0x00, 0x01, 0x00, | 
|  | // supported_groups | 
|  | 0x00, 0x0a, 0x00, 0x14, 0x00, 0x12, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, | 
|  | 0x00, 0x19, 0x01, 0x00, 0x01, 0x01, 0x01, 0x02, 0x01, 0x03, 0x01, 0x04, | 
|  | // key_share | 
|  | 0x00, 0x33, 0x00, 0x26, 0x00, 0x24, 0x00, 0x1d, 0x00, 0x20, 0xd5, 0x15, | 
|  | 0x42, 0x62, 0x5f, 0x25, 0xa9, 0x2d, 0x44, 0xa3, 0xaa, 0xde, 0xf5, 0x9c, | 
|  | 0xa8, 0x49, 0xad, 0x2f, 0x8e, 0xfa, 0x9f, 0x04, 0xb8, 0xf5, 0xda, 0xb4, | 
|  | 0x02, 0xac, 0xbc, 0x57, 0x1f, 0x16, | 
|  | // supported_versions | 
|  | 0x00, 0x2b, 0x00, 0x03, 0x02, 0x03, 0x04, | 
|  | // signature_algorithms | 
|  | 0x00, 0x0d, 0x00, 0x20, 0x00, 0x1e, 0x04, 0x03, 0x05, 0x03, 0x06, 0x03, | 
|  | 0x02, 0x03, 0x08, 0x04, 0x08, 0x05, 0x08, 0x06, 0x04, 0x01, 0x05, 0x01, | 
|  | 0x06, 0x01, 0x02, 0x01, 0x04, 0x02, 0x05, 0x02, 0x06, 0x02, 0x02, 0x02, | 
|  | // psk_key_exchange_modes | 
|  | 0x00, 0x2d, 0x00, 0x02, 0x01, 0x01, | 
|  | // record_size_limit | 
|  | 0x00, 0x1c, 0x00, 0x02, 0x40, 0x01}; | 
|  | // The above, modified for DTLS 1.3. (Versions switched to DTLS spelling, a | 
|  | // cookie added.) | 
|  | static const uint8_t kClientHelloDTLS[] = { | 
|  | // legacy_version | 
|  | 0xfe, 0xfd, | 
|  | // random | 
|  | 0x37, 0xb0, 0x76, 0xd2, 0xfa, 0x50, 0x94, 0x39, 0x5e, 0x99, 0x71, 0xd7, | 
|  | 0x53, 0xc3, 0xc4, 0xcf, 0x07, 0x56, 0xb9, 0x40, 0x70, 0x13, 0xcb, 0xca, | 
|  | 0xc7, 0xf4, 0x4a, 0xc3, 0x28, 0x13, 0xf6, 0x0f, | 
|  | // legacy_session_id | 
|  | 0x20, 0x91, 0x41, 0xb7, 0x89, 0x83, 0xd3, 0x67, 0xa0, 0xfe, 0x97, 0x08, | 
|  | 0xdf, 0x32, 0xf5, 0xb9, 0x88, 0x8f, 0xe5, 0x9e, 0xde, 0x4e, 0x61, 0x2c, | 
|  | 0xf6, 0xbd, 0xb1, 0xfb, 0xbe, 0xe6, 0xf9, 0xef, 0xfe, | 
|  | // legacy_cookie | 
|  | 0x04, 0x01, 0x02, 0x03, 0x04, | 
|  | // cipher_suites | 
|  | 0x00, 0x06, 0x13, 0x01, 0x13, 0x03, 0x13, 0x02, | 
|  | // legacy_compression_methods | 
|  | 0x01, 0x00, | 
|  | // extensions | 
|  | 0x00, 0x8d, | 
|  | // server_name | 
|  | 0x00, 0x00, 0x00, 0x0b, 0x00, 0x09, 0x00, 0x00, 0x06, 0x73, 0x65, 0x72, | 
|  | 0x76, 0x65, 0x72, | 
|  | // renegotiation_info | 
|  | 0xff, 0x01, 0x00, 0x01, 0x00, | 
|  | // supported_groups | 
|  | 0x00, 0x0a, 0x00, 0x14, 0x00, 0x12, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, | 
|  | 0x00, 0x19, 0x01, 0x00, 0x01, 0x01, 0x01, 0x02, 0x01, 0x03, 0x01, 0x04, | 
|  | // key_share | 
|  | 0x00, 0x33, 0x00, 0x26, 0x00, 0x24, 0x00, 0x1d, 0x00, 0x20, 0xd5, 0x15, | 
|  | 0x42, 0x62, 0x5f, 0x25, 0xa9, 0x2d, 0x44, 0xa3, 0xaa, 0xde, 0xf5, 0x9c, | 
|  | 0xa8, 0x49, 0xad, 0x2f, 0x8e, 0xfa, 0x9f, 0x04, 0xb8, 0xf5, 0xda, 0xb4, | 
|  | 0x02, 0xac, 0xbc, 0x57, 0x1f, 0x16, | 
|  | // supported_versions | 
|  | 0x00, 0x2b, 0x00, 0x03, 0x02, 0xfe, 0xfc, | 
|  | // signature_algorithms | 
|  | 0x00, 0x0d, 0x00, 0x20, 0x00, 0x1e, 0x04, 0x03, 0x05, 0x03, 0x06, 0x03, | 
|  | 0x02, 0x03, 0x08, 0x04, 0x08, 0x05, 0x08, 0x06, 0x04, 0x01, 0x05, 0x01, | 
|  | 0x06, 0x01, 0x02, 0x01, 0x04, 0x02, 0x05, 0x02, 0x06, 0x02, 0x02, 0x02, | 
|  | // psk_key_exchange_modes | 
|  | 0x00, 0x2d, 0x00, 0x02, 0x01, 0x01, | 
|  | // record_size_limit | 
|  | 0x00, 0x1c, 0x00, 0x02, 0x40, 0x01}; | 
|  |  | 
|  | auto in = dtls ? Span<const uint8_t>(kClientHelloDTLS) | 
|  | : Span<const uint8_t>(kClientHelloTLS); | 
|  | SSL_CLIENT_HELLO client_hello; | 
|  | ASSERT_TRUE( | 
|  | SSL_parse_client_hello(ssl.get(), &client_hello, in.data(), in.size())); | 
|  | EXPECT_EQ(client_hello.ssl, ssl.get()); | 
|  | EXPECT_EQ(Bytes(client_hello.client_hello, client_hello.client_hello_len), | 
|  | Bytes(in)); | 
|  | EXPECT_EQ(client_hello.version, dtls ? DTLS1_2_VERSION : TLS1_2_VERSION); | 
|  | static const uint8_t kRandom[] = { | 
|  | 0x37, 0xb0, 0x76, 0xd2, 0xfa, 0x50, 0x94, 0x39, 0x5e, 0x99, 0x71, | 
|  | 0xd7, 0x53, 0xc3, 0xc4, 0xcf, 0x07, 0x56, 0xb9, 0x40, 0x70, 0x13, | 
|  | 0xcb, 0xca, 0xc7, 0xf4, 0x4a, 0xc3, 0x28, 0x13, 0xf6, 0x0f}; | 
|  | EXPECT_EQ(Bytes(client_hello.random, client_hello.random_len), | 
|  | Bytes(kRandom)); | 
|  | static const uint8_t kSessionID[] = { | 
|  | 0x91, 0x41, 0xb7, 0x89, 0x83, 0xd3, 0x67, 0xa0, 0xfe, 0x97, 0x08, | 
|  | 0xdf, 0x32, 0xf5, 0xb9, 0x88, 0x8f, 0xe5, 0x9e, 0xde, 0x4e, 0x61, | 
|  | 0x2c, 0xf6, 0xbd, 0xb1, 0xfb, 0xbe, 0xe6, 0xf9, 0xef, 0xfe}; | 
|  | EXPECT_EQ(Bytes(client_hello.session_id, client_hello.session_id_len), | 
|  | Bytes(kSessionID)); | 
|  | if (dtls) { | 
|  | static const uint8_t kCookie[] = {0x01, 0x02, 0x03, 0x04}; | 
|  | EXPECT_EQ(Bytes(client_hello.dtls_cookie, client_hello.dtls_cookie_len), | 
|  | Bytes(kCookie)); | 
|  | } else { | 
|  | EXPECT_EQ(client_hello.dtls_cookie, nullptr); | 
|  | EXPECT_EQ(client_hello.dtls_cookie_len, 0u); | 
|  | } | 
|  | static const uint8_t kCipherSuites[] = {0x13, 0x01, 0x13, 0x03, 0x13, 0x02}; | 
|  | EXPECT_EQ(Bytes(client_hello.cipher_suites, client_hello.cipher_suites_len), | 
|  | Bytes(kCipherSuites)); | 
|  | static const uint8_t kCompressionMethods[] = {0x00}; | 
|  | EXPECT_EQ(Bytes(client_hello.compression_methods, | 
|  | client_hello.compression_methods_len), | 
|  | Bytes(kCompressionMethods)); | 
|  | auto extensions = in.last(141); | 
|  | EXPECT_EQ(Bytes(client_hello.extensions, client_hello.extensions_len), | 
|  | Bytes(extensions)); | 
|  |  | 
|  | static const uint8_t kServerName[] = {0x00, 0x09, 0x00, 0x00, 0x06, 0x73, | 
|  | 0x65, 0x72, 0x76, 0x65, 0x72}; | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | ASSERT_TRUE(SSL_early_callback_ctx_extension_get( | 
|  | &client_hello, TLSEXT_TYPE_server_name, &data, &len)); | 
|  | EXPECT_EQ(Bytes(data, len), Bytes(kServerName)); | 
|  | EXPECT_FALSE(SSL_early_callback_ctx_extension_get( | 
|  | &client_hello, TLSEXT_TYPE_encrypted_client_hello, &data, &len)); | 
|  |  | 
|  | // Trailing data should be rejected. | 
|  | std::vector<uint8_t> trailing_data(in.begin(), in.end()); | 
|  | trailing_data.push_back(0); | 
|  | EXPECT_FALSE(SSL_parse_client_hello( | 
|  | ssl.get(), &client_hello, trailing_data.data(), trailing_data.size())); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, | 
|  | SSL_R_CLIENTHELLO_PARSE_FAILED)); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // Other invalid inputs. | 
|  | static const uint8_t kInvalid[] = {'n', 'o', 'p', 'e'}; | 
|  | EXPECT_FALSE(SSL_parse_client_hello(ssl.get(), &client_hello, kInvalid, | 
|  | sizeof(kInvalid))); | 
|  | EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, | 
|  | SSL_R_CLIENTHELLO_PARSE_FAILED)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | } | 
|  |  | 
|  | class SSLPAKETest : public testing::Test { | 
|  | public: | 
|  | static Span<const uint8_t> pake_context() { | 
|  | return StringAsBytes("test context"); | 
|  | } | 
|  | static Span<const uint8_t> client_identity() { | 
|  | return StringAsBytes("client"); | 
|  | } | 
|  | static Span<const uint8_t> server_identity() { | 
|  | return StringAsBytes("client"); | 
|  | } | 
|  |  | 
|  | static UniquePtr<SSL_CTX> NewClientContext(std::string_view password, | 
|  | uint32_t attempts) { | 
|  | auto reg = Register(password); | 
|  | if (!reg) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | UniquePtr<SSL_CREDENTIAL> cred(SSL_CREDENTIAL_new_spake2plusv1_client( | 
|  | pake_context().data(), pake_context().size(), client_identity().data(), | 
|  | client_identity().size(), server_identity().data(), | 
|  | server_identity().size(), attempts, reg->pw_verifier_w0, | 
|  | sizeof(reg->pw_verifier_w0), reg->pw_verifier_w1, | 
|  | sizeof(reg->pw_verifier_w1))); | 
|  | if (cred == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | if (ctx == nullptr || !SSL_CTX_add1_credential(ctx.get(), cred.get())) { | 
|  | return nullptr; | 
|  | } | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | static UniquePtr<SSL_CTX> NewServerContext(std::string_view password, | 
|  | uint32_t attempts) { | 
|  | auto reg = Register(password); | 
|  | if (!reg) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | UniquePtr<SSL_CREDENTIAL> cred(SSL_CREDENTIAL_new_spake2plusv1_server( | 
|  | pake_context().data(), pake_context().size(), client_identity().data(), | 
|  | client_identity().size(), server_identity().data(), | 
|  | server_identity().size(), attempts, reg->pw_verifier_w0, | 
|  | sizeof(reg->pw_verifier_w0), reg->registration_record, | 
|  | sizeof(reg->registration_record))); | 
|  | if (cred == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); | 
|  | if (ctx == nullptr || !SSL_CTX_add1_credential(ctx.get(), cred.get())) { | 
|  | return nullptr; | 
|  | } | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | private: | 
|  | struct PAKERegistration { | 
|  | uint8_t pw_verifier_w0[32]; | 
|  | uint8_t pw_verifier_w1[32]; | 
|  | uint8_t registration_record[65]; | 
|  | }; | 
|  |  | 
|  | static std::optional<PAKERegistration> Register(std::string_view password) { | 
|  | auto password_bytes = StringAsBytes(password); | 
|  | PAKERegistration ret; | 
|  | if (!SSL_spake2plusv1_register( | 
|  | ret.pw_verifier_w0, ret.pw_verifier_w1, ret.registration_record, | 
|  | password_bytes.data(), password_bytes.size(), | 
|  | client_identity().data(), client_identity().size(), | 
|  | server_identity().data(), server_identity().size())) { | 
|  | return std::nullopt; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST_F(SSLPAKETest, SPAKE2PLUS) { | 
|  | UniquePtr<SSL_CTX> client_ctx = NewClientContext("password", 1); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | UniquePtr<SSL_CTX> server_ctx = NewServerContext("password", 1); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx.get())); | 
|  | } | 
|  |  | 
|  | TEST_F(SSLPAKETest, ClientLimit) { | 
|  | static constexpr uint32_t kLimit = 5; | 
|  | static constexpr uint32_t kUnlimited = UINT32_MAX; | 
|  |  | 
|  | UniquePtr<SSL_CTX> client_ctx = NewClientContext("password", kLimit); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | UniquePtr<SSL_CTX> server_ctx_good = NewServerContext("password", kUnlimited); | 
|  | ASSERT_TRUE(server_ctx_good); | 
|  | UniquePtr<SSL_CTX> server_ctx_bad = NewServerContext("wrong", kUnlimited); | 
|  | ASSERT_TRUE(server_ctx_bad); | 
|  |  | 
|  | // The client sees confirmV before revealing a password confirmation, so | 
|  | // neither successful nor unfinished handshakes contribute to the limit. | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | for (uint32_t i = 0; i < kLimit * 2; i++) { | 
|  | // Unfinished handshake. | 
|  | ASSERT_TRUE(CreateClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx_good.get())); | 
|  | ASSERT_EQ(SSL_do_handshake(client.get()), -1);  // Write ClientHello. | 
|  | ASSERT_EQ(SSL_get_error(client.get(), -1), SSL_ERROR_WANT_READ); | 
|  |  | 
|  | // Successful handshake. | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx_good.get())); | 
|  | } | 
|  |  | 
|  | // After kLimit - 1 password mismatches, the credential still functions. | 
|  | for (uint32_t i = 0; i < kLimit - 1; i++) { | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx_bad.get())); | 
|  | } | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx_good.get())); | 
|  |  | 
|  | // But after one more password mismatch... | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx_bad.get())); | 
|  |  | 
|  | // ...the client should refuse to use the credential at all. | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(), | 
|  | server_ctx_good.get())); | 
|  | ASSERT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_PAKE_EXHAUSTED)); | 
|  | } | 
|  |  | 
|  | TEST_F(SSLPAKETest, ServerLimit) { | 
|  | static constexpr uint32_t kLimit = 5; | 
|  | static constexpr uint32_t kUnlimited = UINT32_MAX; | 
|  |  | 
|  | UniquePtr<SSL_CTX> server_ctx = NewServerContext("password", kLimit); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | UniquePtr<SSL_CTX> client_ctx_good = NewClientContext("password", kUnlimited); | 
|  | ASSERT_TRUE(client_ctx_good); | 
|  | UniquePtr<SSL_CTX> client_ctx_bad = NewClientContext("wrong", kUnlimited); | 
|  | ASSERT_TRUE(client_ctx_bad); | 
|  |  | 
|  | // Successful handshakes do not (indefinitely) contribute to the limit. If the | 
|  | // server sees one good handshake at a time, the limit does not impact it. | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | for (uint32_t i = 0; i < kLimit * 2; i++) { | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_good.get(), | 
|  | server_ctx.get())); | 
|  | } | 
|  |  | 
|  | // The server sends confirmV before confirming the client knew the password, | 
|  | // so any handshake in between ClientHello and ServerHello counts towards the | 
|  | // limit. | 
|  | struct ClientServerPair { | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | }; | 
|  | std::vector<ClientServerPair> pending; | 
|  | auto handshake_up_to_serverhello = [](ClientServerPair *pair) { | 
|  | // Send ClientHello. | 
|  | ASSERT_EQ(SSL_do_handshake(pair->client.get()), -1); | 
|  | ASSERT_EQ(SSL_get_error(pair->client.get(), -1), SSL_ERROR_WANT_READ); | 
|  | // Send ServerHello..Finished. | 
|  | ASSERT_EQ(SSL_do_handshake(pair->server.get()), -1); | 
|  | ASSERT_EQ(SSL_get_error(pair->server.get(), -1), SSL_ERROR_WANT_READ); | 
|  | }; | 
|  |  | 
|  | // First, go just under the limit. | 
|  | for (uint32_t i = 0; i < kLimit - 1; i++) { | 
|  | ClientServerPair pair; | 
|  | ASSERT_TRUE(CreateClientAndServer(&pair.client, &pair.server, | 
|  | client_ctx_good.get(), server_ctx.get())); | 
|  | ASSERT_NO_FATAL_FAILURE(handshake_up_to_serverhello(&pair)); | 
|  | pending.push_back(std::move(pair)); | 
|  | } | 
|  |  | 
|  | // The server can still complete a handshake. | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_good.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | // Start one more unfinished handshake. | 
|  | ClientServerPair pair; | 
|  | ASSERT_TRUE(CreateClientAndServer(&pair.client, &pair.server, | 
|  | client_ctx_good.get(), server_ctx.get())); | 
|  | ASSERT_NO_FATAL_FAILURE(handshake_up_to_serverhello(&pair)); | 
|  | pending.push_back(std::move(pair)); | 
|  |  | 
|  | // The credential is at its limit. | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_good.get(), | 
|  | server_ctx.get())); | 
|  | ASSERT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_PAKE_EXHAUSTED)); | 
|  |  | 
|  | // Complete some of the handshakes. As they complete, the server learns that | 
|  | // the client had the correct guess, so the connections no longer count | 
|  | // towards the brute force limit. | 
|  | static constexpr uint32_t kRemainingLimit = kLimit / 2; | 
|  | for (uint32_t i = 0; i < kRemainingLimit; i++) { | 
|  | ASSERT_TRUE(CompleteHandshakes(pending.back().client.get(), | 
|  | pending.back().server.get())); | 
|  | pending.pop_back(); | 
|  | } | 
|  |  | 
|  | // The server can complete a handshake now that some of the limit has been | 
|  | // released. | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_good.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | // Failed handshakes consume the limit. First consume all but one of the newly | 
|  | // released limit. | 
|  | for (uint32_t i = 0; i < kRemainingLimit - 1; i++) { | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_bad.get(), | 
|  | server_ctx.get())); | 
|  | } | 
|  | ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_good.get(), | 
|  | server_ctx.get())); | 
|  |  | 
|  | // Consume the last of the limit. | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_bad.get(), | 
|  | server_ctx.get())); | 
|  | // The credential is disabled again. | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_good.get(), | 
|  | server_ctx.get())); | 
|  | ASSERT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_PAKE_EXHAUSTED)); | 
|  |  | 
|  | // The unfinished handshakes continue to count toward the limit even if they | 
|  | // are destroyed. | 
|  | pending.clear(); | 
|  | ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_good.get(), | 
|  | server_ctx.get())); | 
|  | ASSERT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_SSL, SSL_R_PAKE_EXHAUSTED)); | 
|  | } | 
|  |  | 
|  | #if defined(OPENSSL_THREADS) | 
|  | // The PAKE limit mechanism should be thread-safe. | 
|  | TEST_F(SSLPAKETest, ClientThreads) { | 
|  | static constexpr uint32_t kLimit = 5; | 
|  | static constexpr uint32_t kUnlimited = UINT32_MAX; | 
|  | static constexpr int kThreads = 10; | 
|  |  | 
|  | UniquePtr<SSL_CTX> client_ctx = NewClientContext("password", kLimit); | 
|  | ASSERT_TRUE(client_ctx); | 
|  | UniquePtr<SSL_CTX> server_ctx_good = NewServerContext("password", kUnlimited); | 
|  | ASSERT_TRUE(server_ctx_good); | 
|  | UniquePtr<SSL_CTX> server_ctx_bad = NewServerContext("wrong", kUnlimited); | 
|  | ASSERT_TRUE(server_ctx_bad); | 
|  |  | 
|  | auto connect = [&](SSL_CTX *server_ctx) { | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ConnectClientAndServer(&client, &server, client_ctx.get(), server_ctx); | 
|  | }; | 
|  |  | 
|  | std::vector<std::thread> threads; | 
|  | for (int i = 0; i < kThreads; i++) { | 
|  | threads.emplace_back([&] { connect(server_ctx_good.get()); }); | 
|  | threads.emplace_back([&] { connect(server_ctx_bad.get()); }); | 
|  | } | 
|  | for (auto &thread : threads) { | 
|  | thread.join(); | 
|  | } | 
|  | } | 
|  | TEST_F(SSLPAKETest, ServerThreads) { | 
|  | static constexpr uint32_t kLimit = 5; | 
|  | static constexpr uint32_t kUnlimited = UINT32_MAX; | 
|  | static constexpr int kThreads = 10; | 
|  |  | 
|  | UniquePtr<SSL_CTX> server_ctx = NewServerContext("password", kLimit); | 
|  | ASSERT_TRUE(server_ctx); | 
|  | UniquePtr<SSL_CTX> client_ctx_good = NewClientContext("password", kUnlimited); | 
|  | ASSERT_TRUE(client_ctx_good); | 
|  | UniquePtr<SSL_CTX> client_ctx_bad = NewClientContext("wrong", kUnlimited); | 
|  | ASSERT_TRUE(client_ctx_bad); | 
|  |  | 
|  | auto connect = [&](SSL_CTX *client_ctx) { | 
|  | bssl::UniquePtr<SSL> client, server; | 
|  | ConnectClientAndServer(&client, &server, client_ctx, server_ctx.get()); | 
|  | }; | 
|  |  | 
|  | std::vector<std::thread> threads; | 
|  | for (int i = 0; i < kThreads; i++) { | 
|  | threads.emplace_back([&] { connect(client_ctx_good.get()); }); | 
|  | threads.emplace_back([&] { connect(client_ctx_bad.get()); }); | 
|  | } | 
|  | for (auto &thread : threads) { | 
|  | thread.join(); | 
|  | } | 
|  | } | 
|  | #endif  // OPENSSL_THREADS | 
|  |  | 
|  | }  // namespace | 
|  | BSSL_NAMESPACE_END |