|  | // Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/ec.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../../internal.h" | 
|  | #include "../bn/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | // This file implements the wNAF-based interleaving multi-exponentiation method | 
|  | // at: | 
|  | //   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 | 
|  | //   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf | 
|  |  | 
|  | void ec_compute_wNAF(const EC_GROUP *group, int8_t *out, | 
|  | const EC_SCALAR *scalar, size_t bits, int w) { | 
|  | // 'int8_t' can represent integers with absolute values less than 2^7. | 
|  | assert(0 < w && w <= 7); | 
|  | assert(bits != 0); | 
|  | int bit = 1 << w;         // 2^w, at most 128 | 
|  | int next_bit = bit << 1;  // 2^(w+1), at most 256 | 
|  | int mask = next_bit - 1;  // at most 255 | 
|  |  | 
|  | int window_val = scalar->words[0] & mask; | 
|  | for (size_t j = 0; j < bits + 1; j++) { | 
|  | assert(0 <= window_val && window_val <= next_bit); | 
|  | int digit = 0; | 
|  | if (window_val & 1) { | 
|  | assert(0 < window_val && window_val < next_bit); | 
|  | if (window_val & bit) { | 
|  | digit = window_val - next_bit; | 
|  | // We know -next_bit < digit < 0 and window_val - digit = next_bit. | 
|  |  | 
|  | // modified wNAF | 
|  | if (j + w + 1 >= bits) { | 
|  | // special case for generating modified wNAFs: | 
|  | // no new bits will be added into window_val, | 
|  | // so using a positive digit here will decrease | 
|  | // the total length of the representation | 
|  |  | 
|  | digit = window_val & (mask >> 1); | 
|  | // We know 0 < digit < bit and window_val - digit = bit. | 
|  | } | 
|  | } else { | 
|  | digit = window_val; | 
|  | // We know 0 < digit < bit and window_val - digit = 0. | 
|  | } | 
|  |  | 
|  | window_val -= digit; | 
|  |  | 
|  | // Now window_val is 0 or 2^(w+1) in standard wNAF generation. | 
|  | // For modified window NAFs, it may also be 2^w. | 
|  | // | 
|  | // See the comments above for the derivation of each of these bounds. | 
|  | assert(window_val == 0 || window_val == next_bit || window_val == bit); | 
|  | assert(-bit < digit && digit < bit); | 
|  |  | 
|  | // window_val was odd, so digit is also odd. | 
|  | assert(digit & 1); | 
|  | } | 
|  |  | 
|  | out[j] = digit; | 
|  |  | 
|  | // Incorporate the next bit. Previously, |window_val| <= |next_bit|, so if | 
|  | // we shift and add at most one copy of |bit|, this will continue to hold | 
|  | // afterwards. | 
|  | window_val >>= 1; | 
|  | window_val += bit * bn_is_bit_set_words(scalar->words, group->order.N.width, | 
|  | j + w + 1); | 
|  | assert(window_val <= next_bit); | 
|  | } | 
|  |  | 
|  | // bits + 1 entries should be sufficient to consume all bits. | 
|  | assert(window_val == 0); | 
|  | } | 
|  |  | 
|  | // compute_precomp sets |out[i]| to (2*i+1)*p, for i from 0 to |len|. | 
|  | static void compute_precomp(const EC_GROUP *group, EC_JACOBIAN *out, | 
|  | const EC_JACOBIAN *p, size_t len) { | 
|  | ec_GFp_simple_point_copy(&out[0], p); | 
|  | EC_JACOBIAN two_p; | 
|  | ec_GFp_mont_dbl(group, &two_p, p); | 
|  | for (size_t i = 1; i < len; i++) { | 
|  | ec_GFp_mont_add(group, &out[i], &out[i - 1], &two_p); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lookup_precomp(const EC_GROUP *group, EC_JACOBIAN *out, | 
|  | const EC_JACOBIAN *precomp, int digit) { | 
|  | if (digit < 0) { | 
|  | digit = -digit; | 
|  | ec_GFp_simple_point_copy(out, &precomp[digit >> 1]); | 
|  | ec_GFp_simple_invert(group, out); | 
|  | } else { | 
|  | ec_GFp_simple_point_copy(out, &precomp[digit >> 1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // EC_WNAF_WINDOW_BITS is the window size to use for |ec_GFp_mont_mul_public|. | 
|  | #define EC_WNAF_WINDOW_BITS 4 | 
|  |  | 
|  | // EC_WNAF_TABLE_SIZE is the table size to use for |ec_GFp_mont_mul_public|. | 
|  | #define EC_WNAF_TABLE_SIZE (1 << (EC_WNAF_WINDOW_BITS - 1)) | 
|  |  | 
|  | // EC_WNAF_STACK is the number of points worth of data to stack-allocate and | 
|  | // avoid a malloc. | 
|  | #define EC_WNAF_STACK 3 | 
|  |  | 
|  | int ec_GFp_mont_mul_public_batch(const EC_GROUP *group, EC_JACOBIAN *r, | 
|  | const EC_SCALAR *g_scalar, | 
|  | const EC_JACOBIAN *points, | 
|  | const EC_SCALAR *scalars, size_t num) { | 
|  | size_t bits = EC_GROUP_order_bits(group); | 
|  | size_t wNAF_len = bits + 1; | 
|  |  | 
|  | // Stack-allocated space, which will be used if the task is small enough. | 
|  | int8_t wNAF_stack[EC_WNAF_STACK][EC_MAX_BYTES * 8 + 1]; | 
|  | EC_JACOBIAN precomp_stack[EC_WNAF_STACK][EC_WNAF_TABLE_SIZE]; | 
|  |  | 
|  | // Allocated pointers, which will remain NULL unless needed. | 
|  | EC_JACOBIAN(*precomp_alloc)[EC_WNAF_TABLE_SIZE] = NULL; | 
|  | int8_t(*wNAF_alloc)[EC_MAX_BYTES * 8 + 1] = NULL; | 
|  |  | 
|  | // These fields point either to the stack or heap buffers of the same name. | 
|  | int8_t(*wNAF)[EC_MAX_BYTES * 8 + 1]; | 
|  | EC_JACOBIAN(*precomp)[EC_WNAF_TABLE_SIZE]; | 
|  |  | 
|  | if (num <= EC_WNAF_STACK) { | 
|  | wNAF = wNAF_stack; | 
|  | precomp = precomp_stack; | 
|  | } else { | 
|  | wNAF_alloc = reinterpret_cast<decltype(wNAF_alloc)>( | 
|  | OPENSSL_calloc(num, sizeof(wNAF_alloc[0]))); | 
|  | if (wNAF_alloc == NULL) { | 
|  | return 0; | 
|  | } | 
|  | precomp_alloc = reinterpret_cast<decltype(precomp_alloc)>( | 
|  | OPENSSL_calloc(num, sizeof(precomp_alloc[0]))); | 
|  | if (precomp_alloc == NULL) { | 
|  | OPENSSL_free(wNAF_alloc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | wNAF = wNAF_alloc; | 
|  | precomp = precomp_alloc; | 
|  | } | 
|  |  | 
|  | int8_t g_wNAF[EC_MAX_BYTES * 8 + 1]; | 
|  | EC_JACOBIAN g_precomp[EC_WNAF_TABLE_SIZE]; | 
|  | assert(wNAF_len <= OPENSSL_ARRAY_SIZE(g_wNAF)); | 
|  | const EC_JACOBIAN *g = &group->generator.raw; | 
|  | if (g_scalar != NULL) { | 
|  | ec_compute_wNAF(group, g_wNAF, g_scalar, bits, EC_WNAF_WINDOW_BITS); | 
|  | compute_precomp(group, g_precomp, g, EC_WNAF_TABLE_SIZE); | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < num; i++) { | 
|  | assert(wNAF_len <= OPENSSL_ARRAY_SIZE(wNAF[i])); | 
|  | ec_compute_wNAF(group, wNAF[i], &scalars[i], bits, EC_WNAF_WINDOW_BITS); | 
|  | compute_precomp(group, precomp[i], &points[i], EC_WNAF_TABLE_SIZE); | 
|  | } | 
|  |  | 
|  | EC_JACOBIAN tmp; | 
|  | int r_is_at_infinity = 1; | 
|  | for (size_t k = wNAF_len - 1; k < wNAF_len; k--) { | 
|  | if (!r_is_at_infinity) { | 
|  | ec_GFp_mont_dbl(group, r, r); | 
|  | } | 
|  |  | 
|  | if (g_scalar != NULL && g_wNAF[k] != 0) { | 
|  | lookup_precomp(group, &tmp, g_precomp, g_wNAF[k]); | 
|  | if (r_is_at_infinity) { | 
|  | ec_GFp_simple_point_copy(r, &tmp); | 
|  | r_is_at_infinity = 0; | 
|  | } else { | 
|  | ec_GFp_mont_add(group, r, r, &tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < num; i++) { | 
|  | if (wNAF[i][k] != 0) { | 
|  | lookup_precomp(group, &tmp, precomp[i], wNAF[i][k]); | 
|  | if (r_is_at_infinity) { | 
|  | ec_GFp_simple_point_copy(r, &tmp); | 
|  | r_is_at_infinity = 0; | 
|  | } else { | 
|  | ec_GFp_mont_add(group, r, r, &tmp); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (r_is_at_infinity) { | 
|  | ec_GFp_simple_point_set_to_infinity(group, r); | 
|  | } | 
|  |  | 
|  | OPENSSL_free(wNAF_alloc); | 
|  | OPENSSL_free(precomp_alloc); | 
|  | return 1; | 
|  | } |