| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // The ACTION* family of macros can be used in a namespace scope to |
| // define custom actions easily. The syntax: |
| // |
| // ACTION(name) { statements; } |
| // |
| // will define an action with the given name that executes the |
| // statements. The value returned by the statements will be used as |
| // the return value of the action. Inside the statements, you can |
| // refer to the K-th (0-based) argument of the mock function by |
| // 'argK', and refer to its type by 'argK_type'. For example: |
| // |
| // ACTION(IncrementArg1) { |
| // arg1_type temp = arg1; |
| // return ++(*temp); |
| // } |
| // |
| // allows you to write |
| // |
| // ...WillOnce(IncrementArg1()); |
| // |
| // You can also refer to the entire argument tuple and its type by |
| // 'args' and 'args_type', and refer to the mock function type and its |
| // return type by 'function_type' and 'return_type'. |
| // |
| // Note that you don't need to specify the types of the mock function |
| // arguments. However rest assured that your code is still type-safe: |
| // you'll get a compiler error if *arg1 doesn't support the ++ |
| // operator, or if the type of ++(*arg1) isn't compatible with the |
| // mock function's return type, for example. |
| // |
| // Sometimes you'll want to parameterize the action. For that you can use |
| // another macro: |
| // |
| // ACTION_P(name, param_name) { statements; } |
| // |
| // For example: |
| // |
| // ACTION_P(Add, n) { return arg0 + n; } |
| // |
| // will allow you to write: |
| // |
| // ...WillOnce(Add(5)); |
| // |
| // Note that you don't need to provide the type of the parameter |
| // either. If you need to reference the type of a parameter named |
| // 'foo', you can write 'foo_type'. For example, in the body of |
| // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type |
| // of 'n'. |
| // |
| // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support |
| // multi-parameter actions. |
| // |
| // For the purpose of typing, you can view |
| // |
| // ACTION_Pk(Foo, p1, ..., pk) { ... } |
| // |
| // as shorthand for |
| // |
| // template <typename p1_type, ..., typename pk_type> |
| // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } |
| // |
| // In particular, you can provide the template type arguments |
| // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); |
| // although usually you can rely on the compiler to infer the types |
| // for you automatically. You can assign the result of expression |
| // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., |
| // pk_type>. This can be useful when composing actions. |
| // |
| // You can also overload actions with different numbers of parameters: |
| // |
| // ACTION_P(Plus, a) { ... } |
| // ACTION_P2(Plus, a, b) { ... } |
| // |
| // While it's tempting to always use the ACTION* macros when defining |
| // a new action, you should also consider implementing ActionInterface |
| // or using MakePolymorphicAction() instead, especially if you need to |
| // use the action a lot. While these approaches require more work, |
| // they give you more control on the types of the mock function |
| // arguments and the action parameters, which in general leads to |
| // better compiler error messages that pay off in the long run. They |
| // also allow overloading actions based on parameter types (as opposed |
| // to just based on the number of parameters). |
| // |
| // CAVEAT: |
| // |
| // ACTION*() can only be used in a namespace scope as templates cannot be |
| // declared inside of a local class. |
| // Users can, however, define any local functors (e.g. a lambda) that |
| // can be used as actions. |
| // |
| // MORE INFORMATION: |
| // |
| // To learn more about using these macros, please search for 'ACTION' on |
| // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md |
| |
| // IWYU pragma: private, include "gmock/gmock.h" |
| // IWYU pragma: friend gmock/.* |
| |
| #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
| #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
| |
| #ifndef _WIN32_WCE |
| #include <errno.h> |
| #endif |
| |
| #include <algorithm> |
| #include <functional> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "gmock/internal/gmock-internal-utils.h" |
| #include "gmock/internal/gmock-port.h" |
| #include "gmock/internal/gmock-pp.h" |
| |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100) |
| |
| namespace testing { |
| |
| // To implement an action Foo, define: |
| // 1. a class FooAction that implements the ActionInterface interface, and |
| // 2. a factory function that creates an Action object from a |
| // const FooAction*. |
| // |
| // The two-level delegation design follows that of Matcher, providing |
| // consistency for extension developers. It also eases ownership |
| // management as Action objects can now be copied like plain values. |
| |
| namespace internal { |
| |
| // BuiltInDefaultValueGetter<T, true>::Get() returns a |
| // default-constructed T value. BuiltInDefaultValueGetter<T, |
| // false>::Get() crashes with an error. |
| // |
| // This primary template is used when kDefaultConstructible is true. |
| template <typename T, bool kDefaultConstructible> |
| struct BuiltInDefaultValueGetter { |
| static T Get() { return T(); } |
| }; |
| template <typename T> |
| struct BuiltInDefaultValueGetter<T, false> { |
| static T Get() { |
| Assert(false, __FILE__, __LINE__, |
| "Default action undefined for the function return type."); |
| #if defined(__GNUC__) || defined(__clang__) |
| __builtin_unreachable(); |
| #elif defined(_MSC_VER) |
| __assume(0); |
| #else |
| return Invalid<T>(); |
| // The above statement will never be reached, but is required in |
| // order for this function to compile. |
| #endif |
| } |
| }; |
| |
| // BuiltInDefaultValue<T>::Get() returns the "built-in" default value |
| // for type T, which is NULL when T is a raw pointer type, 0 when T is |
| // a numeric type, false when T is bool, or "" when T is string or |
| // std::string. In addition, in C++11 and above, it turns a |
| // default-constructed T value if T is default constructible. For any |
| // other type T, the built-in default T value is undefined, and the |
| // function will abort the process. |
| template <typename T> |
| class BuiltInDefaultValue { |
| public: |
| // This function returns true if and only if type T has a built-in default |
| // value. |
| static bool Exists() { return ::std::is_default_constructible<T>::value; } |
| |
| static T Get() { |
| return BuiltInDefaultValueGetter< |
| T, ::std::is_default_constructible<T>::value>::Get(); |
| } |
| }; |
| |
| // This partial specialization says that we use the same built-in |
| // default value for T and const T. |
| template <typename T> |
| class BuiltInDefaultValue<const T> { |
| public: |
| static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } |
| static T Get() { return BuiltInDefaultValue<T>::Get(); } |
| }; |
| |
| // This partial specialization defines the default values for pointer |
| // types. |
| template <typename T> |
| class BuiltInDefaultValue<T*> { |
| public: |
| static bool Exists() { return true; } |
| static T* Get() { return nullptr; } |
| }; |
| |
| // The following specializations define the default values for |
| // specific types we care about. |
| #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ |
| template <> \ |
| class BuiltInDefaultValue<type> { \ |
| public: \ |
| static bool Exists() { return true; } \ |
| static type Get() { return value; } \ |
| } |
| |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); |
| |
| // There's no need for a default action for signed wchar_t, as that |
| // type is the same as wchar_t for gcc, and invalid for MSVC. |
| // |
| // There's also no need for a default action for unsigned wchar_t, as |
| // that type is the same as unsigned int for gcc, and invalid for |
| // MSVC. |
| #if GMOCK_WCHAR_T_IS_NATIVE_ |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT |
| #endif |
| |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); |
| |
| #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ |
| |
| // Partial implementations of metaprogramming types from the standard library |
| // not available in C++11. |
| |
| template <typename P> |
| struct negation |
| // NOLINTNEXTLINE |
| : std::integral_constant<bool, bool(!P::value)> {}; |
| |
| // Base case: with zero predicates the answer is always true. |
| template <typename...> |
| struct conjunction : std::true_type {}; |
| |
| // With a single predicate, the answer is that predicate. |
| template <typename P1> |
| struct conjunction<P1> : P1 {}; |
| |
| // With multiple predicates the answer is the first predicate if that is false, |
| // and we recurse otherwise. |
| template <typename P1, typename... Ps> |
| struct conjunction<P1, Ps...> |
| : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {}; |
| |
| template <typename...> |
| struct disjunction : std::false_type {}; |
| |
| template <typename P1> |
| struct disjunction<P1> : P1 {}; |
| |
| template <typename P1, typename... Ps> |
| struct disjunction<P1, Ps...> |
| // NOLINTNEXTLINE |
| : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {}; |
| |
| template <typename...> |
| using void_t = void; |
| |
| // Detects whether an expression of type `From` can be implicitly converted to |
| // `To` according to [conv]. In C++17, [conv]/3 defines this as follows: |
| // |
| // An expression e can be implicitly converted to a type T if and only if |
| // the declaration T t=e; is well-formed, for some invented temporary |
| // variable t ([dcl.init]). |
| // |
| // [conv]/2 implies we can use function argument passing to detect whether this |
| // initialization is valid. |
| // |
| // Note that this is distinct from is_convertible, which requires this be valid: |
| // |
| // To test() { |
| // return declval<From>(); |
| // } |
| // |
| // In particular, is_convertible doesn't give the correct answer when `To` and |
| // `From` are the same non-moveable type since `declval<From>` will be an rvalue |
| // reference, defeating the guaranteed copy elision that would otherwise make |
| // this function work. |
| // |
| // REQUIRES: `From` is not cv void. |
| template <typename From, typename To> |
| struct is_implicitly_convertible { |
| private: |
| // A function that accepts a parameter of type T. This can be called with type |
| // U successfully only if U is implicitly convertible to T. |
| template <typename T> |
| static void Accept(T); |
| |
| // A function that creates a value of type T. |
| template <typename T> |
| static T Make(); |
| |
| // An overload be selected when implicit conversion from T to To is possible. |
| template <typename T, typename = decltype(Accept<To>(Make<T>()))> |
| static std::true_type TestImplicitConversion(int); |
| |
| // A fallback overload selected in all other cases. |
| template <typename T> |
| static std::false_type TestImplicitConversion(...); |
| |
| public: |
| using type = decltype(TestImplicitConversion<From>(0)); |
| static constexpr bool value = type::value; |
| }; |
| |
| // Like std::invoke_result_t from C++17, but works only for objects with call |
| // operators (not e.g. member function pointers, which we don't need specific |
| // support for in OnceAction because std::function deals with them). |
| template <typename F, typename... Args> |
| using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...)); |
| |
| template <typename Void, typename R, typename F, typename... Args> |
| struct is_callable_r_impl : std::false_type {}; |
| |
| // Specialize the struct for those template arguments where call_result_t is |
| // well-formed. When it's not, the generic template above is chosen, resulting |
| // in std::false_type. |
| template <typename R, typename F, typename... Args> |
| struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...> |
| : std::conditional< |
| std::is_void<R>::value, // |
| std::true_type, // |
| is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {}; |
| |
| // Like std::is_invocable_r from C++17, but works only for objects with call |
| // operators. See the note on call_result_t. |
| template <typename R, typename F, typename... Args> |
| using is_callable_r = is_callable_r_impl<void, R, F, Args...>; |
| |
| // Like std::as_const from C++17. |
| template <typename T> |
| typename std::add_const<T>::type& as_const(T& t) { |
| return t; |
| } |
| |
| } // namespace internal |
| |
| // Specialized for function types below. |
| template <typename F> |
| class OnceAction; |
| |
| // An action that can only be used once. |
| // |
| // This is accepted by WillOnce, which doesn't require the underlying action to |
| // be copy-constructible (only move-constructible), and promises to invoke it as |
| // an rvalue reference. This allows the action to work with move-only types like |
| // std::move_only_function in a type-safe manner. |
| // |
| // For example: |
| // |
| // // Assume we have some API that needs to accept a unique pointer to some |
| // // non-copyable object Foo. |
| // void AcceptUniquePointer(std::unique_ptr<Foo> foo); |
| // |
| // // We can define an action that provides a Foo to that API. Because It |
| // // has to give away its unique pointer, it must not be called more than |
| // // once, so its call operator is &&-qualified. |
| // struct ProvideFoo { |
| // std::unique_ptr<Foo> foo; |
| // |
| // void operator()() && { |
| // AcceptUniquePointer(std::move(Foo)); |
| // } |
| // }; |
| // |
| // // This action can be used with WillOnce. |
| // EXPECT_CALL(mock, Call) |
| // .WillOnce(ProvideFoo{std::make_unique<Foo>(...)}); |
| // |
| // // But a call to WillRepeatedly will fail to compile. This is correct, |
| // // since the action cannot correctly be used repeatedly. |
| // EXPECT_CALL(mock, Call) |
| // .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)}); |
| // |
| // A less-contrived example would be an action that returns an arbitrary type, |
| // whose &&-qualified call operator is capable of dealing with move-only types. |
| template <typename Result, typename... Args> |
| class OnceAction<Result(Args...)> final { |
| private: |
| // True iff we can use the given callable type (or lvalue reference) directly |
| // via StdFunctionAdaptor. |
| template <typename Callable> |
| using IsDirectlyCompatible = internal::conjunction< |
| // It must be possible to capture the callable in StdFunctionAdaptor. |
| std::is_constructible<typename std::decay<Callable>::type, Callable>, |
| // The callable must be compatible with our signature. |
| internal::is_callable_r<Result, typename std::decay<Callable>::type, |
| Args...>>; |
| |
| // True iff we can use the given callable type via StdFunctionAdaptor once we |
| // ignore incoming arguments. |
| template <typename Callable> |
| using IsCompatibleAfterIgnoringArguments = internal::conjunction< |
| // It must be possible to capture the callable in a lambda. |
| std::is_constructible<typename std::decay<Callable>::type, Callable>, |
| // The callable must be invocable with zero arguments, returning something |
| // convertible to Result. |
| internal::is_callable_r<Result, typename std::decay<Callable>::type>>; |
| |
| public: |
| // Construct from a callable that is directly compatible with our mocked |
| // signature: it accepts our function type's arguments and returns something |
| // convertible to our result type. |
| template <typename Callable, |
| typename std::enable_if< |
| internal::conjunction< |
| // Teach clang on macOS that we're not talking about a |
| // copy/move constructor here. Otherwise it gets confused |
| // when checking the is_constructible requirement of our |
| // traits above. |
| internal::negation<std::is_same< |
| OnceAction, typename std::decay<Callable>::type>>, |
| IsDirectlyCompatible<Callable>> // |
| ::value, |
| int>::type = 0> |
| OnceAction(Callable&& callable) // NOLINT |
| : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>( |
| {}, std::forward<Callable>(callable))) {} |
| |
| // As above, but for a callable that ignores the mocked function's arguments. |
| template <typename Callable, |
| typename std::enable_if< |
| internal::conjunction< |
| // Teach clang on macOS that we're not talking about a |
| // copy/move constructor here. Otherwise it gets confused |
| // when checking the is_constructible requirement of our |
| // traits above. |
| internal::negation<std::is_same< |
| OnceAction, typename std::decay<Callable>::type>>, |
| // Exclude callables for which the overload above works. |
| // We'd rather provide the arguments if possible. |
| internal::negation<IsDirectlyCompatible<Callable>>, |
| IsCompatibleAfterIgnoringArguments<Callable>>::value, |
| int>::type = 0> |
| OnceAction(Callable&& callable) // NOLINT |
| // Call the constructor above with a callable |
| // that ignores the input arguments. |
| : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{ |
| std::forward<Callable>(callable)}) {} |
| |
| // We are naturally copyable because we store only an std::function, but |
| // semantically we should not be copyable. |
| OnceAction(const OnceAction&) = delete; |
| OnceAction& operator=(const OnceAction&) = delete; |
| OnceAction(OnceAction&&) = default; |
| |
| // Invoke the underlying action callable with which we were constructed, |
| // handing it the supplied arguments. |
| Result Call(Args... args) && { |
| return function_(std::forward<Args>(args)...); |
| } |
| |
| private: |
| // An adaptor that wraps a callable that is compatible with our signature and |
| // being invoked as an rvalue reference so that it can be used as an |
| // StdFunctionAdaptor. This throws away type safety, but that's fine because |
| // this is only used by WillOnce, which we know calls at most once. |
| // |
| // Once we have something like std::move_only_function from C++23, we can do |
| // away with this. |
| template <typename Callable> |
| class StdFunctionAdaptor final { |
| public: |
| // A tag indicating that the (otherwise universal) constructor is accepting |
| // the callable itself, instead of e.g. stealing calls for the move |
| // constructor. |
| struct CallableTag final {}; |
| |
| template <typename F> |
| explicit StdFunctionAdaptor(CallableTag, F&& callable) |
| : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {} |
| |
| // Rather than explicitly returning Result, we return whatever the wrapped |
| // callable returns. This allows for compatibility with existing uses like |
| // the following, when the mocked function returns void: |
| // |
| // EXPECT_CALL(mock_fn_, Call) |
| // .WillOnce([&] { |
| // [...] |
| // return 0; |
| // }); |
| // |
| // Such a callable can be turned into std::function<void()>. If we use an |
| // explicit return type of Result here then it *doesn't* work with |
| // std::function, because we'll get a "void function should not return a |
| // value" error. |
| // |
| // We need not worry about incompatible result types because the SFINAE on |
| // OnceAction already checks this for us. std::is_invocable_r_v itself makes |
| // the same allowance for void result types. |
| template <typename... ArgRefs> |
| internal::call_result_t<Callable, ArgRefs...> operator()( |
| ArgRefs&&... args) const { |
| return std::move(*callable_)(std::forward<ArgRefs>(args)...); |
| } |
| |
| private: |
| // We must put the callable on the heap so that we are copyable, which |
| // std::function needs. |
| std::shared_ptr<Callable> callable_; |
| }; |
| |
| // An adaptor that makes a callable that accepts zero arguments callable with |
| // our mocked arguments. |
| template <typename Callable> |
| struct IgnoreIncomingArguments { |
| internal::call_result_t<Callable> operator()(Args&&...) { |
| return std::move(callable)(); |
| } |
| |
| Callable callable; |
| }; |
| |
| std::function<Result(Args...)> function_; |
| }; |
| |
| // When an unexpected function call is encountered, Google Mock will |
| // let it return a default value if the user has specified one for its |
| // return type, or if the return type has a built-in default value; |
| // otherwise Google Mock won't know what value to return and will have |
| // to abort the process. |
| // |
| // The DefaultValue<T> class allows a user to specify the |
| // default value for a type T that is both copyable and publicly |
| // destructible (i.e. anything that can be used as a function return |
| // type). The usage is: |
| // |
| // // Sets the default value for type T to be foo. |
| // DefaultValue<T>::Set(foo); |
| template <typename T> |
| class DefaultValue { |
| public: |
| // Sets the default value for type T; requires T to be |
| // copy-constructable and have a public destructor. |
| static void Set(T x) { |
| delete producer_; |
| producer_ = new FixedValueProducer(x); |
| } |
| |
| // Provides a factory function to be called to generate the default value. |
| // This method can be used even if T is only move-constructible, but it is not |
| // limited to that case. |
| typedef T (*FactoryFunction)(); |
| static void SetFactory(FactoryFunction factory) { |
| delete producer_; |
| producer_ = new FactoryValueProducer(factory); |
| } |
| |
| // Unsets the default value for type T. |
| static void Clear() { |
| delete producer_; |
| producer_ = nullptr; |
| } |
| |
| // Returns true if and only if the user has set the default value for type T. |
| static bool IsSet() { return producer_ != nullptr; } |
| |
| // Returns true if T has a default return value set by the user or there |
| // exists a built-in default value. |
| static bool Exists() { |
| return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); |
| } |
| |
| // Returns the default value for type T if the user has set one; |
| // otherwise returns the built-in default value. Requires that Exists() |
| // is true, which ensures that the return value is well-defined. |
| static T Get() { |
| return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() |
| : producer_->Produce(); |
| } |
| |
| private: |
| class ValueProducer { |
| public: |
| virtual ~ValueProducer() = default; |
| virtual T Produce() = 0; |
| }; |
| |
| class FixedValueProducer : public ValueProducer { |
| public: |
| explicit FixedValueProducer(T value) : value_(value) {} |
| T Produce() override { return value_; } |
| |
| private: |
| const T value_; |
| FixedValueProducer(const FixedValueProducer&) = delete; |
| FixedValueProducer& operator=(const FixedValueProducer&) = delete; |
| }; |
| |
| class FactoryValueProducer : public ValueProducer { |
| public: |
| explicit FactoryValueProducer(FactoryFunction factory) |
| : factory_(factory) {} |
| T Produce() override { return factory_(); } |
| |
| private: |
| const FactoryFunction factory_; |
| FactoryValueProducer(const FactoryValueProducer&) = delete; |
| FactoryValueProducer& operator=(const FactoryValueProducer&) = delete; |
| }; |
| |
| static ValueProducer* producer_; |
| }; |
| |
| // This partial specialization allows a user to set default values for |
| // reference types. |
| template <typename T> |
| class DefaultValue<T&> { |
| public: |
| // Sets the default value for type T&. |
| static void Set(T& x) { // NOLINT |
| address_ = &x; |
| } |
| |
| // Unsets the default value for type T&. |
| static void Clear() { address_ = nullptr; } |
| |
| // Returns true if and only if the user has set the default value for type T&. |
| static bool IsSet() { return address_ != nullptr; } |
| |
| // Returns true if T has a default return value set by the user or there |
| // exists a built-in default value. |
| static bool Exists() { |
| return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); |
| } |
| |
| // Returns the default value for type T& if the user has set one; |
| // otherwise returns the built-in default value if there is one; |
| // otherwise aborts the process. |
| static T& Get() { |
| return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() |
| : *address_; |
| } |
| |
| private: |
| static T* address_; |
| }; |
| |
| // This specialization allows DefaultValue<void>::Get() to |
| // compile. |
| template <> |
| class DefaultValue<void> { |
| public: |
| static bool Exists() { return true; } |
| static void Get() {} |
| }; |
| |
| // Points to the user-set default value for type T. |
| template <typename T> |
| typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; |
| |
| // Points to the user-set default value for type T&. |
| template <typename T> |
| T* DefaultValue<T&>::address_ = nullptr; |
| |
| // Implement this interface to define an action for function type F. |
| template <typename F> |
| class ActionInterface { |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| ActionInterface() = default; |
| virtual ~ActionInterface() = default; |
| |
| // Performs the action. This method is not const, as in general an |
| // action can have side effects and be stateful. For example, a |
| // get-the-next-element-from-the-collection action will need to |
| // remember the current element. |
| virtual Result Perform(const ArgumentTuple& args) = 0; |
| |
| private: |
| ActionInterface(const ActionInterface&) = delete; |
| ActionInterface& operator=(const ActionInterface&) = delete; |
| }; |
| |
| template <typename F> |
| class Action; |
| |
| // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment) |
| // object that represents an action to be taken when a mock function of type |
| // R(Args...) is called. The implementation of Action<T> is just a |
| // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You |
| // can view an object implementing ActionInterface<F> as a concrete action |
| // (including its current state), and an Action<F> object as a handle to it. |
| template <typename R, typename... Args> |
| class Action<R(Args...)> { |
| private: |
| using F = R(Args...); |
| |
| // Adapter class to allow constructing Action from a legacy ActionInterface. |
| // New code should create Actions from functors instead. |
| struct ActionAdapter { |
| // Adapter must be copyable to satisfy std::function requirements. |
| ::std::shared_ptr<ActionInterface<F>> impl_; |
| |
| template <typename... InArgs> |
| typename internal::Function<F>::Result operator()(InArgs&&... args) { |
| return impl_->Perform( |
| ::std::forward_as_tuple(::std::forward<InArgs>(args)...)); |
| } |
| }; |
| |
| template <typename G> |
| using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; |
| |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| // Constructs a null Action. Needed for storing Action objects in |
| // STL containers. |
| Action() = default; |
| |
| // Construct an Action from a specified callable. |
| // This cannot take std::function directly, because then Action would not be |
| // directly constructible from lambda (it would require two conversions). |
| template < |
| typename G, |
| typename = typename std::enable_if<internal::disjunction< |
| IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, |
| G>>::value>::type> |
| Action(G&& fun) { // NOLINT |
| Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); |
| } |
| |
| // Constructs an Action from its implementation. |
| explicit Action(ActionInterface<F>* impl) |
| : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} |
| |
| // This constructor allows us to turn an Action<Func> object into an |
| // Action<F>, as long as F's arguments can be implicitly converted |
| // to Func's and Func's return type can be implicitly converted to F's. |
| template <typename Func> |
| Action(const Action<Func>& action) // NOLINT |
| : fun_(action.fun_) {} |
| |
| // Returns true if and only if this is the DoDefault() action. |
| bool IsDoDefault() const { return fun_ == nullptr; } |
| |
| // Performs the action. Note that this method is const even though |
| // the corresponding method in ActionInterface is not. The reason |
| // is that a const Action<F> means that it cannot be re-bound to |
| // another concrete action, not that the concrete action it binds to |
| // cannot change state. (Think of the difference between a const |
| // pointer and a pointer to const.) |
| Result Perform(ArgumentTuple args) const { |
| if (IsDoDefault()) { |
| internal::IllegalDoDefault(__FILE__, __LINE__); |
| } |
| return internal::Apply(fun_, ::std::move(args)); |
| } |
| |
| // An action can be used as a OnceAction, since it's obviously safe to call it |
| // once. |
| operator OnceAction<F>() const { // NOLINT |
| // Return a OnceAction-compatible callable that calls Perform with the |
| // arguments it is provided. We could instead just return fun_, but then |
| // we'd need to handle the IsDoDefault() case separately. |
| struct OA { |
| Action<F> action; |
| |
| R operator()(Args... args) && { |
| return action.Perform( |
| std::forward_as_tuple(std::forward<Args>(args)...)); |
| } |
| }; |
| |
| return OA{*this}; |
| } |
| |
| private: |
| template <typename G> |
| friend class Action; |
| |
| template <typename G> |
| void Init(G&& g, ::std::true_type) { |
| fun_ = ::std::forward<G>(g); |
| } |
| |
| template <typename G> |
| void Init(G&& g, ::std::false_type) { |
| fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; |
| } |
| |
| template <typename FunctionImpl> |
| struct IgnoreArgs { |
| template <typename... InArgs> |
| Result operator()(const InArgs&...) const { |
| return function_impl(); |
| } |
| |
| FunctionImpl function_impl; |
| }; |
| |
| // fun_ is an empty function if and only if this is the DoDefault() action. |
| ::std::function<F> fun_; |
| }; |
| |
| // The PolymorphicAction class template makes it easy to implement a |
| // polymorphic action (i.e. an action that can be used in mock |
| // functions of than one type, e.g. Return()). |
| // |
| // To define a polymorphic action, a user first provides a COPYABLE |
| // implementation class that has a Perform() method template: |
| // |
| // class FooAction { |
| // public: |
| // template <typename Result, typename ArgumentTuple> |
| // Result Perform(const ArgumentTuple& args) const { |
| // // Processes the arguments and returns a result, using |
| // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. |
| // } |
| // ... |
| // }; |
| // |
| // Then the user creates the polymorphic action using |
| // MakePolymorphicAction(object) where object has type FooAction. See |
| // the definition of Return(void) and SetArgumentPointee<N>(value) for |
| // complete examples. |
| template <typename Impl> |
| class PolymorphicAction { |
| public: |
| explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} |
| |
| template <typename F> |
| operator Action<F>() const { |
| return Action<F>(new MonomorphicImpl<F>(impl_)); |
| } |
| |
| private: |
| template <typename F> |
| class MonomorphicImpl : public ActionInterface<F> { |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} |
| |
| Result Perform(const ArgumentTuple& args) override { |
| return impl_.template Perform<Result>(args); |
| } |
| |
| private: |
| Impl impl_; |
| }; |
| |
| Impl impl_; |
| }; |
| |
| // Creates an Action from its implementation and returns it. The |
| // created Action object owns the implementation. |
| template <typename F> |
| Action<F> MakeAction(ActionInterface<F>* impl) { |
| return Action<F>(impl); |
| } |
| |
| // Creates a polymorphic action from its implementation. This is |
| // easier to use than the PolymorphicAction<Impl> constructor as it |
| // doesn't require you to explicitly write the template argument, e.g. |
| // |
| // MakePolymorphicAction(foo); |
| // vs |
| // PolymorphicAction<TypeOfFoo>(foo); |
| template <typename Impl> |
| inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { |
| return PolymorphicAction<Impl>(impl); |
| } |
| |
| namespace internal { |
| |
| // Helper struct to specialize ReturnAction to execute a move instead of a copy |
| // on return. Useful for move-only types, but could be used on any type. |
| template <typename T> |
| struct ByMoveWrapper { |
| explicit ByMoveWrapper(T value) : payload(std::move(value)) {} |
| T payload; |
| }; |
| |
| // The general implementation of Return(R). Specializations follow below. |
| template <typename R> |
| class ReturnAction final { |
| public: |
| explicit ReturnAction(R value) : value_(std::move(value)) {} |
| |
| template <typename U, typename... Args, |
| typename = typename std::enable_if<conjunction< |
| // See the requirements documented on Return. |
| negation<std::is_same<void, U>>, // |
| negation<std::is_reference<U>>, // |
| std::is_convertible<R, U>, // |
| std::is_move_constructible<U>>::value>::type> |
| operator OnceAction<U(Args...)>() && { // NOLINT |
| return Impl<U>(std::move(value_)); |
| } |
| |
| template <typename U, typename... Args, |
| typename = typename std::enable_if<conjunction< |
| // See the requirements documented on Return. |
| negation<std::is_same<void, U>>, // |
| negation<std::is_reference<U>>, // |
| std::is_convertible<const R&, U>, // |
| std::is_copy_constructible<U>>::value>::type> |
| operator Action<U(Args...)>() const { // NOLINT |
| return Impl<U>(value_); |
| } |
| |
| private: |
| // Implements the Return(x) action for a mock function that returns type U. |
| template <typename U> |
| class Impl final { |
| public: |
| // The constructor used when the return value is allowed to move from the |
| // input value (i.e. we are converting to OnceAction). |
| explicit Impl(R&& input_value) |
| : state_(new State(std::move(input_value))) {} |
| |
| // The constructor used when the return value is not allowed to move from |
| // the input value (i.e. we are converting to Action). |
| explicit Impl(const R& input_value) : state_(new State(input_value)) {} |
| |
| U operator()() && { return std::move(state_->value); } |
| U operator()() const& { return state_->value; } |
| |
| private: |
| // We put our state on the heap so that the compiler-generated copy/move |
| // constructors work correctly even when U is a reference-like type. This is |
| // necessary only because we eagerly create State::value (see the note on |
| // that symbol for details). If we instead had only the input value as a |
| // member then the default constructors would work fine. |
| // |
| // For example, when R is std::string and U is std::string_view, value is a |
| // reference to the string backed by input_value. The copy constructor would |
| // copy both, so that we wind up with a new input_value object (with the |
| // same contents) and a reference to the *old* input_value object rather |
| // than the new one. |
| struct State { |
| explicit State(const R& input_value_in) |
| : input_value(input_value_in), |
| // Make an implicit conversion to Result before initializing the U |
| // object we store, avoiding calling any explicit constructor of U |
| // from R. |
| // |
| // This simulates the language rules: a function with return type U |
| // that does `return R()` requires R to be implicitly convertible to |
| // U, and uses that path for the conversion, even U Result has an |
| // explicit constructor from R. |
| value(ImplicitCast_<U>(internal::as_const(input_value))) {} |
| |
| // As above, but for the case where we're moving from the ReturnAction |
| // object because it's being used as a OnceAction. |
| explicit State(R&& input_value_in) |
| : input_value(std::move(input_value_in)), |
| // For the same reason as above we make an implicit conversion to U |
| // before initializing the value. |
| // |
| // Unlike above we provide the input value as an rvalue to the |
| // implicit conversion because this is a OnceAction: it's fine if it |
| // wants to consume the input value. |
| value(ImplicitCast_<U>(std::move(input_value))) {} |
| |
| // A copy of the value originally provided by the user. We retain this in |
| // addition to the value of the mock function's result type below in case |
| // the latter is a reference-like type. See the std::string_view example |
| // in the documentation on Return. |
| R input_value; |
| |
| // The value we actually return, as the type returned by the mock function |
| // itself. |
| // |
| // We eagerly initialize this here, rather than lazily doing the implicit |
| // conversion automatically each time Perform is called, for historical |
| // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126) |
| // made the Action<U()> conversion operator eagerly convert the R value to |
| // U, but without keeping the R alive. This broke the use case discussed |
| // in the documentation for Return, making reference-like types such as |
| // std::string_view not safe to use as U where the input type R is a |
| // value-like type such as std::string. |
| // |
| // The example the commit gave was not very clear, nor was the issue |
| // thread (https://github.com/google/googlemock/issues/86), but it seems |
| // the worry was about reference-like input types R that flatten to a |
| // value-like type U when being implicitly converted. An example of this |
| // is std::vector<bool>::reference, which is often a proxy type with an |
| // reference to the underlying vector: |
| // |
| // // Helper method: have the mock function return bools according |
| // // to the supplied script. |
| // void SetActions(MockFunction<bool(size_t)>& mock, |
| // const std::vector<bool>& script) { |
| // for (size_t i = 0; i < script.size(); ++i) { |
| // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i])); |
| // } |
| // } |
| // |
| // TEST(Foo, Bar) { |
| // // Set actions using a temporary vector, whose operator[] |
| // // returns proxy objects that references that will be |
| // // dangling once the call to SetActions finishes and the |
| // // vector is destroyed. |
| // MockFunction<bool(size_t)> mock; |
| // SetActions(mock, {false, true}); |
| // |
| // EXPECT_FALSE(mock.AsStdFunction()(0)); |
| // EXPECT_TRUE(mock.AsStdFunction()(1)); |
| // } |
| // |
| // This eager conversion helps with a simple case like this, but doesn't |
| // fully make these types work in general. For example the following still |
| // uses a dangling reference: |
| // |
| // TEST(Foo, Baz) { |
| // MockFunction<std::vector<std::string>()> mock; |
| // |
| // // Return the same vector twice, and then the empty vector |
| // // thereafter. |
| // auto action = Return(std::initializer_list<std::string>{ |
| // "taco", "burrito", |
| // }); |
| // |
| // EXPECT_CALL(mock, Call) |
| // .WillOnce(action) |
| // .WillOnce(action) |
| // .WillRepeatedly(Return(std::vector<std::string>{})); |
| // |
| // EXPECT_THAT(mock.AsStdFunction()(), |
| // ElementsAre("taco", "burrito")); |
| // EXPECT_THAT(mock.AsStdFunction()(), |
| // ElementsAre("taco", "burrito")); |
| // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty()); |
| // } |
| // |
| U value; |
| }; |
| |
| const std::shared_ptr<State> state_; |
| }; |
| |
| R value_; |
| }; |
| |
| // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T. |
| // |
| // This version applies the type system-defeating hack of moving from T even in |
| // the const call operator, checking at runtime that it isn't called more than |
| // once, since the user has declared their intent to do so by using ByMove. |
| template <typename T> |
| class ReturnAction<ByMoveWrapper<T>> final { |
| public: |
| explicit ReturnAction(ByMoveWrapper<T> wrapper) |
| : state_(new State(std::move(wrapper.payload))) {} |
| |
| T operator()() const { |
| GTEST_CHECK_(!state_->called) |
| << "A ByMove() action must be performed at most once."; |
| |
| state_->called = true; |
| return std::move(state_->value); |
| } |
| |
| private: |
| // We store our state on the heap so that we are copyable as required by |
| // Action, despite the fact that we are stateful and T may not be copyable. |
| struct State { |
| explicit State(T&& value_in) : value(std::move(value_in)) {} |
| |
| T value; |
| bool called = false; |
| }; |
| |
| const std::shared_ptr<State> state_; |
| }; |
| |
| // Implements the ReturnNull() action. |
| class ReturnNullAction { |
| public: |
| // Allows ReturnNull() to be used in any pointer-returning function. In C++11 |
| // this is enforced by returning nullptr, and in non-C++11 by asserting a |
| // pointer type on compile time. |
| template <typename Result, typename ArgumentTuple> |
| static Result Perform(const ArgumentTuple&) { |
| return nullptr; |
| } |
| }; |
| |
| // Implements the Return() action. |
| class ReturnVoidAction { |
| public: |
| // Allows Return() to be used in any void-returning function. |
| template <typename Result, typename ArgumentTuple> |
| static void Perform(const ArgumentTuple&) { |
| static_assert(std::is_void<Result>::value, "Result should be void."); |
| } |
| }; |
| |
| // Implements the polymorphic ReturnRef(x) action, which can be used |
| // in any function that returns a reference to the type of x, |
| // regardless of the argument types. |
| template <typename T> |
| class ReturnRefAction { |
| public: |
| // Constructs a ReturnRefAction object from the reference to be returned. |
| explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT |
| |
| // This template type conversion operator allows ReturnRef(x) to be |
| // used in ANY function that returns a reference to x's type. |
| template <typename F> |
| operator Action<F>() const { |
| typedef typename Function<F>::Result Result; |
| // Asserts that the function return type is a reference. This |
| // catches the user error of using ReturnRef(x) when Return(x) |
| // should be used, and generates some helpful error message. |
| static_assert(std::is_reference<Result>::value, |
| "use Return instead of ReturnRef to return a value"); |
| return Action<F>(new Impl<F>(ref_)); |
| } |
| |
| private: |
| // Implements the ReturnRef(x) action for a particular function type F. |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(T& ref) : ref_(ref) {} // NOLINT |
| |
| Result Perform(const ArgumentTuple&) override { return ref_; } |
| |
| private: |
| T& ref_; |
| }; |
| |
| T& ref_; |
| }; |
| |
| // Implements the polymorphic ReturnRefOfCopy(x) action, which can be |
| // used in any function that returns a reference to the type of x, |
| // regardless of the argument types. |
| template <typename T> |
| class ReturnRefOfCopyAction { |
| public: |
| // Constructs a ReturnRefOfCopyAction object from the reference to |
| // be returned. |
| explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT |
| |
| // This template type conversion operator allows ReturnRefOfCopy(x) to be |
| // used in ANY function that returns a reference to x's type. |
| template <typename F> |
| operator Action<F>() const { |
| typedef typename Function<F>::Result Result; |
| // Asserts that the function return type is a reference. This |
| // catches the user error of using ReturnRefOfCopy(x) when Return(x) |
| // should be used, and generates some helpful error message. |
| static_assert(std::is_reference<Result>::value, |
| "use Return instead of ReturnRefOfCopy to return a value"); |
| return Action<F>(new Impl<F>(value_)); |
| } |
| |
| private: |
| // Implements the ReturnRefOfCopy(x) action for a particular function type F. |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(const T& value) : value_(value) {} // NOLINT |
| |
| Result Perform(const ArgumentTuple&) override { return value_; } |
| |
| private: |
| T value_; |
| }; |
| |
| const T value_; |
| }; |
| |
| // Implements the polymorphic ReturnRoundRobin(v) action, which can be |
| // used in any function that returns the element_type of v. |
| template <typename T> |
| class ReturnRoundRobinAction { |
| public: |
| explicit ReturnRoundRobinAction(std::vector<T> values) { |
| GTEST_CHECK_(!values.empty()) |
| << "ReturnRoundRobin requires at least one element."; |
| state_->values = std::move(values); |
| } |
| |
| template <typename... Args> |
| T operator()(Args&&...) const { |
| return state_->Next(); |
| } |
| |
| private: |
| struct State { |
| T Next() { |
| T ret_val = values[i++]; |
| if (i == values.size()) i = 0; |
| return ret_val; |
| } |
| |
| std::vector<T> values; |
| size_t i = 0; |
| }; |
| std::shared_ptr<State> state_ = std::make_shared<State>(); |
| }; |
| |
| // Implements the polymorphic DoDefault() action. |
| class DoDefaultAction { |
| public: |
| // This template type conversion operator allows DoDefault() to be |
| // used in any function. |
| template <typename F> |
| operator Action<F>() const { |
| return Action<F>(); |
| } // NOLINT |
| }; |
| |
| // Implements the Assign action to set a given pointer referent to a |
| // particular value. |
| template <typename T1, typename T2> |
| class AssignAction { |
| public: |
| AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} |
| |
| template <typename Result, typename ArgumentTuple> |
| void Perform(const ArgumentTuple& /* args */) const { |
| *ptr_ = value_; |
| } |
| |
| private: |
| T1* const ptr_; |
| const T2 value_; |
| }; |
| |
| #ifndef GTEST_OS_WINDOWS_MOBILE |
| |
| // Implements the SetErrnoAndReturn action to simulate return from |
| // various system calls and libc functions. |
| template <typename T> |
| class SetErrnoAndReturnAction { |
| public: |
| SetErrnoAndReturnAction(int errno_value, T result) |
| : errno_(errno_value), result_(result) {} |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple& /* args */) const { |
| errno = errno_; |
| return result_; |
| } |
| |
| private: |
| const int errno_; |
| const T result_; |
| }; |
| |
| #endif // !GTEST_OS_WINDOWS_MOBILE |
| |
| // Implements the SetArgumentPointee<N>(x) action for any function |
| // whose N-th argument (0-based) is a pointer to x's type. |
| template <size_t N, typename A, typename = void> |
| struct SetArgumentPointeeAction { |
| A value; |
| |
| template <typename... Args> |
| void operator()(const Args&... args) const { |
| *::std::get<N>(std::tie(args...)) = value; |
| } |
| }; |
| |
| // Implements the Invoke(object_ptr, &Class::Method) action. |
| template <class Class, typename MethodPtr> |
| struct InvokeMethodAction { |
| Class* const obj_ptr; |
| const MethodPtr method_ptr; |
| |
| template <typename... Args> |
| auto operator()(Args&&... args) const |
| -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { |
| return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); |
| } |
| }; |
| |
| // Implements the InvokeWithoutArgs(f) action. The template argument |
| // FunctionImpl is the implementation type of f, which can be either a |
| // function pointer or a functor. InvokeWithoutArgs(f) can be used as an |
| // Action<F> as long as f's type is compatible with F. |
| template <typename FunctionImpl> |
| struct InvokeWithoutArgsAction { |
| FunctionImpl function_impl; |
| |
| // Allows InvokeWithoutArgs(f) to be used as any action whose type is |
| // compatible with f. |
| template <typename... Args> |
| auto operator()(const Args&...) -> decltype(function_impl()) { |
| return function_impl(); |
| } |
| }; |
| |
| // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. |
| template <class Class, typename MethodPtr> |
| struct InvokeMethodWithoutArgsAction { |
| Class* const obj_ptr; |
| const MethodPtr method_ptr; |
| |
| using ReturnType = |
| decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); |
| |
| template <typename... Args> |
| ReturnType operator()(const Args&...) const { |
| return (obj_ptr->*method_ptr)(); |
| } |
| }; |
| |
| // Implements the IgnoreResult(action) action. |
| template <typename A> |
| class IgnoreResultAction { |
| public: |
| explicit IgnoreResultAction(const A& action) : action_(action) {} |
| |
| template <typename F> |
| operator Action<F>() const { |
| // Assert statement belongs here because this is the best place to verify |
| // conditions on F. It produces the clearest error messages |
| // in most compilers. |
| // Impl really belongs in this scope as a local class but can't |
| // because MSVC produces duplicate symbols in different translation units |
| // in this case. Until MS fixes that bug we put Impl into the class scope |
| // and put the typedef both here (for use in assert statement) and |
| // in the Impl class. But both definitions must be the same. |
| typedef typename internal::Function<F>::Result Result; |
| |
| // Asserts at compile time that F returns void. |
| static_assert(std::is_void<Result>::value, "Result type should be void."); |
| |
| return Action<F>(new Impl<F>(action_)); |
| } |
| |
| private: |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(const A& action) : action_(action) {} |
| |
| void Perform(const ArgumentTuple& args) override { |
| // Performs the action and ignores its result. |
| action_.Perform(args); |
| } |
| |
| private: |
| // Type OriginalFunction is the same as F except that its return |
| // type is IgnoredValue. |
| typedef |
| typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; |
| |
| const Action<OriginalFunction> action_; |
| }; |
| |
| const A action_; |
| }; |
| |
| template <typename InnerAction, size_t... I> |
| struct WithArgsAction { |
| InnerAction inner_action; |
| |
| // The signature of the function as seen by the inner action, given an out |
| // action with the given result and argument types. |
| template <typename R, typename... Args> |
| using InnerSignature = |
| R(typename std::tuple_element<I, std::tuple<Args...>>::type...); |
| |
| // Rather than a call operator, we must define conversion operators to |
| // particular action types. This is necessary for embedded actions like |
| // DoDefault(), which rely on an action conversion operators rather than |
| // providing a call operator because even with a particular set of arguments |
| // they don't have a fixed return type. |
| |
| template < |
| typename R, typename... Args, |
| typename std::enable_if< |
| std::is_convertible<InnerAction, |
| // Unfortunately we can't use the InnerSignature |
| // alias here; MSVC complains about the I |
| // parameter pack not being expanded (error C3520) |
| // despite it being expanded in the type alias. |
| // TupleElement is also an MSVC workaround. |
| // See its definition for details. |
| OnceAction<R(internal::TupleElement< |
| I, std::tuple<Args...>>...)>>::value, |
| int>::type = 0> |
| operator OnceAction<R(Args...)>() && { // NOLINT |
| struct OA { |
| OnceAction<InnerSignature<R, Args...>> inner_action; |
| |
| R operator()(Args&&... args) && { |
| return std::move(inner_action) |
| .Call(std::get<I>( |
| std::forward_as_tuple(std::forward<Args>(args)...))...); |
| } |
| }; |
| |
| return OA{std::move(inner_action)}; |
| } |
| |
| template < |
| typename R, typename... Args, |
| typename std::enable_if< |
| std::is_convertible<const InnerAction&, |
| // Unfortunately we can't use the InnerSignature |
| // alias here; MSVC complains about the I |
| // parameter pack not being expanded (error C3520) |
| // despite it being expanded in the type alias. |
| // TupleElement is also an MSVC workaround. |
| // See its definition for details. |
| Action<R(internal::TupleElement< |
| I, std::tuple<Args...>>...)>>::value, |
| int>::type = 0> |
| operator Action<R(Args...)>() const { // NOLINT |
| Action<InnerSignature<R, Args...>> converted(inner_action); |
| |
| return [converted](Args&&... args) -> R { |
| return converted.Perform(std::forward_as_tuple( |
| std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); |
| }; |
| } |
| }; |
| |
| template <typename... Actions> |
| class DoAllAction; |
| |
| // Base case: only a single action. |
| template <typename FinalAction> |
| class DoAllAction<FinalAction> { |
| public: |
| struct UserConstructorTag {}; |
| |
| template <typename T> |
| explicit DoAllAction(UserConstructorTag, T&& action) |
| : final_action_(std::forward<T>(action)) {} |
| |
| // Rather than a call operator, we must define conversion operators to |
| // particular action types. This is necessary for embedded actions like |
| // DoDefault(), which rely on an action conversion operators rather than |
| // providing a call operator because even with a particular set of arguments |
| // they don't have a fixed return type. |
| |
| template <typename R, typename... Args, |
| typename std::enable_if< |
| std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value, |
| int>::type = 0> |
| operator OnceAction<R(Args...)>() && { // NOLINT |
| return std::move(final_action_); |
| } |
| |
| template < |
| typename R, typename... Args, |
| typename std::enable_if< |
| std::is_convertible<const FinalAction&, Action<R(Args...)>>::value, |
| int>::type = 0> |
| operator Action<R(Args...)>() const { // NOLINT |
| return final_action_; |
| } |
| |
| private: |
| FinalAction final_action_; |
| }; |
| |
| // Recursive case: support N actions by calling the initial action and then |
| // calling through to the base class containing N-1 actions. |
| template <typename InitialAction, typename... OtherActions> |
| class DoAllAction<InitialAction, OtherActions...> |
| : private DoAllAction<OtherActions...> { |
| private: |
| using Base = DoAllAction<OtherActions...>; |
| |
| // The type of reference that should be provided to an initial action for a |
| // mocked function parameter of type T. |
| // |
| // There are two quirks here: |
| // |
| // * Unlike most forwarding functions, we pass scalars through by value. |
| // This isn't strictly necessary because an lvalue reference would work |
| // fine too and be consistent with other non-reference types, but it's |
| // perhaps less surprising. |
| // |
| // For example if the mocked function has signature void(int), then it |
| // might seem surprising for the user's initial action to need to be |
| // convertible to Action<void(const int&)>. This is perhaps less |
| // surprising for a non-scalar type where there may be a performance |
| // impact, or it might even be impossible, to pass by value. |
| // |
| // * More surprisingly, `const T&` is often not a const reference type. |
| // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to |
| // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is |
| // U&. In other words, we may hand over a non-const reference. |
| // |
| // So for example, given some non-scalar type Obj we have the following |
| // mappings: |
| // |
| // T InitialActionArgType<T> |
| // ------- ----------------------- |
| // Obj const Obj& |
| // Obj& Obj& |
| // Obj&& Obj& |
| // const Obj const Obj& |
| // const Obj& const Obj& |
| // const Obj&& const Obj& |
| // |
| // In other words, the initial actions get a mutable view of an non-scalar |
| // argument if and only if the mock function itself accepts a non-const |
| // reference type. They are never given an rvalue reference to an |
| // non-scalar type. |
| // |
| // This situation makes sense if you imagine use with a matcher that is |
| // designed to write through a reference. For example, if the caller wants |
| // to fill in a reference argument and then return a canned value: |
| // |
| // EXPECT_CALL(mock, Call) |
| // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19))); |
| // |
| template <typename T> |
| using InitialActionArgType = |
| typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; |
| |
| public: |
| struct UserConstructorTag {}; |
| |
| template <typename T, typename... U> |
| explicit DoAllAction(UserConstructorTag, T&& initial_action, |
| U&&... other_actions) |
| : Base({}, std::forward<U>(other_actions)...), |
| initial_action_(std::forward<T>(initial_action)) {} |
| |
| template <typename R, typename... Args, |
| typename std::enable_if< |
| conjunction< |
| // Both the initial action and the rest must support |
| // conversion to OnceAction. |
| std::is_convertible< |
| InitialAction, |
| OnceAction<void(InitialActionArgType<Args>...)>>, |
| std::is_convertible<Base, OnceAction<R(Args...)>>>::value, |
| int>::type = 0> |
| operator OnceAction<R(Args...)>() && { // NOLINT |
| // Return an action that first calls the initial action with arguments |
| // filtered through InitialActionArgType, then forwards arguments directly |
| // to the base class to deal with the remaining actions. |
| struct OA { |
| OnceAction<void(InitialActionArgType<Args>...)> initial_action; |
| OnceAction<R(Args...)> remaining_actions; |
| |
| R operator()(Args... args) && { |
| std::move(initial_action) |
| .Call(static_cast<InitialActionArgType<Args>>(args)...); |
| |
| return std::move(remaining_actions).Call(std::forward<Args>(args)...); |
| } |
| }; |
| |
| return OA{ |
| std::move(initial_action_), |
| std::move(static_cast<Base&>(*this)), |
| }; |
| } |
| |
| template < |
| typename R, typename... Args, |
| typename std::enable_if< |
| conjunction< |
| // Both the initial action and the rest must support conversion to |
| // Action. |
| std::is_convertible<const InitialAction&, |
| Action<void(InitialActionArgType<Args>...)>>, |
| std::is_convertible<const Base&, Action<R(Args...)>>>::value, |
| int>::type = 0> |
| operator Action<R(Args...)>() const { // NOLINT |
| // Return an action that first calls the initial action with arguments |
| // filtered through InitialActionArgType, then forwards arguments directly |
| // to the base class to deal with the remaining actions. |
| struct OA { |
| Action<void(InitialActionArgType<Args>...)> initial_action; |
| Action<R(Args...)> remaining_actions; |
| |
| R operator()(Args... args) const { |
| initial_action.Perform(std::forward_as_tuple( |
| static_cast<InitialActionArgType<Args>>(args)...)); |
| |
| return remaining_actions.Perform( |
| std::forward_as_tuple(std::forward<Args>(args)...)); |
| } |
| }; |
| |
| return OA{ |
| initial_action_, |
| static_cast<const Base&>(*this), |
| }; |
| } |
| |
| private: |
| InitialAction initial_action_; |
| }; |
| |
| template <typename T, typename... Params> |
| struct ReturnNewAction { |
| T* operator()() const { |
| return internal::Apply( |
| [](const Params&... unpacked_params) { |
| return new T(unpacked_params...); |
| }, |
| params); |
| } |
| std::tuple<Params...> params; |
| }; |
| |
| template <size_t k> |
| struct ReturnArgAction { |
| template <typename... Args, |
| typename = typename std::enable_if<(k < sizeof...(Args))>::type> |
| auto operator()(Args&&... args) const -> decltype(std::get<k>( |
| std::forward_as_tuple(std::forward<Args>(args)...))) { |
| return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...)); |
| } |
| }; |
| |
| template <size_t k, typename Ptr> |
| struct SaveArgAction { |
| Ptr pointer; |
| |
| template <typename... Args> |
| void operator()(const Args&... args) const { |
| *pointer = std::get<k>(std::tie(args...)); |
| } |
| }; |
| |
| template <size_t k, typename Ptr> |
| struct SaveArgPointeeAction { |
| Ptr pointer; |
| |
| template <typename... Args> |
| void operator()(const Args&... args) const { |
| *pointer = *std::get<k>(std::tie(args...)); |
| } |
| }; |
| |
| template <size_t k, typename T> |
| struct SetArgRefereeAction { |
| T value; |
| |
| template <typename... Args> |
| void operator()(Args&&... args) const { |
| using argk_type = |
| typename ::std::tuple_element<k, std::tuple<Args...>>::type; |
| static_assert(std::is_lvalue_reference<argk_type>::value, |
| "Argument must be a reference type."); |
| std::get<k>(std::tie(args...)) = value; |
| } |
| }; |
| |
| template <size_t k, typename I1, typename I2> |
| struct SetArrayArgumentAction { |
| I1 first; |
| I2 last; |
| |
| template <typename... Args> |
| void operator()(const Args&... args) const { |
| auto value = std::get<k>(std::tie(args...)); |
| for (auto it = first; it != last; ++it, (void)++value) { |
| *value = *it; |
| } |
| } |
| }; |
| |
| template <size_t k> |
| struct DeleteArgAction { |
| template <typename... Args> |
| void operator()(const Args&... args) const { |
| delete std::get<k>(std::tie(args...)); |
| } |
| }; |
| |
| template <typename Ptr> |
| struct ReturnPointeeAction { |
| Ptr pointer; |
| template <typename... Args> |
| auto operator()(const Args&...) const -> decltype(*pointer) { |
| return *pointer; |
| } |
| }; |
| |
| #if GTEST_HAS_EXCEPTIONS |
| template <typename T> |
| struct ThrowAction { |
| T exception; |
| // We use a conversion operator to adapt to any return type. |
| template <typename R, typename... Args> |
| operator Action<R(Args...)>() const { // NOLINT |
| T copy = exception; |
| return [copy](Args...) -> R { throw copy; }; |
| } |
| }; |
| #endif // GTEST_HAS_EXCEPTIONS |
| |
| } // namespace internal |
| |
| // An Unused object can be implicitly constructed from ANY value. |
| // This is handy when defining actions that ignore some or all of the |
| // mock function arguments. For example, given |
| // |
| // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); |
| // MOCK_METHOD3(Bar, double(int index, double x, double y)); |
| // |
| // instead of |
| // |
| // double DistanceToOriginWithLabel(const string& label, double x, double y) { |
| // return sqrt(x*x + y*y); |
| // } |
| // double DistanceToOriginWithIndex(int index, double x, double y) { |
| // return sqrt(x*x + y*y); |
| // } |
| // ... |
| // EXPECT_CALL(mock, Foo("abc", _, _)) |
| // .WillOnce(Invoke(DistanceToOriginWithLabel)); |
| // EXPECT_CALL(mock, Bar(5, _, _)) |
| // .WillOnce(Invoke(DistanceToOriginWithIndex)); |
| // |
| // you could write |
| // |
| // // We can declare any uninteresting argument as Unused. |
| // double DistanceToOrigin(Unused, double x, double y) { |
| // return sqrt(x*x + y*y); |
| // } |
| // ... |
| // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); |
| // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); |
| typedef internal::IgnoredValue Unused; |
| |
| // Creates an action that does actions a1, a2, ..., sequentially in |
| // each invocation. All but the last action will have a readonly view of the |
| // arguments. |
| template <typename... Action> |
| internal::DoAllAction<typename std::decay<Action>::type...> DoAll( |
| Action&&... action) { |
| return internal::DoAllAction<typename std::decay<Action>::type...>( |
| {}, std::forward<Action>(action)...); |
| } |
| |
| // WithArg<k>(an_action) creates an action that passes the k-th |
| // (0-based) argument of the mock function to an_action and performs |
| // it. It adapts an action accepting one argument to one that accepts |
| // multiple arguments. For convenience, we also provide |
| // WithArgs<k>(an_action) (defined below) as a synonym. |
| template <size_t k, typename InnerAction> |
| internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg( |
| InnerAction&& action) { |
| return {std::forward<InnerAction>(action)}; |
| } |
| |
| // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes |
| // the selected arguments of the mock function to an_action and |
| // performs it. It serves as an adaptor between actions with |
| // different argument lists. |
| template <size_t k, size_t... ks, typename InnerAction> |
| internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> |
| WithArgs(InnerAction&& action) { |
| return {std::forward<InnerAction>(action)}; |
| } |
| |
| // WithoutArgs(inner_action) can be used in a mock function with a |
| // non-empty argument list to perform inner_action, which takes no |
| // argument. In other words, it adapts an action accepting no |
| // argument to one that accepts (and ignores) arguments. |
| template <typename InnerAction> |
| internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs( |
| InnerAction&& action) { |
| return {std::forward<InnerAction>(action)}; |
| } |
| |
| // Creates an action that returns a value. |
| // |
| // The returned type can be used with a mock function returning a non-void, |
| // non-reference type U as follows: |
| // |
| // * If R is convertible to U and U is move-constructible, then the action can |
| // be used with WillOnce. |
| // |
| // * If const R& is convertible to U and U is copy-constructible, then the |
| // action can be used with both WillOnce and WillRepeatedly. |
| // |
| // The mock expectation contains the R value from which the U return value is |
| // constructed (a move/copy of the argument to Return). This means that the R |
| // value will survive at least until the mock object's expectations are cleared |
| // or the mock object is destroyed, meaning that U can safely be a |
| // reference-like type such as std::string_view: |
| // |
| // // The mock function returns a view of a copy of the string fed to |
| // // Return. The view is valid even after the action is performed. |
| // MockFunction<std::string_view()> mock; |
| // EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco"))); |
| // const std::string_view result = mock.AsStdFunction()(); |
| // EXPECT_EQ("taco", result); |
| // |
| template <typename R> |
| internal::ReturnAction<R> Return(R value) { |
| return internal::ReturnAction<R>(std::move(value)); |
| } |
| |
| // Creates an action that returns NULL. |
| inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { |
| return MakePolymorphicAction(internal::ReturnNullAction()); |
| } |
| |
| // Creates an action that returns from a void function. |
| inline PolymorphicAction<internal::ReturnVoidAction> Return() { |
| return MakePolymorphicAction(internal::ReturnVoidAction()); |
| } |
| |
| // Creates an action that returns the reference to a variable. |
| template <typename R> |
| inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT |
| return internal::ReturnRefAction<R>(x); |
| } |
| |
| // Prevent using ReturnRef on reference to temporary. |
| template <typename R, R* = nullptr> |
| internal::ReturnRefAction<R> ReturnRef(R&&) = delete; |
| |
| // Creates an action that returns the reference to a copy of the |
| // argument. The copy is created when the action is constructed and |
| // lives as long as the action. |
| template <typename R> |
| inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { |
| return internal::ReturnRefOfCopyAction<R>(x); |
| } |
| |
| // DEPRECATED: use Return(x) directly with WillOnce. |
| // |
| // Modifies the parent action (a Return() action) to perform a move of the |
| // argument instead of a copy. |
| // Return(ByMove()) actions can only be executed once and will assert this |
| // invariant. |
| template <typename R> |
| internal::ByMoveWrapper<R> ByMove(R x) { |
| return internal::ByMoveWrapper<R>(std::move(x)); |
| } |
| |
| // Creates an action that returns an element of `vals`. Calling this action will |
| // repeatedly return the next value from `vals` until it reaches the end and |
| // will restart from the beginning. |
| template <typename T> |
| internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { |
| return internal::ReturnRoundRobinAction<T>(std::move(vals)); |
| } |
| |
| // Creates an action that returns an element of `vals`. Calling this action will |
| // repeatedly return the next value from `vals` until it reaches the end and |
| // will restart from the beginning. |
| template <typename T> |
| internal::ReturnRoundRobinAction<T> ReturnRoundRobin( |
| std::initializer_list<T> vals) { |
| return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); |
| } |
| |
| // Creates an action that does the default action for the give mock function. |
| inline internal::DoDefaultAction DoDefault() { |
| return internal::DoDefaultAction(); |
| } |
| |
| // Creates an action that sets the variable pointed by the N-th |
| // (0-based) function argument to 'value'. |
| template <size_t N, typename T> |
| internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { |
| return {std::move(value)}; |
| } |
| |
| // The following version is DEPRECATED. |
| template <size_t N, typename T> |
| internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { |
| return {std::move(value)}; |
| } |
| |
| // Creates an action that sets a pointer referent to a given value. |
| template <typename T1, typename T2> |
| PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) { |
| return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); |
| } |
| |
| #ifndef GTEST_OS_WINDOWS_MOBILE |
| |
| // Creates an action that sets errno and returns the appropriate error. |
| template <typename T> |
| PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn( |
| int errval, T result) { |
| return MakePolymorphicAction( |
| internal::SetErrnoAndReturnAction<T>(errval, result)); |
| } |
| |
| #endif // !GTEST_OS_WINDOWS_MOBILE |
| |
| // Various overloads for Invoke(). |
| |
| // Legacy function. |
| // Actions can now be implicitly constructed from callables. No need to create |
| // wrapper objects. |
| // This function exists for backwards compatibility. |
| template <typename FunctionImpl> |
| typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { |
| return std::forward<FunctionImpl>(function_impl); |
| } |
| |
| // Creates an action that invokes the given method on the given object |
| // with the mock function's arguments. |
| template <class Class, typename MethodPtr> |
| internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, |
| MethodPtr method_ptr) { |
| return {obj_ptr, method_ptr}; |
| } |
| |
| // Creates an action that invokes 'function_impl' with no argument. |
| template <typename FunctionImpl> |
| internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> |
| InvokeWithoutArgs(FunctionImpl function_impl) { |
| return {std::move(function_impl)}; |
| } |
| |
| // Creates an action that invokes the given method on the given object |
| // with no argument. |
| template <class Class, typename MethodPtr> |
| internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( |
| Class* obj_ptr, MethodPtr method_ptr) { |
| return {obj_ptr, method_ptr}; |
| } |
| |
| // Creates an action that performs an_action and throws away its |
| // result. In other words, it changes the return type of an_action to |
| // void. an_action MUST NOT return void, or the code won't compile. |
| template <typename A> |
| inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { |
| return internal::IgnoreResultAction<A>(an_action); |
| } |
| |
| // Creates a reference wrapper for the given L-value. If necessary, |
| // you can explicitly specify the type of the reference. For example, |
| // suppose 'derived' is an object of type Derived, ByRef(derived) |
| // would wrap a Derived&. If you want to wrap a const Base& instead, |
| // where Base is a base class of Derived, just write: |
| // |
| // ByRef<const Base>(derived) |
| // |
| // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. |
| // However, it may still be used for consistency with ByMove(). |
| template <typename T> |
| inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT |
| return ::std::reference_wrapper<T>(l_value); |
| } |
| |
| // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new |
| // instance of type T, constructed on the heap with constructor arguments |
| // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. |
| template <typename T, typename... Params> |
| internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( |
| Params&&... params) { |
| return {std::forward_as_tuple(std::forward<Params>(params)...)}; |
| } |
| |
| // Action ReturnArg<k>() returns the k-th argument of the mock function. |
| template <size_t k> |
| internal::ReturnArgAction<k> ReturnArg() { |
| return {}; |
| } |
| |
| // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the |
| // mock function to *pointer. |
| template <size_t k, typename Ptr> |
| internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { |
| return {pointer}; |
| } |
| |
| // Action SaveArgPointee<k>(pointer) saves the value pointed to |
| // by the k-th (0-based) argument of the mock function to *pointer. |
| template <size_t k, typename Ptr> |
| internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { |
| return {pointer}; |
| } |
| |
| // Action SetArgReferee<k>(value) assigns 'value' to the variable |
| // referenced by the k-th (0-based) argument of the mock function. |
| template <size_t k, typename T> |
| internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( |
| T&& value) { |
| return {std::forward<T>(value)}; |
| } |
| |
| // Action SetArrayArgument<k>(first, last) copies the elements in |
| // source range [first, last) to the array pointed to by the k-th |
| // (0-based) argument, which can be either a pointer or an |
| // iterator. The action does not take ownership of the elements in the |
| // source range. |
| template <size_t k, typename I1, typename I2> |
| internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, |
| I2 last) { |
| return {first, last}; |
| } |
| |
| // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock |
| // function. |
| template <size_t k> |
| internal::DeleteArgAction<k> DeleteArg() { |
| return {}; |
| } |
| |
| // This action returns the value pointed to by 'pointer'. |
| template <typename Ptr> |
| internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { |
| return {pointer}; |
| } |
| |
| // Action Throw(exception) can be used in a mock function of any type |
| // to throw the given exception. Any copyable value can be thrown. |
| #if GTEST_HAS_EXCEPTIONS |
| template <typename T> |
| internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { |
| return {std::forward<T>(exception)}; |
| } |
| #endif // GTEST_HAS_EXCEPTIONS |
| |
| namespace internal { |
| |
| // A macro from the ACTION* family (defined later in gmock-generated-actions.h) |
| // defines an action that can be used in a mock function. Typically, |
| // these actions only care about a subset of the arguments of the mock |
| // function. For example, if such an action only uses the second |
| // argument, it can be used in any mock function that takes >= 2 |
| // arguments where the type of the second argument is compatible. |
| // |
| // Therefore, the action implementation must be prepared to take more |
| // arguments than it needs. The ExcessiveArg type is used to |
| // represent those excessive arguments. In order to keep the compiler |
| // error messages tractable, we define it in the testing namespace |
| // instead of testing::internal. However, this is an INTERNAL TYPE |
| // and subject to change without notice, so a user MUST NOT USE THIS |
| // TYPE DIRECTLY. |
| struct ExcessiveArg {}; |
| |
| // Builds an implementation of an Action<> for some particular signature, using |
| // a class defined by an ACTION* macro. |
| template <typename F, typename Impl> |
| struct ActionImpl; |
| |
| template <typename Impl> |
| struct ImplBase { |
| struct Holder { |
| // Allows each copy of the Action<> to get to the Impl. |
| explicit operator const Impl&() const { return *ptr; } |
| std::shared_ptr<Impl> ptr; |
| }; |
| using type = typename std::conditional<std::is_constructible<Impl>::value, |
| Impl, Holder>::type; |
| }; |
| |
| template <typename R, typename... Args, typename Impl> |
| struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { |
| using Base = typename ImplBase<Impl>::type; |
| using function_type = R(Args...); |
| using args_type = std::tuple<Args...>; |
| |
| ActionImpl() = default; // Only defined if appropriate for Base. |
| explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {} |
| |
| R operator()(Args&&... arg) const { |
| static constexpr size_t kMaxArgs = |
| sizeof...(Args) <= 10 ? sizeof...(Args) : 10; |
| return Apply(MakeIndexSequence<kMaxArgs>{}, |
| MakeIndexSequence<10 - kMaxArgs>{}, |
| args_type{std::forward<Args>(arg)...}); |
| } |
| |
| template <std::size_t... arg_id, std::size_t... excess_id> |
| R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, |
| const args_type& args) const { |
| // Impl need not be specific to the signature of action being implemented; |
| // only the implementing function body needs to have all of the specific |
| // types instantiated. Up to 10 of the args that are provided by the |
| // args_type get passed, followed by a dummy of unspecified type for the |
| // remainder up to 10 explicit args. |
| static constexpr ExcessiveArg kExcessArg{}; |
| return static_cast<const Impl&>(*this) |
| .template gmock_PerformImpl< |
| /*function_type=*/function_type, /*return_type=*/R, |
| /*args_type=*/args_type, |
| /*argN_type=*/ |
| typename std::tuple_element<arg_id, args_type>::type...>( |
| /*args=*/args, std::get<arg_id>(args)..., |
| ((void)excess_id, kExcessArg)...); |
| } |
| }; |
| |
| // Stores a default-constructed Impl as part of the Action<>'s |
| // std::function<>. The Impl should be trivial to copy. |
| template <typename F, typename Impl> |
| ::testing::Action<F> MakeAction() { |
| return ::testing::Action<F>(ActionImpl<F, Impl>()); |
| } |
| |
| // Stores just the one given instance of Impl. |
| template <typename F, typename Impl> |
| ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { |
| return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); |
| } |
| |
| #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ |
| , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ |
| #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ |
| const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ |
| GMOCK_INTERNAL_ARG_UNUSED, , 10) |
| |
| #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i |
| #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ |
| const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) |
| |
| #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type |
| #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ |
| GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) |
| |
| #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type |
| #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) |
| |
| #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type |
| #define GMOCK_ACTION_TYPE_PARAMS_(params) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) |
| |
| #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ |
| , param##_type gmock_p##i |
| #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) |
| |
| #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ |
| , std::forward<param##_type>(gmock_p##i) |
| #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) |
| |
| #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ |
| , param(::std::forward<param##_type>(gmock_p##i)) |
| #define GMOCK_ACTION_INIT_PARAMS_(params) \ |
| GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) |
| |
| #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; |
| #define GMOCK_ACTION_FIELD_PARAMS_(params) \ |
| GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) |
| |
| #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ |
| template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
| class full_name { \ |
| public: \ |
| explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ |
| : impl_(std::make_shared<gmock_Impl>( \ |
| GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \ |
| full_name(const full_name&) = default; \ |
| full_name(full_name&&) noexcept = default; \ |
| template <typename F> \ |
| operator ::testing::Action<F>() const { \ |
| return ::testing::internal::MakeAction<F>(impl_); \ |
| } \ |
| \ |
| private: \ |
| class gmock_Impl { \ |
| public: \ |
| explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ |
| : GMOCK_ACTION_INIT_PARAMS_(params) {} \ |
| template <typename function_type, typename return_type, \ |
| typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
| return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ |
| GMOCK_ACTION_FIELD_PARAMS_(params) \ |
| }; \ |
| std::shared_ptr<const gmock_Impl> impl_; \ |
| }; \ |
| template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
| inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ |
| GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \ |
| template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
| inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ |
| GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ |
| return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ |
| GMOCK_ACTION_GVALUE_PARAMS_(params)); \ |
| } \ |
| template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ |
| template <typename function_type, typename return_type, typename args_type, \ |
| GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
| return_type \ |
| full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| } // namespace internal |
| |
| // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. |
| #define ACTION(name) \ |
| class name##Action { \ |
| public: \ |
| explicit name##Action() noexcept {} \ |
| name##Action(const name##Action&) noexcept {} \ |
| template <typename F> \ |
| operator ::testing::Action<F>() const { \ |
| return ::testing::internal::MakeAction<F, gmock_Impl>(); \ |
| } \ |
| \ |
| private: \ |
| class gmock_Impl { \ |
| public: \ |
| template <typename function_type, typename return_type, \ |
| typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
| return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ |
| }; \ |
| }; \ |
| inline name##Action name() GTEST_MUST_USE_RESULT_; \ |
| inline name##Action name() { return name##Action(); } \ |
| template <typename function_type, typename return_type, typename args_type, \ |
| GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ |
| return_type name##Action::gmock_Impl::gmock_PerformImpl( \ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) |
| |
| #define ACTION_P2(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) |
| |
| #define ACTION_P3(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) |
| |
| #define ACTION_P4(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) |
| |
| #define ACTION_P5(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) |
| |
| #define ACTION_P6(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) |
| |
| #define ACTION_P7(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) |
| |
| #define ACTION_P8(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) |
| |
| #define ACTION_P9(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) |
| |
| #define ACTION_P10(name, ...) \ |
| GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) |
| |
| } // namespace testing |
| |
| GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 |
| |
| #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |