blob: 2d88ac64685b357f1726fa3345d3160f7acb1d69 [file] [log] [blame]
// Copyright 2019 The BoringSSL Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/ec_key.h>
#include <string.h>
#include <openssl/ec.h>
#include <openssl/err.h>
#include <openssl/digest.h>
#include <openssl/hkdf.h>
#include <openssl/mem.h>
#include "../fipsmodule/ec/internal.h"
EC_KEY *EC_KEY_derive_from_secret(const EC_GROUP *group, const uint8_t *secret,
size_t secret_len) {
#define EC_KEY_DERIVE_MAX_NAME_LEN 16
const char *name = EC_curve_nid2nist(EC_GROUP_get_curve_name(group));
if (name == NULL || strlen(name) > EC_KEY_DERIVE_MAX_NAME_LEN) {
OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP);
return nullptr;
}
// Assemble a label string to provide some key separation in case |secret| is
// misused, but ultimately it's on the caller to ensure |secret| is suitably
// separated.
static const char kLabel[] = "derive EC key ";
char info[sizeof(kLabel) + EC_KEY_DERIVE_MAX_NAME_LEN];
OPENSSL_strlcpy(info, kLabel, sizeof(info));
OPENSSL_strlcat(info, name, sizeof(info));
// Generate 128 bits beyond the group order so the bias is at most 2^-128.
#define EC_KEY_DERIVE_EXTRA_BITS 128
#define EC_KEY_DERIVE_EXTRA_BYTES (EC_KEY_DERIVE_EXTRA_BITS / 8)
if (EC_GROUP_order_bits(group) <= EC_KEY_DERIVE_EXTRA_BITS + 8) {
// The reduction strategy below requires the group order be large enough.
// (The actual bound is a bit tighter, but our curves are much larger than
// 128-bit.)
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
return nullptr;
}
uint8_t derived[EC_KEY_DERIVE_EXTRA_BYTES + EC_MAX_BYTES];
size_t derived_len =
BN_num_bytes(EC_GROUP_get0_order(group)) + EC_KEY_DERIVE_EXTRA_BYTES;
assert(derived_len <= sizeof(derived));
if (!HKDF(derived, derived_len, EVP_sha256(), secret, secret_len,
/*salt=*/nullptr, /*salt_len=*/0, (const uint8_t *)info,
strlen(info))) {
return nullptr;
}
bssl::UniquePtr<EC_KEY> key(EC_KEY_new());
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
bssl::UniquePtr<BIGNUM> priv(BN_bin2bn(derived, derived_len, nullptr));
bssl::UniquePtr<EC_POINT> pub(EC_POINT_new(group));
if (key == nullptr || ctx == nullptr || priv == nullptr || pub == nullptr ||
// Reduce |priv| with Montgomery reduction. First, convert "from"
// Montgomery form to compute |priv| * R^-1 mod |order|. This requires
// |priv| be under order * R, which is true if the group order is large
// enough. 2^(num_bytes(order)) < 2^8 * order, so:
//
// priv < 2^8 * order * 2^128 < order * order < order * R
!BN_from_montgomery(priv.get(), priv.get(), &group->order, ctx.get()) ||
// Multiply by R^2 and do another Montgomery reduction to compute
// priv * R^-1 * R^2 * R^-1 = priv mod order.
!BN_to_montgomery(priv.get(), priv.get(), &group->order, ctx.get()) ||
!EC_POINT_mul(group, pub.get(), priv.get(), nullptr, nullptr,
ctx.get()) ||
!EC_KEY_set_group(key.get(), group) ||
!EC_KEY_set_public_key(key.get(), pub.get()) ||
!EC_KEY_set_private_key(key.get(), priv.get())) {
OPENSSL_cleanse(derived, sizeof(derived));
return nullptr;
}
OPENSSL_cleanse(derived, sizeof(derived));
return key.release();
}