blob: a9fbdfc5aee21dcfdaa233b71b73c9daddca4c5a [file] [log] [blame]
// Copyright (c) 2019, Google Inc.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// Package subprocess contains functionality to talk to a modulewrapper for
// testing of various algorithm implementations.
package subprocess
import (
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io"
"os"
"os/exec"
)
// Transactable provides an interface to allow test injection of transactions
// that don't call a server.
type Transactable interface {
Transact(cmd string, expectedResults int, args ...[]byte) ([][]byte, error)
}
// Subprocess is a "middle" layer that interacts with a FIPS module via running
// a command and speaking a simple protocol over stdin/stdout.
type Subprocess struct {
cmd *exec.Cmd
stdin io.WriteCloser
stdout io.ReadCloser
primitives map[string]primitive
}
// New returns a new Subprocess middle layer that runs the given binary.
func New(path string) (*Subprocess, error) {
cmd := exec.Command(path)
cmd.Stderr = os.Stderr
stdin, err := cmd.StdinPipe()
if err != nil {
return nil, err
}
stdout, err := cmd.StdoutPipe()
if err != nil {
return nil, err
}
if err := cmd.Start(); err != nil {
return nil, err
}
return NewWithIO(cmd, stdin, stdout), nil
}
// NewWithIO returns a new Subprocess middle layer with the given ReadCloser and
// WriteCloser. The returned Subprocess will call Wait on the Cmd when closed.
func NewWithIO(cmd *exec.Cmd, in io.WriteCloser, out io.ReadCloser) *Subprocess {
m := &Subprocess{
cmd: cmd,
stdin: in,
stdout: out,
}
m.primitives = map[string]primitive{
"SHA-1": &hashPrimitive{"SHA-1", 20},
"SHA2-224": &hashPrimitive{"SHA2-224", 28},
"SHA2-256": &hashPrimitive{"SHA2-256", 32},
"SHA2-384": &hashPrimitive{"SHA2-384", 48},
"SHA2-512": &hashPrimitive{"SHA2-512", 64},
"ACVP-AES-ECB": &blockCipher{"AES", 16, true, false},
"ACVP-AES-CBC": &blockCipher{"AES-CBC", 16, true, true},
"ACVP-AES-CTR": &blockCipher{"AES-CTR", 16, false, true},
"ACVP-AES-GCM": &aead{"AES-GCM"},
"HMAC-SHA-1": &hmacPrimitive{"HMAC-SHA-1", 20},
"HMAC-SHA2-224": &hmacPrimitive{"HMAC-SHA2-224", 28},
"HMAC-SHA2-256": &hmacPrimitive{"HMAC-SHA2-256", 32},
"HMAC-SHA2-384": &hmacPrimitive{"HMAC-SHA2-384", 48},
"HMAC-SHA2-512": &hmacPrimitive{"HMAC-SHA2-512", 64},
"ctrDRBG": &drbg{"ctrDRBG", map[string]bool{"AES-128": true, "AES-192": true, "AES-256": true}},
"hmacDRBG": &drbg{"hmacDRBG", map[string]bool{"SHA-1": true, "SHA2-224": true, "SHA2-256": true, "SHA2-384": true, "SHA2-512": true}},
"KDF": &kdfPrimitive{},
"CMAC-AES": &keyedMACPrimitive{"CMAC-AES"},
}
m.primitives["ECDSA"] = &ecdsa{"ECDSA", map[string]bool{"P-224": true, "P-256": true, "P-384": true, "P-521": true}, m.primitives}
return m
}
// Close signals the child process to exit and waits for it to complete.
func (m *Subprocess) Close() {
m.stdout.Close()
m.stdin.Close()
m.cmd.Wait()
}
// Transact performs a single request--response pair with the subprocess.
func (m *Subprocess) Transact(cmd string, expectedResults int, args ...[]byte) ([][]byte, error) {
argLength := len(cmd)
for _, arg := range args {
argLength += len(arg)
}
buf := make([]byte, 4*(2+len(args)), 4*(2+len(args))+argLength)
binary.LittleEndian.PutUint32(buf, uint32(1+len(args)))
binary.LittleEndian.PutUint32(buf[4:], uint32(len(cmd)))
for i, arg := range args {
binary.LittleEndian.PutUint32(buf[4*(i+2):], uint32(len(arg)))
}
buf = append(buf, []byte(cmd)...)
for _, arg := range args {
buf = append(buf, arg...)
}
if _, err := m.stdin.Write(buf); err != nil {
return nil, err
}
buf = buf[:4]
if _, err := io.ReadFull(m.stdout, buf); err != nil {
return nil, err
}
numResults := binary.LittleEndian.Uint32(buf)
if int(numResults) != expectedResults {
return nil, fmt.Errorf("expected %d results from %q but got %d", expectedResults, cmd, numResults)
}
buf = make([]byte, 4*numResults)
if _, err := io.ReadFull(m.stdout, buf); err != nil {
return nil, err
}
var resultsLength uint64
for i := uint32(0); i < numResults; i++ {
resultsLength += uint64(binary.LittleEndian.Uint32(buf[4*i:]))
}
if resultsLength > (1 << 30) {
return nil, fmt.Errorf("results too large (%d bytes)", resultsLength)
}
results := make([]byte, resultsLength)
if _, err := io.ReadFull(m.stdout, results); err != nil {
return nil, err
}
ret := make([][]byte, 0, numResults)
var offset int
for i := uint32(0); i < numResults; i++ {
length := binary.LittleEndian.Uint32(buf[4*i:])
ret = append(ret, results[offset:offset+int(length)])
offset += int(length)
}
return ret, nil
}
// Config returns a JSON blob that describes the supported primitives. The
// format of the blob is defined by ACVP. See
// http://usnistgov.github.io/ACVP/artifacts/draft-fussell-acvp-spec-00.html#rfc.section.11.15.2.1
func (m *Subprocess) Config() ([]byte, error) {
results, err := m.Transact("getConfig", 1)
if err != nil {
return nil, err
}
var config []struct {
Algorithm string `json:"algorithm"`
}
if err := json.Unmarshal(results[0], &config); err != nil {
return nil, errors.New("failed to parse config response from wrapper: " + err.Error())
}
for _, algo := range config {
if _, ok := m.primitives[algo.Algorithm]; !ok {
return nil, fmt.Errorf("wrapper config advertises support for unknown algorithm %q", algo.Algorithm)
}
}
return results[0], nil
}
// Process runs a set of test vectors and returns the result.
func (m *Subprocess) Process(algorithm string, vectorSet []byte) (interface{}, error) {
prim, ok := m.primitives[algorithm]
if !ok {
return nil, fmt.Errorf("unknown algorithm %q", algorithm)
}
ret, err := prim.Process(vectorSet, m)
if err != nil {
return nil, err
}
return ret, nil
}
type primitive interface {
Process(vectorSet []byte, t Transactable) (interface{}, error)
}
func uint32le(n uint32) []byte {
var ret [4]byte
binary.LittleEndian.PutUint32(ret[:], n)
return ret[:]
}