|  | // Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/pkcs8.h> | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/cipher.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/nid.h> | 
|  | #include <openssl/rand.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../internal.h" | 
|  |  | 
|  |  | 
|  | // 1.2.840.113549.1.5.12 | 
|  | static const uint8_t kPBKDF2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
|  | 0x0d, 0x01, 0x05, 0x0c}; | 
|  |  | 
|  | // 1.2.840.113549.1.5.13 | 
|  | static const uint8_t kPBES2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
|  | 0x0d, 0x01, 0x05, 0x0d}; | 
|  |  | 
|  | // 1.2.840.113549.2.7 | 
|  | static const uint8_t kHMACWithSHA1[] = {0x2a, 0x86, 0x48, 0x86, | 
|  | 0xf7, 0x0d, 0x02, 0x07}; | 
|  |  | 
|  | // 1.2.840.113549.2.9 | 
|  | static const uint8_t kHMACWithSHA256[] = {0x2a, 0x86, 0x48, 0x86, | 
|  | 0xf7, 0x0d, 0x02, 0x09}; | 
|  |  | 
|  | static const struct { | 
|  | uint8_t oid[9]; | 
|  | uint8_t oid_len; | 
|  | int nid; | 
|  | const EVP_CIPHER *(*cipher_func)(void); | 
|  | } kCipherOIDs[] = { | 
|  | // 1.2.840.113549.3.2 | 
|  | {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02}, | 
|  | 8, | 
|  | NID_rc2_cbc, | 
|  | &EVP_rc2_cbc}, | 
|  | // 1.2.840.113549.3.7 | 
|  | {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07}, | 
|  | 8, | 
|  | NID_des_ede3_cbc, | 
|  | &EVP_des_ede3_cbc}, | 
|  | // 2.16.840.1.101.3.4.1.2 | 
|  | {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x02}, | 
|  | 9, | 
|  | NID_aes_128_cbc, | 
|  | &EVP_aes_128_cbc}, | 
|  | // 2.16.840.1.101.3.4.1.22 | 
|  | {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x16}, | 
|  | 9, | 
|  | NID_aes_192_cbc, | 
|  | &EVP_aes_192_cbc}, | 
|  | // 2.16.840.1.101.3.4.1.42 | 
|  | {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x2a}, | 
|  | 9, | 
|  | NID_aes_256_cbc, | 
|  | &EVP_aes_256_cbc}, | 
|  | }; | 
|  |  | 
|  | static const EVP_CIPHER *cbs_to_cipher(const CBS *cbs) { | 
|  | for (const auto &cipher : kCipherOIDs) { | 
|  | if (CBS_mem_equal(cbs, cipher.oid, cipher.oid_len)) { | 
|  | return cipher.cipher_func(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static int add_cipher_oid(CBB *out, int nid) { | 
|  | for (const auto &cipher : kCipherOIDs) { | 
|  | if (cipher.nid == nid) { | 
|  | return CBB_add_asn1_element(out, CBS_ASN1_OBJECT, cipher.oid, | 
|  | cipher.oid_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const EVP_CIPHER *pkcs5_pbe2_nid_to_cipher(int nid) { | 
|  | for (const auto &cipher : kCipherOIDs) { | 
|  | if (cipher.nid == nid) { | 
|  | return cipher.cipher_func(); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static int pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, | 
|  | const EVP_MD *pbkdf2_md, uint32_t iterations, | 
|  | const char *pass, size_t pass_len, | 
|  | const uint8_t *salt, size_t salt_len, | 
|  | const uint8_t *iv, size_t iv_len, int enc) { | 
|  | if (iv_len != EVP_CIPHER_iv_length(cipher)) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t key[EVP_MAX_KEY_LENGTH]; | 
|  | int ret = PKCS5_PBKDF2_HMAC(pass, pass_len, salt, salt_len, iterations, | 
|  | pbkdf2_md, EVP_CIPHER_key_length(cipher), key) && | 
|  | EVP_CipherInit_ex(ctx, cipher, nullptr /* engine */, key, iv, enc); | 
|  | OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int PKCS5_pbe2_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, | 
|  | const EVP_CIPHER *cipher, uint32_t iterations, | 
|  | const char *pass, size_t pass_len, | 
|  | const uint8_t *salt, size_t salt_len) { | 
|  | int cipher_nid = EVP_CIPHER_nid(cipher); | 
|  | if (cipher_nid == NID_undef) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Generate a random IV. | 
|  | uint8_t iv[EVP_MAX_IV_LENGTH]; | 
|  | if (!RAND_bytes(iv, EVP_CIPHER_iv_length(cipher))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // See RFC 8018, appendix A. | 
|  | CBB algorithm, param, kdf, kdf_param, prf, cipher_cbb; | 
|  | if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || | 
|  | !CBB_add_asn1_element(&algorithm, CBS_ASN1_OBJECT, kPBES2, | 
|  | sizeof(kPBES2)) || | 
|  | !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || | 
|  | !CBB_add_asn1(¶m, &kdf, CBS_ASN1_SEQUENCE) || | 
|  | !CBB_add_asn1_element(&kdf, CBS_ASN1_OBJECT, kPBKDF2, sizeof(kPBKDF2)) || | 
|  | !CBB_add_asn1(&kdf, &kdf_param, CBS_ASN1_SEQUENCE) || | 
|  | !CBB_add_asn1_octet_string(&kdf_param, salt, salt_len) || | 
|  | !CBB_add_asn1_uint64(&kdf_param, iterations) || | 
|  | // Specify a key length for RC2. | 
|  | (cipher_nid == NID_rc2_cbc && | 
|  | !CBB_add_asn1_uint64(&kdf_param, EVP_CIPHER_key_length(cipher))) || | 
|  | // Use hmacWithSHA256 for the PRF. | 
|  | !CBB_add_asn1(&kdf_param, &prf, CBS_ASN1_SEQUENCE) || | 
|  | !CBB_add_asn1_element(&prf, CBS_ASN1_OBJECT, kHMACWithSHA256, | 
|  | sizeof(kHMACWithSHA256)) || | 
|  | !CBB_add_asn1_element(&prf, CBS_ASN1_NULL, nullptr, 0) || | 
|  | !CBB_add_asn1(¶m, &cipher_cbb, CBS_ASN1_SEQUENCE) || | 
|  | !add_cipher_oid(&cipher_cbb, cipher_nid) || | 
|  | // RFC 8018 says RC2-CBC and RC5-CBC-Pad use a SEQUENCE with version and | 
|  | // IV, but OpenSSL always uses an OCTET STRING IV, so we do the same. | 
|  | !CBB_add_asn1_octet_string(&cipher_cbb, iv, | 
|  | EVP_CIPHER_iv_length(cipher)) || | 
|  | !CBB_flush(out)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return pkcs5_pbe2_cipher_init(ctx, cipher, EVP_sha256(), iterations, pass, | 
|  | pass_len, salt, salt_len, iv, | 
|  | EVP_CIPHER_iv_length(cipher), 1 /* encrypt */); | 
|  | } | 
|  |  | 
|  | int PKCS5_pbe2_decrypt_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx, | 
|  | const char *pass, size_t pass_len, CBS *param) { | 
|  | CBS pbe_param, kdf, kdf_obj, enc_scheme, enc_obj; | 
|  | if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || | 
|  | CBS_len(param) != 0 || | 
|  | !CBS_get_asn1(&pbe_param, &kdf, CBS_ASN1_SEQUENCE) || | 
|  | !CBS_get_asn1(&pbe_param, &enc_scheme, CBS_ASN1_SEQUENCE) || | 
|  | CBS_len(&pbe_param) != 0 || | 
|  | !CBS_get_asn1(&kdf, &kdf_obj, CBS_ASN1_OBJECT) || | 
|  | !CBS_get_asn1(&enc_scheme, &enc_obj, CBS_ASN1_OBJECT)) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Only PBKDF2 is supported. | 
|  | if (!CBS_mem_equal(&kdf_obj, kPBKDF2, sizeof(kPBKDF2))) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // See if we recognise the encryption algorithm. | 
|  | const EVP_CIPHER *cipher = cbs_to_cipher(&enc_obj); | 
|  | if (cipher == nullptr) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Parse the KDF parameters. See RFC 8018, appendix A.2. | 
|  | CBS pbkdf2_params, salt; | 
|  | uint64_t iterations; | 
|  | if (!CBS_get_asn1(&kdf, &pbkdf2_params, CBS_ASN1_SEQUENCE) || | 
|  | CBS_len(&kdf) != 0 || | 
|  | !CBS_get_asn1(&pbkdf2_params, &salt, CBS_ASN1_OCTETSTRING) || | 
|  | !CBS_get_asn1_uint64(&pbkdf2_params, &iterations)) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!pkcs12_iterations_acceptable(iterations)) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The optional keyLength parameter, if present, must match the key length of | 
|  | // the cipher. | 
|  | if (CBS_peek_asn1_tag(&pbkdf2_params, CBS_ASN1_INTEGER)) { | 
|  | uint64_t key_len; | 
|  | if (!CBS_get_asn1_uint64(&pbkdf2_params, &key_len)) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (key_len != EVP_CIPHER_key_length(cipher)) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEYLENGTH); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | const EVP_MD *md = EVP_sha1(); | 
|  | if (CBS_len(&pbkdf2_params) != 0) { | 
|  | CBS alg_id, prf; | 
|  | if (!CBS_get_asn1(&pbkdf2_params, &alg_id, CBS_ASN1_SEQUENCE) || | 
|  | !CBS_get_asn1(&alg_id, &prf, CBS_ASN1_OBJECT) || | 
|  | CBS_len(&pbkdf2_params) != 0) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (CBS_mem_equal(&prf, kHMACWithSHA1, sizeof(kHMACWithSHA1))) { | 
|  | // hmacWithSHA1 is the DEFAULT, so DER requires it be omitted, but we | 
|  | // match OpenSSL in tolerating it being present. | 
|  | md = EVP_sha1(); | 
|  | } else if (CBS_mem_equal(&prf, kHMACWithSHA256, sizeof(kHMACWithSHA256))) { | 
|  | md = EVP_sha256(); | 
|  | } else { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // All supported PRFs use a NULL parameter. | 
|  | CBS null; | 
|  | if (!CBS_get_asn1(&alg_id, &null, CBS_ASN1_NULL) || | 
|  | CBS_len(&null) != 0 || | 
|  | CBS_len(&alg_id) != 0) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Parse the encryption scheme parameters. Note OpenSSL does not match the | 
|  | // specification. Per RFC 8018, this should depend on the encryption scheme. | 
|  | // In particular, RC2-CBC uses a SEQUENCE with version and IV. We align with | 
|  | // OpenSSL. | 
|  | CBS iv; | 
|  | if (!CBS_get_asn1(&enc_scheme, &iv, CBS_ASN1_OCTETSTRING) || | 
|  | CBS_len(&enc_scheme) != 0) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return pkcs5_pbe2_cipher_init(ctx, cipher, md, (uint32_t)iterations, pass, | 
|  | pass_len, CBS_data(&salt), CBS_len(&salt), | 
|  | CBS_data(&iv), CBS_len(&iv), 0 /* decrypt */); | 
|  | } |