| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <algorithm> |
| #include <functional> |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| #include <assert.h> |
| #include <errno.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/aes.h> |
| #include <openssl/bn.h> |
| #include <openssl/curve25519.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/ec.h> |
| #include <openssl/ecdsa.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/evp.h> |
| #include <openssl/hrss.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| #include <openssl/rsa.h> |
| |
| #if defined(OPENSSL_WINDOWS) |
| OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| #include <windows.h> |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| #elif defined(OPENSSL_APPLE) |
| #include <sys/time.h> |
| #else |
| #include <time.h> |
| #endif |
| |
| #include "../crypto/internal.h" |
| #include "internal.h" |
| |
| #include "../third_party/sike/sike.h" |
| |
| // g_print_json is true if printed output is JSON formatted. |
| static bool g_print_json = false; |
| |
| // TimeResults represents the results of benchmarking a function. |
| struct TimeResults { |
| // num_calls is the number of function calls done in the time period. |
| unsigned num_calls; |
| // us is the number of microseconds that elapsed in the time period. |
| unsigned us; |
| |
| void Print(const std::string &description) const { |
| if (g_print_json) { |
| PrintJSON(description); |
| } else { |
| printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls, |
| description.c_str(), us, |
| (static_cast<double>(num_calls) / us) * 1000000); |
| } |
| } |
| |
| void PrintWithBytes(const std::string &description, |
| size_t bytes_per_call) const { |
| if (g_print_json) { |
| PrintJSON(description, bytes_per_call); |
| } else { |
| printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n", |
| num_calls, description.c_str(), us, |
| (static_cast<double>(num_calls) / us) * 1000000, |
| static_cast<double>(bytes_per_call * num_calls) / us); |
| } |
| } |
| |
| private: |
| void PrintJSON(const std::string &description, |
| size_t bytes_per_call = 0) const { |
| if (first_json_printed) { |
| puts(","); |
| } |
| |
| printf("{\"description\": \"%s\", \"numCalls\": %u, \"microseconds\": %u", |
| description.c_str(), num_calls, us); |
| |
| if (bytes_per_call > 0) { |
| printf(", \"bytesPerCall\": %zu", bytes_per_call); |
| } |
| |
| printf("}"); |
| first_json_printed = true; |
| } |
| |
| // first_json_printed is true if |g_print_json| is true and the first item in |
| // the JSON results has been printed already. This is used to handle the |
| // commas between each item in the result list. |
| static bool first_json_printed; |
| }; |
| |
| bool TimeResults::first_json_printed = false; |
| |
| #if defined(OPENSSL_WINDOWS) |
| static uint64_t time_now() { return GetTickCount64() * 1000; } |
| #elif defined(OPENSSL_APPLE) |
| static uint64_t time_now() { |
| struct timeval tv; |
| uint64_t ret; |
| |
| gettimeofday(&tv, NULL); |
| ret = tv.tv_sec; |
| ret *= 1000000; |
| ret += tv.tv_usec; |
| return ret; |
| } |
| #else |
| static uint64_t time_now() { |
| struct timespec ts; |
| clock_gettime(CLOCK_MONOTONIC, &ts); |
| |
| uint64_t ret = ts.tv_sec; |
| ret *= 1000000; |
| ret += ts.tv_nsec / 1000; |
| return ret; |
| } |
| #endif |
| |
| static uint64_t g_timeout_seconds = 1; |
| static std::vector<size_t> g_chunk_lengths = {16, 256, 1350, 8192, 16384}; |
| |
| static bool TimeFunction(TimeResults *results, std::function<bool()> func) { |
| // total_us is the total amount of time that we'll aim to measure a function |
| // for. |
| const uint64_t total_us = g_timeout_seconds * 1000000; |
| uint64_t start = time_now(), now, delta; |
| unsigned done = 0, iterations_between_time_checks; |
| |
| if (!func()) { |
| return false; |
| } |
| now = time_now(); |
| delta = now - start; |
| if (delta == 0) { |
| iterations_between_time_checks = 250; |
| } else { |
| // Aim for about 100ms between time checks. |
| iterations_between_time_checks = |
| static_cast<double>(100000) / static_cast<double>(delta); |
| if (iterations_between_time_checks > 1000) { |
| iterations_between_time_checks = 1000; |
| } else if (iterations_between_time_checks < 1) { |
| iterations_between_time_checks = 1; |
| } |
| } |
| |
| for (;;) { |
| for (unsigned i = 0; i < iterations_between_time_checks; i++) { |
| if (!func()) { |
| return false; |
| } |
| done++; |
| } |
| |
| now = time_now(); |
| if (now - start > total_us) { |
| break; |
| } |
| } |
| |
| results->us = now - start; |
| results->num_calls = done; |
| return true; |
| } |
| |
| static bool SpeedRSA(const std::string &selected) { |
| if (!selected.empty() && selected.find("RSA") == std::string::npos) { |
| return true; |
| } |
| |
| static const struct { |
| const char *name; |
| const uint8_t *key; |
| const size_t key_len; |
| } kRSAKeys[] = { |
| {"RSA 2048", kDERRSAPrivate2048, kDERRSAPrivate2048Len}, |
| {"RSA 4096", kDERRSAPrivate4096, kDERRSAPrivate4096Len}, |
| }; |
| |
| for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kRSAKeys); i++) { |
| const std::string name = kRSAKeys[i].name; |
| |
| bssl::UniquePtr<RSA> key( |
| RSA_private_key_from_bytes(kRSAKeys[i].key, kRSAKeys[i].key_len)); |
| if (key == nullptr) { |
| fprintf(stderr, "Failed to parse %s key.\n", name.c_str()); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key.get())]); |
| const uint8_t fake_sha256_hash[32] = {0}; |
| unsigned sig_len; |
| |
| TimeResults results; |
| if (!TimeFunction(&results, |
| [&key, &sig, &fake_sha256_hash, &sig_len]() -> bool { |
| // Usually during RSA signing we're using a long-lived |RSA| that has |
| // already had all of its |BN_MONT_CTX|s constructed, so it makes |
| // sense to use |key| directly here. |
| return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), |
| sig.get(), &sig_len, key.get()); |
| })) { |
| fprintf(stderr, "RSA_sign failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| results.Print(name + " signing"); |
| |
| if (!TimeFunction(&results, |
| [&key, &fake_sha256_hash, &sig, sig_len]() -> bool { |
| return RSA_verify( |
| NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), |
| sig.get(), sig_len, key.get()); |
| })) { |
| fprintf(stderr, "RSA_verify failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| results.Print(name + " verify (same key)"); |
| |
| if (!TimeFunction(&results, |
| [&key, &fake_sha256_hash, &sig, sig_len]() -> bool { |
| // Usually during RSA verification we have to parse an RSA key from a |
| // certificate or similar, in which case we'd need to construct a new |
| // RSA key, with a new |BN_MONT_CTX| for the public modulus. If we |
| // were to use |key| directly instead, then these costs wouldn't be |
| // accounted for. |
| bssl::UniquePtr<RSA> verify_key(RSA_new()); |
| if (!verify_key) { |
| return false; |
| } |
| verify_key->n = BN_dup(key->n); |
| verify_key->e = BN_dup(key->e); |
| if (!verify_key->n || |
| !verify_key->e) { |
| return false; |
| } |
| return RSA_verify(NID_sha256, fake_sha256_hash, |
| sizeof(fake_sha256_hash), sig.get(), sig_len, |
| verify_key.get()); |
| })) { |
| fprintf(stderr, "RSA_verify failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| results.Print(name + " verify (fresh key)"); |
| } |
| |
| return true; |
| } |
| |
| static bool SpeedRSAKeyGen(const std::string &selected) { |
| // Don't run this by default because it's so slow. |
| if (selected != "RSAKeyGen") { |
| return true; |
| } |
| |
| bssl::UniquePtr<BIGNUM> e(BN_new()); |
| if (!BN_set_word(e.get(), 65537)) { |
| return false; |
| } |
| |
| const std::vector<int> kSizes = {2048, 3072, 4096}; |
| for (int size : kSizes) { |
| const uint64_t start = time_now(); |
| unsigned num_calls = 0; |
| unsigned us; |
| std::vector<unsigned> durations; |
| |
| for (;;) { |
| bssl::UniquePtr<RSA> rsa(RSA_new()); |
| |
| const uint64_t iteration_start = time_now(); |
| if (!RSA_generate_key_ex(rsa.get(), size, e.get(), nullptr)) { |
| fprintf(stderr, "RSA_generate_key_ex failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| const uint64_t iteration_end = time_now(); |
| |
| num_calls++; |
| durations.push_back(iteration_end - iteration_start); |
| |
| us = iteration_end - start; |
| if (us > 30 * 1000000 /* 30 secs */) { |
| break; |
| } |
| } |
| |
| std::sort(durations.begin(), durations.end()); |
| const std::string description = |
| std::string("RSA ") + std::to_string(size) + std::string(" key-gen"); |
| const TimeResults results = {num_calls, us}; |
| results.Print(description); |
| const size_t n = durations.size(); |
| assert(n > 0); |
| |
| // Distribution information is useful, but doesn't fit into the standard |
| // format used by |g_print_json|. |
| if (!g_print_json) { |
| // |min| and |max| must be stored in temporary variables to avoid an MSVC |
| // bug on x86. There, size_t is a typedef for unsigned, but MSVC's printf |
| // warning tries to retain the distinction and suggest %zu for size_t |
| // instead of %u. It gets confused if std::vector<unsigned> and |
| // std::vector<size_t> are both instantiated. Being typedefs, the two |
| // instantiations are identical, which somehow breaks the size_t vs |
| // unsigned metadata. |
| unsigned min = durations[0]; |
| unsigned median = n & 1 ? durations[n / 2] |
| : (durations[n / 2 - 1] + durations[n / 2]) / 2; |
| unsigned max = durations[n - 1]; |
| printf(" min: %uus, median: %uus, max: %uus\n", min, median, max); |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool SpeedSIKEP434(const std::string &selected) { |
| if (!selected.empty() && selected.find("SIKE") == std::string::npos) { |
| return true; |
| } |
| // speed generation |
| uint8_t public_SIKE[SIKE_PUB_BYTESZ]; |
| uint8_t private_SIKE[SIKE_PRV_BYTESZ]; |
| uint8_t ct[SIKE_CT_BYTESZ]; |
| bool res; |
| |
| { |
| TimeResults results; |
| res = TimeFunction(&results, |
| [&private_SIKE, &public_SIKE]() -> bool { |
| return (SIKE_keypair(private_SIKE, public_SIKE) == 1); |
| }); |
| results.Print("SIKE/P434 generate"); |
| } |
| |
| if (!res) { |
| fprintf(stderr, "Failed to time SIKE_keypair.\n"); |
| return false; |
| } |
| |
| { |
| TimeResults results; |
| TimeFunction(&results, |
| [&ct, &public_SIKE]() -> bool { |
| uint8_t ss[SIKE_SS_BYTESZ]; |
| SIKE_encaps(ss, ct, public_SIKE); |
| return true; |
| }); |
| results.Print("SIKE/P434 encap"); |
| } |
| |
| if (!res) { |
| fprintf(stderr, "Failed to time SIKE_encaps.\n"); |
| return false; |
| } |
| |
| { |
| TimeResults results; |
| TimeFunction(&results, |
| [&ct, &public_SIKE, &private_SIKE]() -> bool { |
| uint8_t ss[SIKE_SS_BYTESZ]; |
| SIKE_decaps(ss, ct, public_SIKE, private_SIKE); |
| return true; |
| }); |
| results.Print("SIKE/P434 decap"); |
| } |
| |
| if (!res) { |
| fprintf(stderr, "Failed to time SIKE_decaps.\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| static uint8_t *align(uint8_t *in, unsigned alignment) { |
| return reinterpret_cast<uint8_t *>( |
| (reinterpret_cast<uintptr_t>(in) + alignment) & |
| ~static_cast<size_t>(alignment - 1)); |
| } |
| |
| static std::string ChunkLenSuffix(size_t chunk_len) { |
| char buf[32]; |
| snprintf(buf, sizeof(buf), " (%zu byte%s)", chunk_len, |
| chunk_len != 1 ? "s" : ""); |
| return buf; |
| } |
| |
| static bool SpeedAEADChunk(const EVP_AEAD *aead, std::string name, |
| size_t chunk_len, size_t ad_len, |
| evp_aead_direction_t direction) { |
| static const unsigned kAlignment = 16; |
| |
| name += ChunkLenSuffix(chunk_len); |
| bssl::ScopedEVP_AEAD_CTX ctx; |
| const size_t key_len = EVP_AEAD_key_length(aead); |
| const size_t nonce_len = EVP_AEAD_nonce_length(aead); |
| const size_t overhead_len = EVP_AEAD_max_overhead(aead); |
| |
| std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]); |
| OPENSSL_memset(key.get(), 0, key_len); |
| std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]); |
| OPENSSL_memset(nonce.get(), 0, nonce_len); |
| std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]); |
| // N.B. for EVP_AEAD_CTX_seal_scatter the input and output buffers may be the |
| // same size. However, in the direction == evp_aead_open case we still use |
| // non-scattering seal, hence we add overhead_len to the size of this buffer. |
| std::unique_ptr<uint8_t[]> out_storage( |
| new uint8_t[chunk_len + overhead_len + kAlignment]); |
| std::unique_ptr<uint8_t[]> in2_storage( |
| new uint8_t[chunk_len + overhead_len + kAlignment]); |
| std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]); |
| OPENSSL_memset(ad.get(), 0, ad_len); |
| std::unique_ptr<uint8_t[]> tag_storage( |
| new uint8_t[overhead_len + kAlignment]); |
| |
| |
| uint8_t *const in = align(in_storage.get(), kAlignment); |
| OPENSSL_memset(in, 0, chunk_len); |
| uint8_t *const out = align(out_storage.get(), kAlignment); |
| OPENSSL_memset(out, 0, chunk_len + overhead_len); |
| uint8_t *const tag = align(tag_storage.get(), kAlignment); |
| OPENSSL_memset(tag, 0, overhead_len); |
| uint8_t *const in2 = align(in2_storage.get(), kAlignment); |
| |
| if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len, |
| EVP_AEAD_DEFAULT_TAG_LENGTH, |
| evp_aead_seal)) { |
| fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| TimeResults results; |
| if (direction == evp_aead_seal) { |
| if (!TimeFunction(&results, |
| [chunk_len, nonce_len, ad_len, overhead_len, in, out, tag, |
| &ctx, &nonce, &ad]() -> bool { |
| size_t tag_len; |
| return EVP_AEAD_CTX_seal_scatter( |
| ctx.get(), out, tag, &tag_len, overhead_len, |
| nonce.get(), nonce_len, in, chunk_len, nullptr, 0, |
| ad.get(), ad_len); |
| })) { |
| fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| } else { |
| size_t out_len; |
| EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len, |
| nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len); |
| |
| ctx.Reset(); |
| if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len, |
| EVP_AEAD_DEFAULT_TAG_LENGTH, |
| evp_aead_open)) { |
| fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (!TimeFunction(&results, |
| [chunk_len, overhead_len, nonce_len, ad_len, in2, out, |
| out_len, &ctx, &nonce, &ad]() -> bool { |
| size_t in2_len; |
| // N.B. EVP_AEAD_CTX_open_gather is not implemented for |
| // all AEADs. |
| return EVP_AEAD_CTX_open(ctx.get(), in2, &in2_len, |
| chunk_len + overhead_len, |
| nonce.get(), nonce_len, out, |
| out_len, ad.get(), ad_len); |
| })) { |
| fprintf(stderr, "EVP_AEAD_CTX_open failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| } |
| |
| results.PrintWithBytes( |
| name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len); |
| return true; |
| } |
| |
| static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name, |
| size_t ad_len, const std::string &selected) { |
| if (!selected.empty() && name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| for (size_t chunk_len : g_chunk_lengths) { |
| if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_seal)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name, |
| size_t ad_len, const std::string &selected) { |
| if (!selected.empty() && name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| for (size_t chunk_len : g_chunk_lengths) { |
| if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_open)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool SpeedAESBlock(const std::string &name, unsigned bits, |
| const std::string &selected) { |
| if (!selected.empty() && name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| static const uint8_t kZero[32] = {0}; |
| |
| { |
| TimeResults results; |
| if (!TimeFunction(&results, [&]() -> bool { |
| AES_KEY key; |
| return AES_set_encrypt_key(kZero, bits, &key) == 0; |
| })) { |
| fprintf(stderr, "AES_set_encrypt_key failed.\n"); |
| return false; |
| } |
| results.Print(name + " encrypt setup"); |
| } |
| |
| { |
| AES_KEY key; |
| if (AES_set_encrypt_key(kZero, bits, &key) != 0) { |
| return false; |
| } |
| uint8_t block[16] = {0}; |
| TimeResults results; |
| if (!TimeFunction(&results, [&]() -> bool { |
| AES_encrypt(block, block, &key); |
| return true; |
| })) { |
| fprintf(stderr, "AES_encrypt failed.\n"); |
| return false; |
| } |
| results.Print(name + " encrypt"); |
| } |
| |
| { |
| TimeResults results; |
| if (!TimeFunction(&results, [&]() -> bool { |
| AES_KEY key; |
| return AES_set_decrypt_key(kZero, bits, &key) == 0; |
| })) { |
| fprintf(stderr, "AES_set_decrypt_key failed.\n"); |
| return false; |
| } |
| results.Print(name + " decrypt setup"); |
| } |
| |
| { |
| AES_KEY key; |
| if (AES_set_decrypt_key(kZero, bits, &key) != 0) { |
| return false; |
| } |
| uint8_t block[16] = {0}; |
| TimeResults results; |
| if (!TimeFunction(&results, [&]() -> bool { |
| AES_decrypt(block, block, &key); |
| return true; |
| })) { |
| fprintf(stderr, "AES_decrypt failed.\n"); |
| return false; |
| } |
| results.Print(name + " decrypt"); |
| } |
| |
| return true; |
| } |
| |
| static bool SpeedHashChunk(const EVP_MD *md, std::string name, |
| size_t chunk_len) { |
| bssl::ScopedEVP_MD_CTX ctx; |
| uint8_t scratch[16384]; |
| |
| if (chunk_len > sizeof(scratch)) { |
| return false; |
| } |
| |
| name += ChunkLenSuffix(chunk_len); |
| TimeResults results; |
| if (!TimeFunction(&results, [&ctx, md, chunk_len, &scratch]() -> bool { |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| unsigned int md_len; |
| |
| return EVP_DigestInit_ex(ctx.get(), md, NULL /* ENGINE */) && |
| EVP_DigestUpdate(ctx.get(), scratch, chunk_len) && |
| EVP_DigestFinal_ex(ctx.get(), digest, &md_len); |
| })) { |
| fprintf(stderr, "EVP_DigestInit_ex failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| results.PrintWithBytes(name, chunk_len); |
| return true; |
| } |
| |
| static bool SpeedHash(const EVP_MD *md, const std::string &name, |
| const std::string &selected) { |
| if (!selected.empty() && name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| for (size_t chunk_len : g_chunk_lengths) { |
| if (!SpeedHashChunk(md, name, chunk_len)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool SpeedRandomChunk(std::string name, size_t chunk_len) { |
| uint8_t scratch[16384]; |
| |
| if (chunk_len > sizeof(scratch)) { |
| return false; |
| } |
| |
| name += ChunkLenSuffix(chunk_len); |
| TimeResults results; |
| if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool { |
| RAND_bytes(scratch, chunk_len); |
| return true; |
| })) { |
| return false; |
| } |
| |
| results.PrintWithBytes(name, chunk_len); |
| return true; |
| } |
| |
| static bool SpeedRandom(const std::string &selected) { |
| if (!selected.empty() && selected != "RNG") { |
| return true; |
| } |
| |
| for (size_t chunk_len : g_chunk_lengths) { |
| if (!SpeedRandomChunk("RNG", chunk_len)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool SpeedECDHCurve(const std::string &name, int nid, |
| const std::string &selected) { |
| if (!selected.empty() && name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| bssl::UniquePtr<EC_KEY> peer_key(EC_KEY_new_by_curve_name(nid)); |
| if (!peer_key || |
| !EC_KEY_generate_key(peer_key.get())) { |
| return false; |
| } |
| |
| size_t peer_value_len = EC_POINT_point2oct( |
| EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()), |
| POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, nullptr); |
| if (peer_value_len == 0) { |
| return false; |
| } |
| std::unique_ptr<uint8_t[]> peer_value(new uint8_t[peer_value_len]); |
| peer_value_len = EC_POINT_point2oct( |
| EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()), |
| POINT_CONVERSION_UNCOMPRESSED, peer_value.get(), peer_value_len, nullptr); |
| if (peer_value_len == 0) { |
| return false; |
| } |
| |
| TimeResults results; |
| if (!TimeFunction(&results, [nid, peer_value_len, &peer_value]() -> bool { |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid)); |
| if (!key || |
| !EC_KEY_generate_key(key.get())) { |
| return false; |
| } |
| const EC_GROUP *const group = EC_KEY_get0_group(key.get()); |
| bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group)); |
| bssl::UniquePtr<EC_POINT> peer_point(EC_POINT_new(group)); |
| bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
| |
| bssl::UniquePtr<BIGNUM> x(BN_new()); |
| bssl::UniquePtr<BIGNUM> y(BN_new()); |
| |
| if (!point || !peer_point || !ctx || !x || !y || |
| !EC_POINT_oct2point(group, peer_point.get(), peer_value.get(), |
| peer_value_len, ctx.get()) || |
| !EC_POINT_mul(group, point.get(), NULL, peer_point.get(), |
| EC_KEY_get0_private_key(key.get()), ctx.get()) || |
| !EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(), |
| y.get(), ctx.get())) { |
| return false; |
| } |
| |
| return true; |
| })) { |
| return false; |
| } |
| |
| results.Print(name); |
| return true; |
| } |
| |
| static bool SpeedECDSACurve(const std::string &name, int nid, |
| const std::string &selected) { |
| if (!selected.empty() && name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid)); |
| if (!key || |
| !EC_KEY_generate_key(key.get())) { |
| return false; |
| } |
| |
| uint8_t signature[256]; |
| if (ECDSA_size(key.get()) > sizeof(signature)) { |
| return false; |
| } |
| uint8_t digest[20]; |
| OPENSSL_memset(digest, 42, sizeof(digest)); |
| unsigned sig_len; |
| |
| TimeResults results; |
| if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool { |
| return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len, |
| key.get()) == 1; |
| })) { |
| return false; |
| } |
| |
| results.Print(name + " signing"); |
| |
| if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool { |
| return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len, |
| key.get()) == 1; |
| })) { |
| return false; |
| } |
| |
| results.Print(name + " verify"); |
| |
| return true; |
| } |
| |
| static bool SpeedECDH(const std::string &selected) { |
| return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) && |
| SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) && |
| SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) && |
| SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected); |
| } |
| |
| static bool SpeedECDSA(const std::string &selected) { |
| return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) && |
| SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) && |
| SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) && |
| SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected); |
| } |
| |
| static bool Speed25519(const std::string &selected) { |
| if (!selected.empty() && selected.find("25519") == std::string::npos) { |
| return true; |
| } |
| |
| TimeResults results; |
| |
| uint8_t public_key[32], private_key[64]; |
| |
| if (!TimeFunction(&results, [&public_key, &private_key]() -> bool { |
| ED25519_keypair(public_key, private_key); |
| return true; |
| })) { |
| return false; |
| } |
| |
| results.Print("Ed25519 key generation"); |
| |
| static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5}; |
| uint8_t signature[64]; |
| |
| if (!TimeFunction(&results, [&private_key, &signature]() -> bool { |
| return ED25519_sign(signature, kMessage, sizeof(kMessage), |
| private_key) == 1; |
| })) { |
| return false; |
| } |
| |
| results.Print("Ed25519 signing"); |
| |
| if (!TimeFunction(&results, [&public_key, &signature]() -> bool { |
| return ED25519_verify(kMessage, sizeof(kMessage), signature, |
| public_key) == 1; |
| })) { |
| fprintf(stderr, "Ed25519 verify failed.\n"); |
| return false; |
| } |
| |
| results.Print("Ed25519 verify"); |
| |
| if (!TimeFunction(&results, []() -> bool { |
| uint8_t out[32], in[32]; |
| OPENSSL_memset(in, 0, sizeof(in)); |
| X25519_public_from_private(out, in); |
| return true; |
| })) { |
| fprintf(stderr, "Curve25519 base-point multiplication failed.\n"); |
| return false; |
| } |
| |
| results.Print("Curve25519 base-point multiplication"); |
| |
| if (!TimeFunction(&results, []() -> bool { |
| uint8_t out[32], in1[32], in2[32]; |
| OPENSSL_memset(in1, 0, sizeof(in1)); |
| OPENSSL_memset(in2, 0, sizeof(in2)); |
| in1[0] = 1; |
| in2[0] = 9; |
| return X25519(out, in1, in2) == 1; |
| })) { |
| fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n"); |
| return false; |
| } |
| |
| results.Print("Curve25519 arbitrary point multiplication"); |
| |
| return true; |
| } |
| |
| static bool SpeedSPAKE2(const std::string &selected) { |
| if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) { |
| return true; |
| } |
| |
| TimeResults results; |
| |
| static const uint8_t kAliceName[] = {'A'}; |
| static const uint8_t kBobName[] = {'B'}; |
| static const uint8_t kPassword[] = "password"; |
| bssl::UniquePtr<SPAKE2_CTX> alice(SPAKE2_CTX_new(spake2_role_alice, |
| kAliceName, sizeof(kAliceName), kBobName, |
| sizeof(kBobName))); |
| uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE]; |
| size_t alice_msg_len; |
| |
| if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len, |
| sizeof(alice_msg), |
| kPassword, sizeof(kPassword))) { |
| fprintf(stderr, "SPAKE2_generate_msg failed.\n"); |
| return false; |
| } |
| |
| if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool { |
| bssl::UniquePtr<SPAKE2_CTX> bob(SPAKE2_CTX_new(spake2_role_bob, |
| kBobName, sizeof(kBobName), kAliceName, |
| sizeof(kAliceName))); |
| uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64]; |
| size_t bob_msg_len, bob_key_len; |
| if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len, |
| sizeof(bob_msg), kPassword, |
| sizeof(kPassword)) || |
| !SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len, |
| sizeof(bob_key), alice_msg, alice_msg_len)) { |
| return false; |
| } |
| |
| return true; |
| })) { |
| fprintf(stderr, "SPAKE2 failed.\n"); |
| } |
| |
| results.Print("SPAKE2 over Ed25519"); |
| |
| return true; |
| } |
| |
| static bool SpeedScrypt(const std::string &selected) { |
| if (!selected.empty() && selected.find("scrypt") == std::string::npos) { |
| return true; |
| } |
| |
| TimeResults results; |
| |
| static const char kPassword[] = "password"; |
| static const uint8_t kSalt[] = "NaCl"; |
| |
| if (!TimeFunction(&results, [&]() -> bool { |
| uint8_t out[64]; |
| return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt, |
| sizeof(kSalt) - 1, 1024, 8, 16, 0 /* max_mem */, |
| out, sizeof(out)); |
| })) { |
| fprintf(stderr, "scrypt failed.\n"); |
| return false; |
| } |
| results.Print("scrypt (N = 1024, r = 8, p = 16)"); |
| |
| if (!TimeFunction(&results, [&]() -> bool { |
| uint8_t out[64]; |
| return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt, |
| sizeof(kSalt) - 1, 16384, 8, 1, 0 /* max_mem */, |
| out, sizeof(out)); |
| })) { |
| fprintf(stderr, "scrypt failed.\n"); |
| return false; |
| } |
| results.Print("scrypt (N = 16384, r = 8, p = 1)"); |
| |
| return true; |
| } |
| |
| static bool SpeedHRSS(const std::string &selected) { |
| if (!selected.empty() && selected != "HRSS") { |
| return true; |
| } |
| |
| TimeResults results; |
| |
| if (!TimeFunction(&results, []() -> bool { |
| struct HRSS_public_key pub; |
| struct HRSS_private_key priv; |
| uint8_t entropy[HRSS_GENERATE_KEY_BYTES]; |
| RAND_bytes(entropy, sizeof(entropy)); |
| HRSS_generate_key(&pub, &priv, entropy); |
| return true; |
| })) { |
| fprintf(stderr, "Failed to time HRSS_generate_key.\n"); |
| return false; |
| } |
| |
| results.Print("HRSS generate"); |
| |
| struct HRSS_public_key pub; |
| struct HRSS_private_key priv; |
| uint8_t key_entropy[HRSS_GENERATE_KEY_BYTES]; |
| RAND_bytes(key_entropy, sizeof(key_entropy)); |
| HRSS_generate_key(&pub, &priv, key_entropy); |
| |
| uint8_t ciphertext[HRSS_CIPHERTEXT_BYTES]; |
| if (!TimeFunction(&results, [&pub, &ciphertext]() -> bool { |
| uint8_t entropy[HRSS_ENCAP_BYTES]; |
| uint8_t shared_key[HRSS_KEY_BYTES]; |
| RAND_bytes(entropy, sizeof(entropy)); |
| HRSS_encap(ciphertext, shared_key, &pub, entropy); |
| return true; |
| })) { |
| fprintf(stderr, "Failed to time HRSS_encap.\n"); |
| return false; |
| } |
| |
| results.Print("HRSS encap"); |
| |
| if (!TimeFunction(&results, [&priv, &ciphertext]() -> bool { |
| uint8_t shared_key[HRSS_KEY_BYTES]; |
| HRSS_decap(shared_key, &priv, ciphertext, sizeof(ciphertext)); |
| return true; |
| })) { |
| fprintf(stderr, "Failed to time HRSS_encap.\n"); |
| return false; |
| } |
| |
| results.Print("HRSS decap"); |
| |
| return true; |
| } |
| |
| static const struct argument kArguments[] = { |
| { |
| "-filter", |
| kOptionalArgument, |
| "A filter on the speed tests to run", |
| }, |
| { |
| "-timeout", |
| kOptionalArgument, |
| "The number of seconds to run each test for (default is 1)", |
| }, |
| { |
| "-chunks", |
| kOptionalArgument, |
| "A comma-separated list of input sizes to run tests at (default is " |
| "16,256,1350,8192,16384)", |
| }, |
| { |
| "-json", |
| kBooleanArgument, |
| "If this flag is set, speed will print the output of each benchmark in " |
| "JSON format as follows: \"{\"description\": " |
| "\"descriptionOfOperation\", \"numCalls\": 1234, " |
| "\"timeInMicroseconds\": 1234567, \"bytesPerCall\": 1234}\". When " |
| "there is no information about the bytes per call for an operation, " |
| "the JSON field for bytesPerCall will be omitted.", |
| }, |
| { |
| "", |
| kOptionalArgument, |
| "", |
| }, |
| }; |
| |
| bool Speed(const std::vector<std::string> &args) { |
| std::map<std::string, std::string> args_map; |
| if (!ParseKeyValueArguments(&args_map, args, kArguments)) { |
| PrintUsage(kArguments); |
| return false; |
| } |
| |
| std::string selected; |
| if (args_map.count("-filter") != 0) { |
| selected = args_map["-filter"]; |
| } |
| |
| if (args_map.count("-json") != 0) { |
| g_print_json = true; |
| } |
| |
| if (args_map.count("-timeout") != 0) { |
| g_timeout_seconds = atoi(args_map["-timeout"].c_str()); |
| } |
| |
| if (args_map.count("-chunks") != 0) { |
| g_chunk_lengths.clear(); |
| const char *start = args_map["-chunks"].data(); |
| const char *end = start + args_map["-chunks"].size(); |
| while (start != end) { |
| errno = 0; |
| char *ptr; |
| unsigned long long val = strtoull(start, &ptr, 10); |
| if (ptr == start /* no numeric characters found */ || |
| errno == ERANGE /* overflow */ || |
| static_cast<size_t>(val) != val) { |
| fprintf(stderr, "Error parsing -chunks argument\n"); |
| return false; |
| } |
| g_chunk_lengths.push_back(static_cast<size_t>(val)); |
| start = ptr; |
| if (start != end) { |
| if (*start != ',') { |
| fprintf(stderr, "Error parsing -chunks argument\n"); |
| return false; |
| } |
| start++; |
| } |
| } |
| } |
| |
| // kTLSADLen is the number of bytes of additional data that TLS passes to |
| // AEADs. |
| static const size_t kTLSADLen = 13; |
| // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs. |
| // These are AEADs that weren't originally defined as AEADs, but which we use |
| // via the AEAD interface. In order for that to work, they have some TLS |
| // knowledge in them and construct a couple of the AD bytes internally. |
| static const size_t kLegacyADLen = kTLSADLen - 2; |
| |
| if (g_print_json) { |
| puts("["); |
| } |
| if (!SpeedRSA(selected) || |
| !SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) || |
| !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) || |
| !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen, |
| selected) || |
| !SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1", |
| kLegacyADLen, selected) || |
| !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", |
| kLegacyADLen, selected) || |
| !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", |
| kLegacyADLen, selected) || |
| !SpeedAEADOpen(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", |
| kLegacyADLen, selected) || |
| !SpeedAEADOpen(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", |
| kLegacyADLen, selected) || |
| !SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, |
| selected) || |
| !SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, |
| selected) || |
| !SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, |
| selected) || |
| !SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, |
| selected) || |
| !SpeedAEAD(EVP_aead_aes_128_ccm_bluetooth(), "AES-128-CCM-Bluetooth", |
| kTLSADLen, selected) || |
| !SpeedAESBlock("AES-128", 128, selected) || |
| !SpeedAESBlock("AES-256", 256, selected) || |
| !SpeedHash(EVP_sha1(), "SHA-1", selected) || |
| !SpeedHash(EVP_sha256(), "SHA-256", selected) || |
| !SpeedHash(EVP_sha512(), "SHA-512", selected) || |
| !SpeedRandom(selected) || |
| !SpeedECDH(selected) || |
| !SpeedECDSA(selected) || |
| !Speed25519(selected) || |
| !SpeedSIKEP434(selected) || |
| !SpeedSPAKE2(selected) || |
| !SpeedScrypt(selected) || |
| !SpeedRSAKeyGen(selected) || |
| !SpeedHRSS(selected)) { |
| return false; |
| } |
| if (g_print_json) { |
| puts("\n]"); |
| } |
| |
| return true; |
| } |