blob: 8ac1aaecd2fe17859b7b48d5c8cb6dee933649e0 [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <openssl/aead.h>
#include <openssl/cipher.h>
#include <openssl/err.h>
#include <openssl/hmac.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#include "../crypto/internal.h"
#include "internal.h"
typedef struct {
EVP_CIPHER_CTX cipher_ctx;
HMAC_CTX hmac_ctx;
/* mac_key is the portion of the key used for the MAC. It is retained
* separately for the constant-time CBC code. */
uint8_t mac_key[EVP_MAX_MD_SIZE];
uint8_t mac_key_len;
/* enc_key is the portion of the key used for the stream or block
* cipher. It is retained separately to allow the EVP_CIPHER_CTX to be
* initialized once the direction is known. */
uint8_t enc_key[EVP_MAX_KEY_LENGTH];
uint8_t enc_key_len;
/* iv is the portion of the key used for the fixed IV. It is retained
* separately to allow the EVP_CIPHER_CTX to be initialized once the direction
* is known. */
uint8_t iv[EVP_MAX_IV_LENGTH];
uint8_t iv_len;
/* implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit
* IV. */
char implicit_iv;
char initialized;
} AEAD_TLS_CTX;
static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) {
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx);
HMAC_CTX_cleanup(&tls_ctx->hmac_ctx);
OPENSSL_cleanse(&tls_ctx->mac_key, sizeof(tls_ctx->mac_key));
OPENSSL_cleanse(&tls_ctx->enc_key, sizeof(tls_ctx->enc_key));
OPENSSL_cleanse(&tls_ctx->iv, sizeof(tls_ctx->iv));
OPENSSL_free(tls_ctx);
ctx->aead_state = NULL;
}
static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len,
size_t tag_len, const EVP_CIPHER *cipher,
const EVP_MD *md, char implicit_iv) {
if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH &&
tag_len != EVP_MD_size(md)) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, CIPHER_R_UNSUPPORTED_TAG_SIZE);
return 0;
}
if (key_len != EVP_AEAD_key_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, CIPHER_R_BAD_KEY_LENGTH);
return 0;
}
size_t mac_key_len = EVP_MD_size(md);
size_t enc_key_len = EVP_CIPHER_key_length(cipher);
size_t iv_len = implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0;
assert(mac_key_len + enc_key_len + iv_len == key_len);
assert(mac_key_len < 256);
assert(enc_key_len < 256);
assert(iv_len < 256);
/* Although EVP_rc4() is a variable-length cipher, the default key size is
* correct for TLS. */
AEAD_TLS_CTX *tls_ctx = OPENSSL_malloc(sizeof(AEAD_TLS_CTX));
if (tls_ctx == NULL) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, ERR_R_MALLOC_FAILURE);
return 0;
}
EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx);
HMAC_CTX_init(&tls_ctx->hmac_ctx);
memcpy(tls_ctx->mac_key, key, mac_key_len);
tls_ctx->mac_key_len = (uint8_t)mac_key_len;
memcpy(tls_ctx->enc_key, &key[mac_key_len], enc_key_len);
tls_ctx->enc_key_len = (uint8_t)enc_key_len;
memcpy(tls_ctx->iv, &key[mac_key_len + enc_key_len], iv_len);
tls_ctx->iv_len = (uint8_t)iv_len;
tls_ctx->implicit_iv = implicit_iv;
tls_ctx->initialized = 0;
ctx->aead_state = tls_ctx;
if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, NULL, NULL, 0) ||
!HMAC_Init_ex(&tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) {
aead_tls_cleanup(ctx);
return 0;
}
EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0);
return 1;
}
/* aead_tls_ensure_cipher_init initializes |tls_ctx| for encryption (or
* decryption, if |encrypt| is zero). If it has already been initialized, it
* ensures the direction matches and fails otherwise. It returns one on success
* and zero on failure.
*
* Note that, unlike normal AEADs, legacy TLS AEADs may not be used concurrently
* due to this (and bulk-cipher-internal) statefulness. */
static int aead_tls_ensure_cipher_init(AEAD_TLS_CTX *tls_ctx, int encrypt) {
if (!tls_ctx->initialized) {
/* Finish initializing the EVP_CIPHER_CTX now that the direction is
* known. */
if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, tls_ctx->enc_key,
tls_ctx->implicit_iv ? tls_ctx->iv : NULL,
encrypt)) {
return 0;
}
tls_ctx->initialized = 1;
} else if (tls_ctx->cipher_ctx.encrypt != encrypt) {
/* Unlike a normal AEAD, using a TLS AEAD once freezes the direction. */
OPENSSL_PUT_ERROR(CIPHER, aead_tls_ensure_cipher_init,
CIPHER_R_INVALID_OPERATION);
return 0;
}
return 1;
}
static int aead_tls_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
size_t *out_len, size_t max_out_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len) {
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
size_t total = 0;
if (in_len + EVP_AEAD_max_overhead(ctx->aead) < in_len ||
in_len > INT_MAX) {
/* EVP_CIPHER takes int as input. */
OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_TOO_LARGE);
return 0;
}
if (max_out_len < in_len + EVP_AEAD_max_overhead(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_INVALID_NONCE_SIZE);
return 0;
}
if (ad_len != 13 - 2 /* length bytes */) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_INVALID_AD_SIZE);
return 0;
}
if (!aead_tls_ensure_cipher_init(tls_ctx, 1)) {
return 0;
}
/* To allow for CBC mode which changes cipher length, |ad| doesn't include the
* length for legacy ciphers. */
uint8_t ad_extra[2];
ad_extra[0] = (uint8_t)(in_len >> 8);
ad_extra[1] = (uint8_t)(in_len & 0xff);
/* Compute the MAC. This must be first in case the operation is being done
* in-place. */
uint8_t mac[EVP_MAX_MD_SIZE];
unsigned mac_len;
HMAC_CTX hmac_ctx;
HMAC_CTX_init(&hmac_ctx);
if (!HMAC_CTX_copy_ex(&hmac_ctx, &tls_ctx->hmac_ctx) ||
!HMAC_Update(&hmac_ctx, ad, ad_len) ||
!HMAC_Update(&hmac_ctx, ad_extra, sizeof(ad_extra)) ||
!HMAC_Update(&hmac_ctx, in, in_len) ||
!HMAC_Final(&hmac_ctx, mac, &mac_len)) {
HMAC_CTX_cleanup(&hmac_ctx);
return 0;
}
HMAC_CTX_cleanup(&hmac_ctx);
/* Configure the explicit IV. */
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
!tls_ctx->implicit_iv &&
!EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
return 0;
}
/* Encrypt the input. */
int len;
if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in,
(int)in_len)) {
return 0;
}
total = len;
/* Feed the MAC into the cipher. */
if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, mac,
(int)mac_len)) {
return 0;
}
total += len;
unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx);
if (block_size > 1) {
assert(block_size <= 256);
assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE);
/* Compute padding and feed that into the cipher. */
uint8_t padding[256];
unsigned padding_len = block_size - ((in_len + mac_len) % block_size);
memset(padding, padding_len - 1, padding_len);
if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, padding,
(int)padding_len)) {
return 0;
}
total += len;
}
if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) {
return 0;
}
total += len;
*out_len = total;
return 1;
}
static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
size_t *out_len, size_t max_out_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len) {
AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state;
if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT);
return 0;
}
if (max_out_len < in_len) {
/* This requires that the caller provide space for the MAC, even though it
* will always be removed on return. */
OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_NONCE_SIZE);
return 0;
}
if (ad_len != 13 - 2 /* length bytes */) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_AD_SIZE);
return 0;
}
if (in_len > INT_MAX) {
/* EVP_CIPHER takes int as input. */
OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_TOO_LARGE);
return 0;
}
if (!aead_tls_ensure_cipher_init(tls_ctx, 0)) {
return 0;
}
/* Configure the explicit IV. */
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
!tls_ctx->implicit_iv &&
!EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) {
return 0;
}
/* Decrypt to get the plaintext + MAC + padding. */
size_t total = 0;
int len;
if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) {
return 0;
}
total += len;
if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) {
return 0;
}
total += len;
assert(total == in_len);
/* Remove CBC padding. Code from here on is timing-sensitive with respect to
* |padding_ok| and |data_plus_mac_len| for CBC ciphers. */
int padding_ok;
unsigned data_plus_mac_len, data_len;
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) {
padding_ok = EVP_tls_cbc_remove_padding(
&data_plus_mac_len, out, total,
EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx),
(unsigned)HMAC_size(&tls_ctx->hmac_ctx));
/* Publicly invalid. This can be rejected in non-constant time. */
if (padding_ok == 0) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT);
return 0;
}
} else {
padding_ok = 1;
data_plus_mac_len = total;
/* |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has
* already been checked against the MAC size at the top of the function. */
assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx));
}
data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx);
/* At this point, |padding_ok| is 1 or -1. If 1, the padding is valid and the
* first |data_plus_mac_size| bytes after |out| are the plaintext and
* MAC. Either way, |data_plus_mac_size| is large enough to extract a MAC. */
/* To allow for CBC mode which changes cipher length, |ad| doesn't include the
* length for legacy ciphers. */
uint8_t ad_fixed[13];
memcpy(ad_fixed, ad, 11);
ad_fixed[11] = (uint8_t)(data_len >> 8);
ad_fixed[12] = (uint8_t)(data_len & 0xff);
ad_len += 2;
/* Compute the MAC and extract the one in the record. */
uint8_t mac[EVP_MAX_MD_SIZE];
size_t mac_len;
uint8_t record_mac_tmp[EVP_MAX_MD_SIZE];
uint8_t *record_mac;
if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE &&
EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) {
if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len,
ad_fixed, out, data_plus_mac_len, total,
tls_ctx->mac_key, tls_ctx->mac_key_len)) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT);
return 0;
}
assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx));
record_mac = record_mac_tmp;
EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total);
} else {
/* We should support the constant-time path for all CBC-mode ciphers
* implemented. */
assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE);
HMAC_CTX hmac_ctx;
HMAC_CTX_init(&hmac_ctx);
unsigned mac_len_u;
if (!HMAC_CTX_copy_ex(&hmac_ctx, &tls_ctx->hmac_ctx) ||
!HMAC_Update(&hmac_ctx, ad_fixed, ad_len) ||
!HMAC_Update(&hmac_ctx, out, data_len) ||
!HMAC_Final(&hmac_ctx, mac, &mac_len_u)) {
HMAC_CTX_cleanup(&hmac_ctx);
return 0;
}
mac_len = mac_len_u;
HMAC_CTX_cleanup(&hmac_ctx);
assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx));
record_mac = &out[data_len];
}
/* Perform the MAC check and the padding check in constant-time. It should be
* safe to simply perform the padding check first, but it would not be under a
* different choice of MAC location on padding failure. See
* EVP_tls_cbc_remove_padding. */
unsigned good = constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len),
0);
good &= constant_time_eq_int(padding_ok, 1);
if (!good) {
OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT);
return 0;
}
/* End of timing-sensitive code. */
*out_len = data_len;
return 1;
}
static int aead_rc4_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len) {
return aead_tls_init(ctx, key, key_len, tag_len, EVP_rc4(), EVP_sha1(), 0);
}
static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len) {
return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_128_cbc(),
EVP_sha1(), 0);
}
static int aead_aes_128_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX *ctx,
const uint8_t *key,
size_t key_len,
size_t tag_len) {
return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_128_cbc(),
EVP_sha1(), 1);
}
static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
const uint8_t *key, size_t key_len,
size_t tag_len) {
return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_128_cbc(),
EVP_sha256(), 0);
}
static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len) {
return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(),
EVP_sha1(), 0);
}
static int aead_aes_256_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX *ctx,
const uint8_t *key,
size_t key_len,
size_t tag_len) {
return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(),
EVP_sha1(), 1);
}
static int aead_aes_256_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx,
const uint8_t *key, size_t key_len,
size_t tag_len) {
return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(),
EVP_sha256(), 0);
}
static int aead_aes_256_cbc_sha384_tls_init(EVP_AEAD_CTX *ctx,
const uint8_t *key, size_t key_len,
size_t tag_len) {
return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(),
EVP_sha384(), 0);
}
static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx,
const uint8_t *key, size_t key_len,
size_t tag_len) {
return aead_tls_init(ctx, key, key_len, tag_len, EVP_des_ede3_cbc(),
EVP_sha1(), 0);
}
static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX *ctx,
const uint8_t *key,
size_t key_len,
size_t tag_len) {
return aead_tls_init(ctx, key, key_len, tag_len, EVP_des_ede3_cbc(),
EVP_sha1(), 1);
}
static const EVP_AEAD aead_rc4_sha1_tls = {
SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + RC4) */
0, /* nonce len */
SHA_DIGEST_LENGTH, /* overhead */
SHA_DIGEST_LENGTH, /* max tag length */
aead_rc4_sha1_tls_init,
aead_tls_cleanup,
aead_tls_seal,
aead_tls_open,
};
static const EVP_AEAD aead_aes_128_cbc_sha1_tls = {
SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + AES128) */
16, /* nonce len (IV) */
16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
SHA_DIGEST_LENGTH, /* max tag length */
aead_aes_128_cbc_sha1_tls_init,
aead_tls_cleanup,
aead_tls_seal,
aead_tls_open,
};
static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = {
SHA_DIGEST_LENGTH + 16 + 16, /* key len (SHA1 + AES128 + IV) */
0, /* nonce len */
16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
SHA_DIGEST_LENGTH, /* max tag length */
aead_aes_128_cbc_sha1_tls_implicit_iv_init,
aead_tls_cleanup,
aead_tls_seal,
aead_tls_open,
};
static const EVP_AEAD aead_aes_128_cbc_sha256_tls = {
SHA256_DIGEST_LENGTH + 16, /* key len (SHA256 + AES128) */
16, /* nonce len (IV) */
16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */
SHA_DIGEST_LENGTH, /* max tag length */
aead_aes_128_cbc_sha256_tls_init,
aead_tls_cleanup,
aead_tls_seal,
aead_tls_open,
};
static const EVP_AEAD aead_aes_256_cbc_sha1_tls = {
SHA_DIGEST_LENGTH + 32, /* key len (SHA1 + AES256) */
16, /* nonce len (IV) */
16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
SHA_DIGEST_LENGTH, /* max tag length */
aead_aes_256_cbc_sha1_tls_init,
aead_tls_cleanup,
aead_tls_seal,
aead_tls_open,
};
static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = {
SHA_DIGEST_LENGTH + 32 + 16, /* key len (SHA1 + AES256 + IV) */
0, /* nonce len */
16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
SHA_DIGEST_LENGTH, /* max tag length */
aead_aes_256_cbc_sha1_tls_implicit_iv_init,
aead_tls_cleanup,
aead_tls_seal,
aead_tls_open,
};
static const EVP_AEAD aead_aes_256_cbc_sha256_tls = {
SHA256_DIGEST_LENGTH + 32, /* key len (SHA256 + AES256) */
16, /* nonce len (IV) */
16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */
SHA_DIGEST_LENGTH, /* max tag length */
aead_aes_256_cbc_sha256_tls_init,
aead_tls_cleanup,
aead_tls_seal,
aead_tls_open,
};
static const EVP_AEAD aead_aes_256_cbc_sha384_tls = {
SHA384_DIGEST_LENGTH + 32, /* key len (SHA384 + AES256) */
16, /* nonce len (IV) */
16 + SHA384_DIGEST_LENGTH, /* overhead (padding + SHA384) */
SHA_DIGEST_LENGTH, /* max tag length */
aead_aes_256_cbc_sha384_tls_init,
aead_tls_cleanup,
aead_tls_seal,
aead_tls_open,
};
static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = {
SHA_DIGEST_LENGTH + 24, /* key len (SHA1 + 3DES) */
8, /* nonce len (IV) */
8 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
SHA_DIGEST_LENGTH, /* max tag length */
aead_des_ede3_cbc_sha1_tls_init,
aead_tls_cleanup,
aead_tls_seal,
aead_tls_open,
};
static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = {
SHA_DIGEST_LENGTH + 24 + 8, /* key len (SHA1 + 3DES + IV) */
0, /* nonce len */
8 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */
SHA_DIGEST_LENGTH, /* max tag length */
aead_des_ede3_cbc_sha1_tls_implicit_iv_init,
aead_tls_cleanup,
aead_tls_seal,
aead_tls_open,
};
const EVP_AEAD *EVP_aead_rc4_sha1_tls(void) { return &aead_rc4_sha1_tls; }
const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) {
return &aead_aes_128_cbc_sha1_tls;
}
const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) {
return &aead_aes_128_cbc_sha1_tls_implicit_iv;
}
const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) {
return &aead_aes_128_cbc_sha256_tls;
}
const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) {
return &aead_aes_256_cbc_sha1_tls;
}
const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) {
return &aead_aes_256_cbc_sha1_tls_implicit_iv;
}
const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void) {
return &aead_aes_256_cbc_sha256_tls;
}
const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void) {
return &aead_aes_256_cbc_sha384_tls;
}
const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) {
return &aead_des_ede3_cbc_sha1_tls;
}
const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) {
return &aead_des_ede3_cbc_sha1_tls_implicit_iv;
}