| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/ecdsa.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "../bn/internal.h" |
| #include "../ec/internal.h" |
| #include "../../internal.h" |
| |
| |
| // digest_to_bn interprets |digest_len| bytes from |digest| as a big-endian |
| // number and sets |out| to that value. It then truncates |out| so that it's, |
| // at most, as long as |order|. It returns one on success and zero otherwise. |
| static int digest_to_bn(BIGNUM *out, const uint8_t *digest, size_t digest_len, |
| const BIGNUM *order) { |
| size_t num_bits; |
| |
| num_bits = BN_num_bits(order); |
| // Need to truncate digest if it is too long: first truncate whole |
| // bytes. |
| if (8 * digest_len > num_bits) { |
| digest_len = (num_bits + 7) / 8; |
| } |
| if (!BN_bin2bn(digest, digest_len, out)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| return 0; |
| } |
| |
| // If still too long truncate remaining bits with a shift |
| if ((8 * digest_len > num_bits) && |
| !BN_rshift(out, out, 8 - (num_bits & 0x7))) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| ECDSA_SIG *ECDSA_SIG_new(void) { |
| ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG)); |
| if (sig == NULL) { |
| return NULL; |
| } |
| sig->r = BN_new(); |
| sig->s = BN_new(); |
| if (sig->r == NULL || sig->s == NULL) { |
| ECDSA_SIG_free(sig); |
| return NULL; |
| } |
| return sig; |
| } |
| |
| void ECDSA_SIG_free(ECDSA_SIG *sig) { |
| if (sig == NULL) { |
| return; |
| } |
| |
| BN_free(sig->r); |
| BN_free(sig->s); |
| OPENSSL_free(sig); |
| } |
| |
| ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len, |
| const EC_KEY *key) { |
| return ECDSA_do_sign_ex(digest, digest_len, NULL, NULL, key); |
| } |
| |
| int ECDSA_do_verify(const uint8_t *digest, size_t digest_len, |
| const ECDSA_SIG *sig, const EC_KEY *eckey) { |
| int ret = 0; |
| BN_CTX *ctx; |
| BIGNUM *u1, *u2, *m, *X; |
| EC_POINT *point = NULL; |
| const EC_GROUP *group; |
| const EC_POINT *pub_key; |
| |
| // check input values |
| if ((group = EC_KEY_get0_group(eckey)) == NULL || |
| (pub_key = EC_KEY_get0_public_key(eckey)) == NULL || |
| sig == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS); |
| return 0; |
| } |
| |
| ctx = BN_CTX_new(); |
| if (!ctx) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| BN_CTX_start(ctx); |
| u1 = BN_CTX_get(ctx); |
| u2 = BN_CTX_get(ctx); |
| m = BN_CTX_get(ctx); |
| X = BN_CTX_get(ctx); |
| if (u1 == NULL || u2 == NULL || m == NULL || X == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| |
| const BIGNUM *order = EC_GROUP_get0_order(group); |
| if (BN_is_zero(sig->r) || BN_is_negative(sig->r) || |
| BN_ucmp(sig->r, order) >= 0 || BN_is_zero(sig->s) || |
| BN_is_negative(sig->s) || BN_ucmp(sig->s, order) >= 0) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); |
| goto err; |
| } |
| // calculate tmp1 = inv(S) mod order |
| int no_inverse; |
| if (!BN_mod_inverse_odd(u2, &no_inverse, sig->s, order, ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| if (!digest_to_bn(m, digest, digest_len, order)) { |
| goto err; |
| } |
| // u1 = m * tmp mod order |
| if (!BN_mod_mul(u1, m, u2, order, ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| // u2 = r * w mod q |
| if (!BN_mod_mul(u2, sig->r, u2, order, ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| |
| point = EC_POINT_new(group); |
| if (point == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| if (!EC_POINT_mul(group, point, u1, pub_key, u2, ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); |
| goto err; |
| } |
| if (!EC_POINT_get_affine_coordinates_GFp(group, point, X, NULL, ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); |
| goto err; |
| } |
| if (!BN_nnmod(u1, X, order, ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| // if the signature is correct u1 is equal to sig->r |
| if (BN_ucmp(u1, sig->r) != 0) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(ctx); |
| EC_POINT_free(point); |
| return ret; |
| } |
| |
| static int ecdsa_sign_setup(const EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, |
| BIGNUM **rp, const uint8_t *digest, |
| size_t digest_len) { |
| BN_CTX *ctx = NULL; |
| BIGNUM *k = NULL, *kinv = NULL, *r = NULL, *tmp = NULL; |
| EC_POINT *tmp_point = NULL; |
| const EC_GROUP *group; |
| int ret = 0; |
| |
| if (eckey == NULL || (group = EC_KEY_get0_group(eckey)) == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| if (ctx_in == NULL) { |
| if ((ctx = BN_CTX_new()) == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| } else { |
| ctx = ctx_in; |
| } |
| |
| k = BN_new(); |
| kinv = BN_new(); // this value is later returned in *kinvp |
| r = BN_new(); // this value is later returned in *rp |
| tmp = BN_new(); |
| if (k == NULL || kinv == NULL || r == NULL || tmp == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| tmp_point = EC_POINT_new(group); |
| if (tmp_point == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); |
| goto err; |
| } |
| |
| const BIGNUM *order = EC_GROUP_get0_order(group); |
| |
| // Check that the size of the group order is FIPS compliant (FIPS 186-4 |
| // B.5.2). |
| if (BN_num_bits(order) < 160) { |
| OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER); |
| goto err; |
| } |
| |
| do { |
| // If possible, we'll include the private key and message digest in the k |
| // generation. The |digest| argument is only empty if |ECDSA_sign_setup| is |
| // being used. |
| if (eckey->fixed_k != NULL) { |
| if (!BN_copy(k, eckey->fixed_k)) { |
| goto err; |
| } |
| } else if (digest_len > 0) { |
| do { |
| if (!BN_generate_dsa_nonce(k, order, EC_KEY_get0_private_key(eckey), |
| digest, digest_len, ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_RANDOM_NUMBER_GENERATION_FAILED); |
| goto err; |
| } |
| } while (BN_is_zero(k)); |
| } else if (!BN_rand_range_ex(k, 1, order)) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_RANDOM_NUMBER_GENERATION_FAILED); |
| goto err; |
| } |
| |
| // Compute the inverse of k. The order is a prime, so use Fermat's Little |
| // Theorem. Note |ec_group_get_order_mont| may return NULL but |
| // |bn_mod_inverse_prime| allows this. |
| if (!bn_mod_inverse_prime(kinv, k, order, ctx, |
| ec_group_get_order_mont(group))) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| |
| // We do not want timing information to leak the length of k, |
| // so we compute G*k using an equivalent scalar of fixed |
| // bit-length. |
| |
| if (!BN_add(k, k, order)) { |
| goto err; |
| } |
| if (BN_num_bits(k) <= BN_num_bits(order)) { |
| if (!BN_add(k, k, order)) { |
| goto err; |
| } |
| } |
| |
| // compute r the x-coordinate of generator * k |
| if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); |
| goto err; |
| } |
| if (!EC_POINT_get_affine_coordinates_GFp(group, tmp_point, tmp, NULL, |
| ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); |
| goto err; |
| } |
| |
| if (!BN_nnmod(r, tmp, order, ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| } while (BN_is_zero(r)); |
| |
| // clear old values if necessary |
| BN_clear_free(*rp); |
| BN_clear_free(*kinvp); |
| |
| // save the pre-computed values |
| *rp = r; |
| *kinvp = kinv; |
| ret = 1; |
| |
| err: |
| BN_clear_free(k); |
| if (!ret) { |
| BN_clear_free(kinv); |
| BN_clear_free(r); |
| } |
| if (ctx_in == NULL) { |
| BN_CTX_free(ctx); |
| } |
| EC_POINT_free(tmp_point); |
| BN_clear_free(tmp); |
| return ret; |
| } |
| |
| int ECDSA_sign_setup(const EC_KEY *eckey, BN_CTX *ctx, BIGNUM **kinv, |
| BIGNUM **rp) { |
| return ecdsa_sign_setup(eckey, ctx, kinv, rp, NULL, 0); |
| } |
| |
| ECDSA_SIG *ECDSA_do_sign_ex(const uint8_t *digest, size_t digest_len, |
| const BIGNUM *in_kinv, const BIGNUM *in_r, |
| const EC_KEY *eckey) { |
| int ok = 0; |
| BIGNUM *kinv = NULL, *s, *m = NULL, *tmp = NULL; |
| const BIGNUM *ckinv; |
| BN_CTX *ctx = NULL; |
| const EC_GROUP *group; |
| ECDSA_SIG *ret; |
| const BIGNUM *priv_key; |
| |
| if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED); |
| return NULL; |
| } |
| |
| group = EC_KEY_get0_group(eckey); |
| priv_key = EC_KEY_get0_private_key(eckey); |
| |
| if (group == NULL || priv_key == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER); |
| return NULL; |
| } |
| |
| ret = ECDSA_SIG_new(); |
| if (!ret) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| s = ret->s; |
| |
| if ((ctx = BN_CTX_new()) == NULL || |
| (tmp = BN_new()) == NULL || |
| (m = BN_new()) == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| const BIGNUM *order = EC_GROUP_get0_order(group); |
| |
| if (!digest_to_bn(m, digest, digest_len, order)) { |
| goto err; |
| } |
| for (;;) { |
| if (in_kinv == NULL || in_r == NULL) { |
| if (!ecdsa_sign_setup(eckey, ctx, &kinv, &ret->r, digest, digest_len)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_ECDSA_LIB); |
| goto err; |
| } |
| ckinv = kinv; |
| } else { |
| ckinv = in_kinv; |
| if (BN_copy(ret->r, in_r) == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| } |
| |
| if (!BN_mod_mul(tmp, priv_key, ret->r, order, ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| if (!BN_mod_add_quick(s, tmp, m, order)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| if (!BN_mod_mul(s, s, ckinv, order, ctx)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB); |
| goto err; |
| } |
| if (BN_is_zero(s)) { |
| // if kinv and r have been supplied by the caller |
| // don't to generate new kinv and r values |
| if (in_kinv != NULL && in_r != NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NEED_NEW_SETUP_VALUES); |
| goto err; |
| } |
| } else { |
| // s != 0 => we have a valid signature |
| break; |
| } |
| } |
| |
| ok = 1; |
| |
| err: |
| if (!ok) { |
| ECDSA_SIG_free(ret); |
| ret = NULL; |
| } |
| BN_CTX_free(ctx); |
| BN_clear_free(m); |
| BN_clear_free(tmp); |
| BN_clear_free(kinv); |
| return ret; |
| } |