blob: 42336da1965446946685488f29b4d7654b3d7350 [file] [log] [blame]
// Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <string_view>
#include <openssl/asn1.h>
#include <openssl/base.h>
#include <openssl/base64.h>
#include <openssl/bio.h>
#include <openssl/buf.h>
#include <openssl/cipher.h>
#include <openssl/des.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/pem.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include "../internal.h"
#include "internal.h"
#define MIN_LENGTH 4
static int load_iv(const char **fromp, unsigned char *to, size_t num);
static int check_pem(const std::string_view nm, const std::string_view name);
// PEM_proc_type appends a Proc-Type header to |buf|, determined by |type|.
static void PEM_proc_type(char buf[PEM_BUFSIZE], int type) {
const char *str;
if (type == PEM_TYPE_ENCRYPTED) {
str = "ENCRYPTED";
} else if (type == PEM_TYPE_MIC_CLEAR) {
str = "MIC-CLEAR";
} else if (type == PEM_TYPE_MIC_ONLY) {
str = "MIC-ONLY";
} else {
str = "BAD-TYPE";
}
OPENSSL_strlcat(buf, "Proc-Type: 4,", PEM_BUFSIZE);
OPENSSL_strlcat(buf, str, PEM_BUFSIZE);
OPENSSL_strlcat(buf, "\n", PEM_BUFSIZE);
}
// PEM_dek_info appends a DEK-Info header to |buf|, with an algorithm of |type|
// and a single parameter, specified by hex-encoding |len| bytes from |str|.
static void PEM_dek_info(char buf[PEM_BUFSIZE], const char *type, size_t len,
char *str) {
static const unsigned char map[17] = "0123456789ABCDEF";
OPENSSL_strlcat(buf, "DEK-Info: ", PEM_BUFSIZE);
OPENSSL_strlcat(buf, type, PEM_BUFSIZE);
OPENSSL_strlcat(buf, ",", PEM_BUFSIZE);
const size_t used = strlen(buf);
const size_t available = PEM_BUFSIZE - used;
if (len * 2 < len || len * 2 + 2 < len || available < len * 2 + 2) {
return;
}
for (size_t i = 0; i < len; i++) {
buf[used + i * 2] = map[(str[i] >> 4) & 0x0f];
buf[used + i * 2 + 1] = map[(str[i]) & 0x0f];
}
buf[used + len * 2] = '\n';
buf[used + len * 2 + 1] = '\0';
}
void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x,
pem_password_cb *cb, void *u) {
BIO *b = BIO_new_fp(fp, BIO_NOCLOSE);
if (b == nullptr) {
OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB);
return nullptr;
}
void *ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u);
BIO_free(b);
return ret;
}
static int check_pem(const std::string_view nm, const std::string_view name) {
// Normal matching nm and name
if (nm == name) {
return 1;
}
// Make PEM_STRING_EVP_PKEY match any private key
if (name == PEM_STRING_EVP_PKEY) {
return nm == PEM_STRING_PKCS8 || nm == PEM_STRING_PKCS8INF ||
nm == PEM_STRING_RSA || nm == PEM_STRING_EC || nm == PEM_STRING_DSA;
}
// Permit older strings
if (nm == PEM_STRING_X509_OLD && name == PEM_STRING_X509) {
return 1;
}
if (nm == PEM_STRING_X509_REQ_OLD && name == PEM_STRING_X509_REQ) {
return 1;
}
// Allow normal certs to be read as trusted certs
if (nm == PEM_STRING_X509 && name == PEM_STRING_X509_TRUSTED) {
return 1;
}
if (nm == PEM_STRING_X509_OLD && name == PEM_STRING_X509_TRUSTED) {
return 1;
}
// Some CAs use PKCS#7 with CERTIFICATE headers
if (nm == PEM_STRING_X509 && name == PEM_STRING_PKCS7) {
return 1;
}
if (nm == PEM_STRING_PKCS7_SIGNED && name == PEM_STRING_PKCS7) {
return 1;
}
#ifndef OPENSSL_NO_CMS
if (nm == PEM_STRING_X509 && name == PEM_STRING_CMS) {
return 1;
}
// Allow CMS to be read from PKCS#7 headers
if (nm == PEM_STRING_PKCS7 && name == PEM_STRING_CMS) {
return 1;
}
#endif
return 0;
}
static const EVP_CIPHER *cipher_by_name(const std::string_view name) {
// This is similar to the (deprecated) function |EVP_get_cipherbyname|. Note
// the PEM code assumes that ciphers have at least 8 bytes of IV, at most 20
// bytes of overhead and generally behave like CBC mode.
if (name == SN_des_cbc) {
return EVP_des_cbc();
} else if (name == SN_des_ede3_cbc) {
return EVP_des_ede3_cbc();
} else if (name == SN_aes_128_cbc) {
return EVP_aes_128_cbc();
} else if (name == SN_aes_192_cbc) {
return EVP_aes_192_cbc();
} else if (name == SN_aes_256_cbc) {
return EVP_aes_256_cbc();
} else {
return nullptr;
}
}
int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm,
const char *name, BIO *bp, pem_password_cb *cb,
void *u) {
EVP_CIPHER_INFO cipher;
bssl::UniquePtr<char> nm;
bssl::UniquePtr<char> header;
bssl::Array<uint8_t> data;
size_t ulen;
size_t unused = 0;
for (;;) {
if (!PEM_read_bio_inner(bp, &nm, &header, &data)) {
if (ERR_equals(ERR_peek_error(), ERR_LIB_PEM, PEM_R_NO_START_LINE)) {
ERR_add_error_data(2, "Expecting: ", name);
}
return 0;
}
if (data.size() > LONG_MAX) {
OPENSSL_PUT_ERROR(PEM, ERR_R_OVERFLOW);
return 0;
}
if (check_pem(nm.get(), name)) {
break;
}
}
if (!PEM_get_EVP_CIPHER_INFO(header.get(), &cipher)) {
return 0;
}
ulen = data.size();
if (!PEM_do_header(&cipher, data.data(), &ulen, cb, u)) {
return 0;
}
// Release the buffer to the caller.
// Note that |PEM_do_header| may have reduced the length after decrypting
// in-place.
// This will not overflow because |data.size()| was checked to fit in |long|
// above.
data.Release(pdata, &unused);
*plen = static_cast<long>(ulen);
if (pnm) {
*pnm = nm.release();
}
return 1;
}
int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, void *x,
const EVP_CIPHER *enc, const unsigned char *pass,
int pass_len, pem_password_cb *callback, void *u) {
BIO *b = BIO_new_fp(fp, BIO_NOCLOSE);
if (b == nullptr) {
OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB);
return 0;
}
int ret =
PEM_ASN1_write_bio(i2d, name, b, x, enc, pass, pass_len, callback, u);
BIO_free(b);
return ret;
}
int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, void *x,
const EVP_CIPHER *enc, const unsigned char *pass,
int pass_len, pem_password_cb *callback, void *u) {
bssl::ScopedEVP_CIPHER_CTX ctx;
int dsize = 0, ret = 0;
size_t i, j, data_size;
unsigned char *p, *data = nullptr;
const char *objstr = nullptr;
char buf[PEM_BUFSIZE];
unsigned char key[EVP_MAX_KEY_LENGTH];
unsigned char iv[EVP_MAX_IV_LENGTH];
if (enc != nullptr) {
objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc));
if (objstr == nullptr || cipher_by_name(objstr) == nullptr ||
EVP_CIPHER_iv_length(enc) < 8) {
OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_CIPHER);
goto err;
}
}
if ((dsize = i2d(x, nullptr)) < 0) {
OPENSSL_PUT_ERROR(PEM, ERR_R_ASN1_LIB);
dsize = 0;
goto err;
}
// dzise + 8 bytes are needed
// actually it needs the cipher block size extra...
data_size = static_cast<size_t>(dsize) + 20;
data = (unsigned char *)OPENSSL_malloc(data_size);
if (data == nullptr) {
goto err;
}
p = data;
i = i2d(x, &p);
if (enc != nullptr) {
const unsigned iv_len = EVP_CIPHER_iv_length(enc);
if (pass == nullptr) {
if (!callback) {
callback = PEM_def_callback;
}
pass_len = (*callback)(buf, PEM_BUFSIZE, 1, u);
if (pass_len < 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_READ_KEY);
goto err;
}
pass = (const unsigned char *)buf;
}
assert(iv_len <= sizeof(iv));
if (!RAND_bytes(iv, iv_len)) { // Generate a salt
goto err;
}
// The 'iv' is used as the iv and as a salt. It is NOT taken from
// the BytesToKey function
if (!EVP_BytesToKey(enc, EVP_md5(), iv, pass, pass_len, 1, key, nullptr)) {
goto err;
}
if (pass == (const unsigned char *)buf) {
OPENSSL_cleanse(buf, PEM_BUFSIZE);
}
assert(strlen(objstr) + 23 + 2 * iv_len + 13 <= sizeof(buf));
buf[0] = '\0';
PEM_proc_type(buf, PEM_TYPE_ENCRYPTED);
PEM_dek_info(buf, objstr, iv_len, (char *)iv);
// k=strlen(buf);
ret = 1;
if (!EVP_EncryptInit_ex(ctx.get(), enc, nullptr, key, iv) ||
!EVP_EncryptUpdate_ex(ctx.get(), data, &j, data_size, data, i) ||
!EVP_EncryptFinal_ex2(ctx.get(), &(data[j]), &i, data_size - j)) {
ret = 0;
} else {
i += j;
}
if (ret == 0) {
goto err;
}
} else {
ret = 1;
buf[0] = '\0';
}
i = PEM_write_bio(bp, name, buf, data, i);
if (i <= 0) {
ret = 0;
}
err:
OPENSSL_cleanse(key, sizeof(key));
OPENSSL_cleanse(iv, sizeof(iv));
OPENSSL_cleanse(buf, PEM_BUFSIZE);
OPENSSL_free(data);
return ret;
}
int PEM_do_header(const EVP_CIPHER_INFO *cipher, unsigned char *data,
size_t *len, pem_password_cb *callback, void *u) {
int pass_len;
bssl::ScopedEVP_CIPHER_CTX ctx;
unsigned char key[EVP_MAX_KEY_LENGTH];
char buf[PEM_BUFSIZE];
const size_t in_len = *len;
if (cipher->cipher == nullptr) {
return 1;
}
pass_len = 0;
if (!callback) {
callback = PEM_def_callback;
}
pass_len = callback(buf, PEM_BUFSIZE, 0, u);
if (pass_len < 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_PASSWORD_READ);
return 0;
}
if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), cipher->iv,
(unsigned char *)buf, pass_len, 1, key, nullptr)) {
return 0;
}
// Safety: we have checked |*len| before narrowing so that |EVP_DecryptUpdate|
// can safely work with it.
size_t out_len1 = 0;
size_t out_len2 = 0;
if (!EVP_DecryptInit_ex(ctx.get(), cipher->cipher, nullptr, key,
cipher->iv) ||
!EVP_DecryptUpdate_ex(ctx.get(), data, &out_len1, in_len, data, in_len) ||
!EVP_DecryptFinal_ex2(ctx.get(), data + out_len1, &out_len2,
in_len - out_len1)) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_DECRYPT);
return 0;
}
*len = out_len1 + out_len2;
return 1;
}
int PEM_get_EVP_CIPHER_INFO(const char *header, EVP_CIPHER_INFO *cipher) {
cipher->cipher = nullptr;
OPENSSL_memset(cipher->iv, 0, sizeof(cipher->iv));
if ((header == nullptr) || (*header == '\0') || (*header == '\n')) {
return 1;
}
if (strncmp(header, "Proc-Type: ", 11) != 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_PROC_TYPE);
return 0;
}
header += 11;
if (header[0] != '4' || header[1] != ',') {
OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_PROC_TYPE_VERSION);
return 0;
}
header += 2;
if (strncmp(header, "ENCRYPTED", 9) != 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_ENCRYPTED);
return 0;
}
for (; (*header != '\n') && (*header != '\0'); header++) {
;
}
if (*header == '\0') {
OPENSSL_PUT_ERROR(PEM, PEM_R_SHORT_HEADER);
return 0;
}
header++;
if (strncmp(header, "DEK-Info: ", 10) != 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_NOT_DEK_INFO);
return 0;
}
header += 10;
const char *p = header;
for (;;) {
char c = *header;
if (!((c >= 'A' && c <= 'Z') || c == '-' || OPENSSL_isdigit(c))) {
break;
}
header++;
}
cipher->cipher = cipher_by_name(std::string_view(p, header - p));
header++;
if (cipher->cipher == nullptr) {
OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_ENCRYPTION);
return 0;
}
// The IV parameter must be at least 8 bytes long to be used as the salt in
// the KDF. (This should not happen given |cipher_by_name|.)
if (EVP_CIPHER_iv_length(cipher->cipher) < 8) {
assert(0);
OPENSSL_PUT_ERROR(PEM, PEM_R_UNSUPPORTED_ENCRYPTION);
return 0;
}
const char **header_pp = &header;
if (!load_iv(header_pp, cipher->iv, EVP_CIPHER_iv_length(cipher->cipher))) {
return 0;
}
return 1;
}
static int load_iv(const char **fromp, unsigned char *to, size_t num) {
uint8_t v;
const char *from;
from = *fromp;
for (size_t i = 0; i < num; i++) {
to[i] = 0;
}
num *= 2;
for (size_t i = 0; i < num; i++) {
if (!OPENSSL_fromxdigit(&v, *from)) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_IV_CHARS);
return 0;
}
from++;
to[i / 2] |= v << (!(i & 1)) * 4;
}
*fromp = from;
return 1;
}
int PEM_write(FILE *fp, const char *name, const char *header,
const unsigned char *data, long len) {
BIO *b = BIO_new_fp(fp, BIO_NOCLOSE);
if (b == nullptr) {
OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB);
return 0;
}
int ret = PEM_write_bio(b, name, header, data, len);
BIO_free(b);
return ret;
}
int PEM_write_bio(BIO *bp, const char *name, const char *header,
const unsigned char *data, long len) {
int nlen, n, i, j, outl;
unsigned char *buf = nullptr;
EVP_ENCODE_CTX ctx;
int reason = ERR_R_BUF_LIB;
int retval = 0;
EVP_EncodeInit(&ctx);
nlen = strlen(name);
if ((BIO_write(bp, "-----BEGIN ", 11) != 11) ||
(BIO_write(bp, name, nlen) != nlen) ||
(BIO_write(bp, "-----\n", 6) != 6)) {
goto err;
}
i = strlen(header);
if (i > 0) {
if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) {
goto err;
}
}
buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(PEM_BUFSIZE * 8));
if (buf == nullptr) {
goto err;
}
i = j = 0;
while (len > 0) {
n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len);
EVP_EncodeUpdate(&ctx, buf, &outl, &(data[j]), n);
if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) {
goto err;
}
i += outl;
len -= n;
j += n;
}
EVP_EncodeFinal(&ctx, buf, &outl);
if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) {
goto err;
}
if ((BIO_write(bp, "-----END ", 9) != 9) ||
(BIO_write(bp, name, nlen) != nlen) ||
(BIO_write(bp, "-----\n", 6) != 6)) {
goto err;
}
retval = i + outl;
err:
if (retval == 0) {
OPENSSL_PUT_ERROR(PEM, reason);
}
OPENSSL_free(buf);
return retval;
}
int PEM_read(FILE *fp, char **name, char **header, unsigned char **data,
long *len) {
BIO *b = BIO_new_fp(fp, BIO_NOCLOSE);
if (b == nullptr) {
OPENSSL_PUT_ERROR(PEM, ERR_R_BUF_LIB);
return 0;
}
int ret = PEM_read_bio(b, name, header, data, len);
BIO_free(b);
return ret;
}
int PEM_read_bio_inner(BIO *bp, bssl::UniquePtr<char> *name,
bssl::UniquePtr<char> *header,
bssl::Array<uint8_t> *data) {
EVP_ENCODE_CTX ctx;
int end = 0, i, k, bl = 0, hl = 0, nohead = 0;
char buf[256];
BUF_MEM *nameB;
BUF_MEM *headerB;
BUF_MEM *dataB, *tmpB;
nameB = BUF_MEM_new();
headerB = BUF_MEM_new();
dataB = BUF_MEM_new();
if ((nameB == nullptr) || (headerB == nullptr) || (dataB == nullptr)) {
goto err;
}
buf[254] = '\0';
for (;;) {
i = BIO_gets(bp, buf, 254);
if (i <= 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_NO_START_LINE);
goto err;
}
while ((i >= 0) && (buf[i] <= ' ')) {
i--;
}
buf[++i] = '\n';
buf[++i] = '\0';
if (strncmp(buf, "-----BEGIN ", 11) == 0) {
i = strlen(&(buf[11]));
if (strncmp(&(buf[11 + i - 6]), "-----\n", 6) != 0) {
continue;
}
if (!BUF_MEM_grow(nameB, i + 9)) {
goto err;
}
OPENSSL_memcpy(nameB->data, &(buf[11]), i - 6);
nameB->data[i - 6] = '\0';
break;
}
}
hl = 0;
if (!BUF_MEM_grow(headerB, 256)) {
goto err;
}
headerB->data[0] = '\0';
for (;;) {
i = BIO_gets(bp, buf, 254);
if (i <= 0) {
break;
}
while ((i >= 0) && (buf[i] <= ' ')) {
i--;
}
buf[++i] = '\n';
buf[++i] = '\0';
if (buf[0] == '\n') {
break;
}
if (!BUF_MEM_grow(headerB, hl + i + 9)) {
goto err;
}
if (strncmp(buf, "-----END ", 9) == 0) {
nohead = 1;
break;
}
OPENSSL_memcpy(&(headerB->data[hl]), buf, i);
headerB->data[hl + i] = '\0';
hl += i;
}
bl = 0;
if (!BUF_MEM_grow(dataB, 1024)) {
goto err;
}
dataB->data[0] = '\0';
if (!nohead) {
for (;;) {
i = BIO_gets(bp, buf, 254);
if (i <= 0) {
break;
}
while ((i >= 0) && (buf[i] <= ' ')) {
i--;
}
buf[++i] = '\n';
buf[++i] = '\0';
if (i != 65) {
end = 1;
}
if (strncmp(buf, "-----END ", 9) == 0) {
break;
}
if (i > 65) {
break;
}
if (!BUF_MEM_grow_clean(dataB, i + bl + 9)) {
goto err;
}
OPENSSL_memcpy(&(dataB->data[bl]), buf, i);
dataB->data[bl + i] = '\0';
bl += i;
if (end) {
buf[0] = '\0';
i = BIO_gets(bp, buf, 254);
if (i <= 0) {
break;
}
while ((i >= 0) && (buf[i] <= ' ')) {
i--;
}
buf[++i] = '\n';
buf[++i] = '\0';
break;
}
}
} else {
tmpB = headerB;
headerB = dataB;
dataB = tmpB;
bl = hl;
}
i = strlen(nameB->data);
if ((strncmp(buf, "-----END ", 9) != 0) ||
(strncmp(nameB->data, &(buf[9]), i) != 0) ||
(strncmp(&(buf[9 + i]), "-----\n", 6) != 0)) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_END_LINE);
goto err;
}
EVP_DecodeInit(&ctx);
i = EVP_DecodeUpdate(&ctx, (unsigned char *)dataB->data, &bl,
(unsigned char *)dataB->data, bl);
if (i < 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_BASE64_DECODE);
goto err;
}
i = EVP_DecodeFinal(&ctx, (unsigned char *)&(dataB->data[bl]), &k);
if (i < 0) {
OPENSSL_PUT_ERROR(PEM, PEM_R_BAD_BASE64_DECODE);
goto err;
}
bl += k;
if (bl == 0) {
goto err;
}
// Transfer ownership of buffers
name->reset(nameB->data);
header->reset(headerB->data);
data->Reset((uint8_t *)dataB->data, bl);
OPENSSL_free(nameB);
OPENSSL_free(headerB);
OPENSSL_free(dataB);
return 1;
err:
BUF_MEM_free(nameB);
BUF_MEM_free(headerB);
BUF_MEM_free(dataB);
return 0;
}
int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data,
long *len) {
bssl::UniquePtr<char> owned_name;
bssl::UniquePtr<char> owned_header;
bssl::Array<uint8_t> owned_data;
if (!PEM_read_bio_inner(bp, &owned_name, &owned_header, &owned_data)) {
return 0;
}
if (owned_data.size() > LONG_MAX) {
OPENSSL_PUT_ERROR(PEM, ERR_R_OVERFLOW);
return 0;
}
size_t ulen = 0;
*name = owned_name.release();
*header = owned_header.release();
owned_data.Release(data, &ulen);
// Safety: we checked that |ulen| <= |LONG_MAX|.
*len = static_cast<long>(ulen);
return 1;
}
int PEM_def_callback(char *buf, int size, int rwflag, void *userdata) {
if (!buf || !userdata || size < 0) {
return -1;
}
size_t len = strlen((char *)userdata);
if (len >= (size_t)size) {
return -1;
}
OPENSSL_strlcpy(buf, reinterpret_cast<char *>(userdata), (size_t)size);
return (int)len;
}