| /* ==================================================================== |
| * Copyright (c) 2008 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== */ |
| |
| #ifndef OPENSSL_HEADER_MODES_INTERNAL_H |
| #define OPENSSL_HEADER_MODES_INTERNAL_H |
| |
| #include <openssl/base.h> |
| |
| #include <openssl/aes.h> |
| |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "../../internal.h" |
| |
| #if defined(__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| // block128_f is the type of an AES block cipher implementation. |
| // |
| // Unlike upstream OpenSSL, it and the other functions in this file hard-code |
| // |AES_KEY|. It is undefined in C to call a function pointer with anything |
| // other than the original type. Thus we either must match |block128_f| to the |
| // type signature of |AES_encrypt| and friends or pass in |void*| wrapper |
| // functions. |
| // |
| // These functions are called exclusively with AES, so we use the former. |
| typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16], |
| const AES_KEY *key); |
| |
| |
| // CTR. |
| |
| // ctr128_f is the type of a function that performs CTR-mode encryption. |
| typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks, |
| const AES_KEY *key, const uint8_t ivec[16]); |
| |
| // CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode) |
| // |len| bytes from |in| to |out| using |block| in counter mode. There's no |
| // requirement that |len| be a multiple of any value and any partial blocks are |
| // stored in |ecount_buf| and |*num|, which must be zeroed before the initial |
| // call. The counter is a 128-bit, big-endian value in |ivec| and is |
| // incremented by this function. |
| void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| uint8_t ecount_buf[16], unsigned *num, |
| block128_f block); |
| |
| // CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes |
| // |ctr|, a function that performs CTR mode but only deals with the lower 32 |
| // bits of the counter. This is useful when |ctr| can be an optimised |
| // function. |
| void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| uint8_t ecount_buf[16], unsigned *num, |
| ctr128_f ctr); |
| |
| |
| // GCM. |
| // |
| // This API differs from the upstream API slightly. The |GCM128_CONTEXT| does |
| // not have a |key| pointer that points to the key as upstream's version does. |
| // Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT| |
| // can be safely copied. Additionally, |gcm_key| is split into a separate |
| // struct. |
| |
| typedef struct { uint64_t hi,lo; } u128; |
| |
| // gmult_func multiplies |Xi| by the GCM key and writes the result back to |
| // |Xi|. |
| typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]); |
| |
| // ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from |
| // |inp|. The result is written back to |Xi| and the |len| argument must be a |
| // multiple of 16. |
| typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16], |
| const uint8_t *inp, size_t len); |
| |
| typedef struct gcm128_key_st { |
| // Note the MOVBE-based, x86-64, GHASH assembly requires |H| and |Htable| to |
| // be the first two elements of this struct. Additionally, some assembly |
| // routines require a 16-byte-aligned |Htable| when hashing data, but not |
| // initialization. |GCM128_KEY| is not itself aligned to simplify embedding in |
| // |EVP_AEAD_CTX|, but |Htable|'s offset must be a multiple of 16. |
| u128 H; |
| u128 Htable[16]; |
| gmult_func gmult; |
| ghash_func ghash; |
| |
| block128_f block; |
| |
| // use_aesni_gcm_crypt is true if this context should use the assembly |
| // functions |aesni_gcm_encrypt| and |aesni_gcm_decrypt| to process data. |
| unsigned use_aesni_gcm_crypt:1; |
| } GCM128_KEY; |
| |
| // GCM128_CONTEXT contains state for a single GCM operation. The structure |
| // should be zero-initialized before use. |
| typedef struct { |
| // The following 5 names follow names in GCM specification |
| union { |
| uint64_t u[2]; |
| uint32_t d[4]; |
| uint8_t c[16]; |
| crypto_word_t t[16 / sizeof(crypto_word_t)]; |
| } Yi, EKi, EK0, len, Xi; |
| |
| // Note that the order of |Xi| and |gcm_key| is fixed by the MOVBE-based, |
| // x86-64, GHASH assembly. Additionally, some assembly routines require |
| // |gcm_key| to be 16-byte aligned. |GCM128_KEY| is not itself aligned to |
| // simplify embedding in |EVP_AEAD_CTX|. |
| alignas(16) GCM128_KEY gcm_key; |
| |
| unsigned mres, ares; |
| } GCM128_CONTEXT; |
| |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| // crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is |
| // used. |
| int crypto_gcm_clmul_enabled(void); |
| #endif |
| |
| // CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to |
| // |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware |
| // accelerated) functions for performing operations in the GHASH field. If the |
| // AVX implementation was used |*out_is_avx| will be true. |
| void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, |
| u128 *out_key, u128 out_table[16], int *out_is_avx, |
| const uint8_t gcm_key[16]); |
| |
| // CRYPTO_gcm128_init_key initialises |gcm_key| to use |block| (typically AES) |
| // with the given key. |block_is_hwaes| is one if |block| is |aes_hw_encrypt|. |
| OPENSSL_EXPORT void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key, |
| const AES_KEY *key, block128_f block, |
| int block_is_hwaes); |
| |
| // CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the |
| // same key that was passed to |CRYPTO_gcm128_init|. |
| OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key, |
| const uint8_t *iv, size_t iv_len); |
| |
| // CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM. |
| // This must be called before and data is encrypted. It returns one on success |
| // and zero otherwise. |
| OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, |
| size_t len); |
| |
| // CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key| |
| // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one |
| // on success and zero otherwise. |
| OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, |
| const AES_KEY *key, const uint8_t *in, |
| uint8_t *out, size_t len); |
| |
| // CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key| |
| // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one |
| // on success and zero otherwise. |
| OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, |
| const AES_KEY *key, const uint8_t *in, |
| uint8_t *out, size_t len); |
| |
| // CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using |
| // a CTR function that only handles the bottom 32 bits of the nonce, like |
| // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was |
| // passed to |CRYPTO_gcm128_init|. It returns one on success and zero |
| // otherwise. |
| OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, |
| const AES_KEY *key, |
| const uint8_t *in, uint8_t *out, |
| size_t len, ctr128_f stream); |
| |
| // CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using |
| // a CTR function that only handles the bottom 32 bits of the nonce, like |
| // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was |
| // passed to |CRYPTO_gcm128_init|. It returns one on success and zero |
| // otherwise. |
| OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, |
| const AES_KEY *key, |
| const uint8_t *in, uint8_t *out, |
| size_t len, ctr128_f stream); |
| |
| // CRYPTO_gcm128_finish calculates the authenticator and compares it against |
| // |len| bytes of |tag|. It returns one on success and zero otherwise. |
| OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, |
| size_t len); |
| |
| // CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|. |
| // The minimum of |len| and 16 bytes are copied into |tag|. |
| OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag, |
| size_t len); |
| |
| |
| // GCM assembly. |
| |
| void gcm_init_nohw(u128 Htable[16], const uint64_t H[2]); |
| void gcm_gmult_nohw(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_nohw(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| |
| #if !defined(OPENSSL_NO_ASM) |
| |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| #define GCM_FUNCREF |
| void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| |
| OPENSSL_INLINE char gcm_ssse3_capable(void) { |
| return (OPENSSL_ia32cap_get()[1] & (1 << (41 - 32))) != 0; |
| } |
| |
| // |gcm_gmult_ssse3| and |gcm_ghash_ssse3| require |Htable| to be |
| // 16-byte-aligned, but |gcm_init_ssse3| does not. |
| void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_ssse3(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_ssse3(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in, |
| size_t len); |
| |
| #if defined(OPENSSL_X86_64) |
| #define GHASH_ASM_X86_64 |
| void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in, |
| size_t len); |
| |
| #define AESNI_GCM |
| size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], uint64_t *Xi); |
| size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], uint64_t *Xi); |
| #endif // OPENSSL_X86_64 |
| |
| #if defined(OPENSSL_X86) |
| #define GHASH_ASM_X86 |
| #endif // OPENSSL_X86 |
| |
| #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) |
| #define GHASH_ASM_ARM |
| #define GCM_FUNCREF |
| |
| OPENSSL_INLINE int gcm_pmull_capable(void) { |
| return CRYPTO_is_ARMv8_PMULL_capable(); |
| } |
| |
| void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| |
| OPENSSL_INLINE int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); } |
| |
| void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| |
| #elif defined(OPENSSL_PPC64LE) |
| #define GHASH_ASM_PPC64LE |
| #define GCM_FUNCREF |
| void gcm_init_p8(u128 Htable[16], const uint64_t Xi[2]); |
| void gcm_gmult_p8(uint64_t Xi[2], const u128 Htable[16]); |
| void gcm_ghash_p8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len); |
| #endif |
| #endif // OPENSSL_NO_ASM |
| |
| |
| // CBC. |
| |
| // cbc128_f is the type of a function that performs CBC-mode encryption. |
| typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], int enc); |
| |
| // CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the |
| // given IV and block cipher in CBC mode. The input need not be a multiple of |
| // 128 bits long, but the output will round up to the nearest 128 bit multiple, |
| // zero padding the input if needed. The IV will be updated on return. |
| void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| block128_f block); |
| |
| // CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the |
| // given IV and block cipher in CBC mode. If |len| is not a multiple of 128 |
| // bits then only that many bytes will be written, but a multiple of 128 bits |
| // is always read from |in|. The IV will be updated on return. |
| void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| block128_f block); |
| |
| |
| // OFB. |
| |
| // CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode) |
| // |len| bytes from |in| to |out| using |block| in OFB mode. There's no |
| // requirement that |len| be a multiple of any value and any partial blocks are |
| // stored in |ivec| and |*num|, the latter must be zero before the initial |
| // call. |
| void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], unsigned *num, |
| block128_f block); |
| |
| |
| // CFB. |
| |
| // CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
| // from |in| to |out| using |block| in CFB mode. There's no requirement that |
| // |len| be a multiple of any value and any partial blocks are stored in |ivec| |
| // and |*num|, the latter must be zero before the initial call. |
| void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], unsigned *num, |
| int enc, block128_f block); |
| |
| // CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
| // from |in| to |out| using |block| in CFB-8 mode. Prior to the first call |
| // |num| should be set to zero. |
| void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| unsigned *num, int enc, block128_f block); |
| |
| // CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes |
| // from |in| to |out| using |block| in CFB-1 mode. Prior to the first call |
| // |num| should be set to zero. |
| void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits, |
| const AES_KEY *key, uint8_t ivec[16], |
| unsigned *num, int enc, block128_f block); |
| |
| size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len, |
| const AES_KEY *key, uint8_t ivec[16], |
| block128_f block); |
| |
| |
| // POLYVAL. |
| // |
| // POLYVAL is a polynomial authenticator that operates over a field very |
| // similar to the one that GHASH uses. See |
| // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02#section-3. |
| |
| typedef union { |
| uint64_t u[2]; |
| uint8_t c[16]; |
| } polyval_block; |
| |
| struct polyval_ctx { |
| // Note that the order of |S|, |H| and |Htable| is fixed by the MOVBE-based, |
| // x86-64, GHASH assembly. Additionally, some assembly routines require |
| // |Htable| to be 16-byte aligned. |
| polyval_block S; |
| u128 H; |
| alignas(16) u128 Htable[16]; |
| gmult_func gmult; |
| ghash_func ghash; |
| }; |
| |
| // CRYPTO_POLYVAL_init initialises |ctx| using |key|. |
| void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]); |
| |
| // CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the |
| // blocks from |in|. Only a whole number of blocks can be processed so |in_len| |
| // must be a multiple of 16. |
| void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in, |
| size_t in_len); |
| |
| // CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|. |
| void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]); |
| |
| |
| #if defined(__cplusplus) |
| } // extern C |
| #endif |
| |
| #endif // OPENSSL_HEADER_MODES_INTERNAL_H |