| // Copyright (c) 2019, Cloudflare Inc. |
| // |
| // Permission to use, copy, modify, and/or distribute this software for any |
| // purpose with or without fee is hereby granted, provided that the above |
| // copyright notice and this permission notice appear in all copies. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| |
| package sike |
| |
| // Interface for working with isogenies. |
| type isogeny interface { |
| // Given a torsion point on a curve computes isogenous curve. |
| // Returns curve coefficients (A:C), so that E_(A/C) = E_(A/C)/<P>, |
| // where P is a provided projective point. Sets also isogeny constants |
| // that are needed for isogeny evaluation. |
| GenerateCurve(*ProjectivePoint) CurveCoefficientsEquiv |
| // Evaluates isogeny at caller provided point. Requires isogeny curve constants |
| // to be earlier computed by GenerateCurve. |
| EvaluatePoint(*ProjectivePoint) ProjectivePoint |
| } |
| |
| // Stores isogeny 3 curve constants |
| type isogeny3 struct { |
| K1 Fp2 |
| K2 Fp2 |
| } |
| |
| // Stores isogeny 4 curve constants |
| type isogeny4 struct { |
| isogeny3 |
| K3 Fp2 |
| } |
| |
| // Constructs isogeny3 objects |
| func NewIsogeny3() isogeny { |
| return &isogeny3{} |
| } |
| |
| // Constructs isogeny4 objects |
| func NewIsogeny4() isogeny { |
| return &isogeny4{} |
| } |
| |
| // Helper function for RightToLeftLadder(). Returns A+2C / 4. |
| func calcAplus2Over4(cparams *ProjectiveCurveParameters) (ret Fp2) { |
| var tmp Fp2 |
| |
| // 2C |
| add(&tmp, &cparams.C, &cparams.C) |
| // A+2C |
| add(&ret, &cparams.A, &tmp) |
| // 1/4C |
| add(&tmp, &tmp, &tmp) |
| inv(&tmp, &tmp) |
| // A+2C/4C |
| mul(&ret, &ret, &tmp) |
| return |
| } |
| |
| // Converts values in x.A and x.B to Montgomery domain |
| // x.A = x.A * R mod p |
| // x.B = x.B * R mod p |
| // Performs v = v*R^2*R^(-1) mod p, for both x.A and x.B |
| func toMontDomain(x *Fp2) { |
| var aRR FpX2 |
| |
| // convert to montgomery domain |
| fpMul(&aRR, &x.A, &R2) // = a*R*R |
| fpMontRdc(&x.A, &aRR) // = a*R mod p |
| fpMul(&aRR, &x.B, &R2) |
| fpMontRdc(&x.B, &aRR) |
| } |
| |
| // Converts values in x.A and x.B from Montgomery domain |
| // a = x.A mod p |
| // b = x.B mod p |
| // |
| // After returning from the call x is not modified. |
| func fromMontDomain(x *Fp2, out *Fp2) { |
| var aR FpX2 |
| |
| // convert from montgomery domain |
| copy(aR[:], x.A[:]) |
| fpMontRdc(&out.A, &aR) // = a mod p in [0, 2p) |
| fpRdcP(&out.A) // = a mod p in [0, p) |
| for i := range aR { |
| aR[i] = 0 |
| } |
| copy(aR[:], x.B[:]) |
| fpMontRdc(&out.B, &aR) |
| fpRdcP(&out.B) |
| } |
| |
| // Computes j-invariant for a curve y2=x3+A/Cx+x with A,C in F_(p^2). Result |
| // is returned in 'j'. Implementation corresponds to Algorithm 9 from SIKE. |
| func Jinvariant(cparams *ProjectiveCurveParameters, j *Fp2) { |
| var t0, t1 Fp2 |
| |
| sqr(j, &cparams.A) // j = A^2 |
| sqr(&t1, &cparams.C) // t1 = C^2 |
| add(&t0, &t1, &t1) // t0 = t1 + t1 |
| sub(&t0, j, &t0) // t0 = j - t0 |
| sub(&t0, &t0, &t1) // t0 = t0 - t1 |
| sub(j, &t0, &t1) // t0 = t0 - t1 |
| sqr(&t1, &t1) // t1 = t1^2 |
| mul(j, j, &t1) // j = j * t1 |
| add(&t0, &t0, &t0) // t0 = t0 + t0 |
| add(&t0, &t0, &t0) // t0 = t0 + t0 |
| sqr(&t1, &t0) // t1 = t0^2 |
| mul(&t0, &t0, &t1) // t0 = t0 * t1 |
| add(&t0, &t0, &t0) // t0 = t0 + t0 |
| add(&t0, &t0, &t0) // t0 = t0 + t0 |
| inv(j, j) // j = 1/j |
| mul(j, &t0, j) // j = t0 * j |
| } |
| |
| // Given affine points x(P), x(Q) and x(Q-P) in a extension field F_{p^2}, function |
| // recorvers projective coordinate A of a curve. This is Algorithm 10 from SIKE. |
| func RecoverCoordinateA(curve *ProjectiveCurveParameters, xp, xq, xr *Fp2) { |
| var t0, t1 Fp2 |
| |
| add(&t1, xp, xq) // t1 = Xp + Xq |
| mul(&t0, xp, xq) // t0 = Xp * Xq |
| mul(&curve.A, xr, &t1) // A = X(q-p) * t1 |
| add(&curve.A, &curve.A, &t0) // A = A + t0 |
| mul(&t0, &t0, xr) // t0 = t0 * X(q-p) |
| sub(&curve.A, &curve.A, &Params.OneFp2) // A = A - 1 |
| add(&t0, &t0, &t0) // t0 = t0 + t0 |
| add(&t1, &t1, xr) // t1 = t1 + X(q-p) |
| add(&t0, &t0, &t0) // t0 = t0 + t0 |
| sqr(&curve.A, &curve.A) // A = A^2 |
| inv(&t0, &t0) // t0 = 1/t0 |
| mul(&curve.A, &curve.A, &t0) // A = A * t0 |
| sub(&curve.A, &curve.A, &t1) // A = A - t1 |
| } |
| |
| // Computes equivalence (A:C) ~ (A+2C : A-2C) |
| func CalcCurveParamsEquiv3(cparams *ProjectiveCurveParameters) CurveCoefficientsEquiv { |
| var coef CurveCoefficientsEquiv |
| var c2 Fp2 |
| |
| add(&c2, &cparams.C, &cparams.C) |
| // A24p = A+2*C |
| add(&coef.A, &cparams.A, &c2) |
| // A24m = A-2*C |
| sub(&coef.C, &cparams.A, &c2) |
| return coef |
| } |
| |
| // Computes equivalence (A:C) ~ (A+2C : 4C) |
| func CalcCurveParamsEquiv4(cparams *ProjectiveCurveParameters) CurveCoefficientsEquiv { |
| var coefEq CurveCoefficientsEquiv |
| |
| add(&coefEq.C, &cparams.C, &cparams.C) |
| // A24p = A+2C |
| add(&coefEq.A, &cparams.A, &coefEq.C) |
| // C24 = 4*C |
| add(&coefEq.C, &coefEq.C, &coefEq.C) |
| return coefEq |
| } |
| |
| // Recovers (A:C) curve parameters from projectively equivalent (A+2C:A-2C). |
| func RecoverCurveCoefficients3(cparams *ProjectiveCurveParameters, coefEq *CurveCoefficientsEquiv) { |
| add(&cparams.A, &coefEq.A, &coefEq.C) |
| // cparams.A = 2*(A+2C+A-2C) = 4A |
| add(&cparams.A, &cparams.A, &cparams.A) |
| // cparams.C = (A+2C-A+2C) = 4C |
| sub(&cparams.C, &coefEq.A, &coefEq.C) |
| return |
| } |
| |
| // Recovers (A:C) curve parameters from projectively equivalent (A+2C:4C). |
| func RecoverCurveCoefficients4(cparams *ProjectiveCurveParameters, coefEq *CurveCoefficientsEquiv) { |
| // cparams.C = (4C)*1/2=2C |
| mul(&cparams.C, &coefEq.C, &Params.HalfFp2) |
| // cparams.A = A+2C - 2C = A |
| sub(&cparams.A, &coefEq.A, &cparams.C) |
| // cparams.C = 2C * 1/2 = C |
| mul(&cparams.C, &cparams.C, &Params.HalfFp2) |
| return |
| } |
| |
| // Combined coordinate doubling and differential addition. Takes projective points |
| // P,Q,Q-P and (A+2C)/4C curve E coefficient. Returns 2*P and P+Q calculated on E. |
| // Function is used only by RightToLeftLadder. Corresponds to Algorithm 5 of SIKE |
| func xDbladd(P, Q, QmP *ProjectivePoint, a24 *Fp2) (dblP, PaQ ProjectivePoint) { |
| var t0, t1, t2 Fp2 |
| xQmP, zQmP := &QmP.X, &QmP.Z |
| xPaQ, zPaQ := &PaQ.X, &PaQ.Z |
| x2P, z2P := &dblP.X, &dblP.Z |
| xP, zP := &P.X, &P.Z |
| xQ, zQ := &Q.X, &Q.Z |
| |
| add(&t0, xP, zP) // t0 = Xp+Zp |
| sub(&t1, xP, zP) // t1 = Xp-Zp |
| sqr(x2P, &t0) // 2P.X = t0^2 |
| sub(&t2, xQ, zQ) // t2 = Xq-Zq |
| add(xPaQ, xQ, zQ) // Xp+q = Xq+Zq |
| mul(&t0, &t0, &t2) // t0 = t0 * t2 |
| mul(z2P, &t1, &t1) // 2P.Z = t1 * t1 |
| mul(&t1, &t1, xPaQ) // t1 = t1 * Xp+q |
| sub(&t2, x2P, z2P) // t2 = 2P.X - 2P.Z |
| mul(x2P, x2P, z2P) // 2P.X = 2P.X * 2P.Z |
| mul(xPaQ, a24, &t2) // Xp+q = A24 * t2 |
| sub(zPaQ, &t0, &t1) // Zp+q = t0 - t1 |
| add(z2P, xPaQ, z2P) // 2P.Z = Xp+q + 2P.Z |
| add(xPaQ, &t0, &t1) // Xp+q = t0 + t1 |
| mul(z2P, z2P, &t2) // 2P.Z = 2P.Z * t2 |
| sqr(zPaQ, zPaQ) // Zp+q = Zp+q ^ 2 |
| sqr(xPaQ, xPaQ) // Xp+q = Xp+q ^ 2 |
| mul(zPaQ, xQmP, zPaQ) // Zp+q = Xq-p * Zp+q |
| mul(xPaQ, zQmP, xPaQ) // Xp+q = Zq-p * Xp+q |
| return |
| } |
| |
| // Given the curve parameters, xP = x(P), computes xP = x([2^k]P) |
| // Safe to overlap xP, x2P. |
| func Pow2k(xP *ProjectivePoint, params *CurveCoefficientsEquiv, k uint32) { |
| var t0, t1 Fp2 |
| |
| x, z := &xP.X, &xP.Z |
| for i := uint32(0); i < k; i++ { |
| sub(&t0, x, z) // t0 = Xp - Zp |
| add(&t1, x, z) // t1 = Xp + Zp |
| sqr(&t0, &t0) // t0 = t0 ^ 2 |
| sqr(&t1, &t1) // t1 = t1 ^ 2 |
| mul(z, ¶ms.C, &t0) // Z2p = C24 * t0 |
| mul(x, z, &t1) // X2p = Z2p * t1 |
| sub(&t1, &t1, &t0) // t1 = t1 - t0 |
| mul(&t0, ¶ms.A, &t1) // t0 = A24+ * t1 |
| add(z, z, &t0) // Z2p = Z2p + t0 |
| mul(z, z, &t1) // Zp = Z2p * t1 |
| } |
| } |
| |
| // Given the curve parameters, xP = x(P), and k >= 0, compute xP = x([3^k]P). |
| // |
| // Safe to overlap xP, xR. |
| func Pow3k(xP *ProjectivePoint, params *CurveCoefficientsEquiv, k uint32) { |
| var t0, t1, t2, t3, t4, t5, t6 Fp2 |
| |
| x, z := &xP.X, &xP.Z |
| for i := uint32(0); i < k; i++ { |
| sub(&t0, x, z) // t0 = Xp - Zp |
| sqr(&t2, &t0) // t2 = t0^2 |
| add(&t1, x, z) // t1 = Xp + Zp |
| sqr(&t3, &t1) // t3 = t1^2 |
| add(&t4, &t1, &t0) // t4 = t1 + t0 |
| sub(&t0, &t1, &t0) // t0 = t1 - t0 |
| sqr(&t1, &t4) // t1 = t4^2 |
| sub(&t1, &t1, &t3) // t1 = t1 - t3 |
| sub(&t1, &t1, &t2) // t1 = t1 - t2 |
| mul(&t5, &t3, ¶ms.A) // t5 = t3 * A24+ |
| mul(&t3, &t3, &t5) // t3 = t5 * t3 |
| mul(&t6, &t2, ¶ms.C) // t6 = t2 * A24- |
| mul(&t2, &t2, &t6) // t2 = t2 * t6 |
| sub(&t3, &t2, &t3) // t3 = t2 - t3 |
| sub(&t2, &t5, &t6) // t2 = t5 - t6 |
| mul(&t1, &t2, &t1) // t1 = t2 * t1 |
| add(&t2, &t3, &t1) // t2 = t3 + t1 |
| sqr(&t2, &t2) // t2 = t2^2 |
| mul(x, &t2, &t4) // X3p = t2 * t4 |
| sub(&t1, &t3, &t1) // t1 = t3 - t1 |
| sqr(&t1, &t1) // t1 = t1^2 |
| mul(z, &t1, &t0) // Z3p = t1 * t0 |
| } |
| } |
| |
| // Set (y1, y2, y3) = (1/x1, 1/x2, 1/x3). |
| // |
| // All xi, yi must be distinct. |
| func Fp2Batch3Inv(x1, x2, x3, y1, y2, y3 *Fp2) { |
| var x1x2, t Fp2 |
| |
| mul(&x1x2, x1, x2) // x1*x2 |
| mul(&t, &x1x2, x3) // 1/(x1*x2*x3) |
| inv(&t, &t) |
| mul(y1, &t, x2) // 1/x1 |
| mul(y1, y1, x3) |
| mul(y2, &t, x1) // 1/x2 |
| mul(y2, y2, x3) |
| mul(y3, &t, &x1x2) // 1/x3 |
| } |
| |
| // ScalarMul3Pt is a right-to-left point multiplication that given the |
| // x-coordinate of P, Q and P-Q calculates the x-coordinate of R=Q+[scalar]P. |
| // nbits must be smaller or equal to len(scalar). |
| func ScalarMul3Pt(cparams *ProjectiveCurveParameters, P, Q, PmQ *ProjectivePoint, nbits uint, scalar []uint8) ProjectivePoint { |
| var R0, R2, R1 ProjectivePoint |
| aPlus2Over4 := calcAplus2Over4(cparams) |
| R1 = *P |
| R2 = *PmQ |
| R0 = *Q |
| |
| // Iterate over the bits of the scalar, bottom to top |
| prevBit := uint8(0) |
| for i := uint(0); i < nbits; i++ { |
| bit := (scalar[i>>3] >> (i & 7) & 1) |
| swap := prevBit ^ bit |
| prevBit = bit |
| condSwap(&R1.X, &R1.Z, &R2.X, &R2.Z, swap) |
| R0, R2 = xDbladd(&R0, &R2, &R1, &aPlus2Over4) |
| } |
| condSwap(&R1.X, &R1.Z, &R2.X, &R2.Z, prevBit) |
| return R1 |
| } |
| |
| // Given a three-torsion point p = x(PB) on the curve E_(A:C), construct the |
| // three-isogeny phi : E_(A:C) -> E_(A:C)/<P_3> = E_(A':C'). |
| // |
| // Input: (XP_3: ZP_3), where P_3 has exact order 3 on E_A/C |
| // Output: * Curve coordinates (A' + 2C', A' - 2C') corresponding to E_A'/C' = A_E/C/<P3> |
| // * isogeny phi with constants in F_p^2 |
| func (phi *isogeny3) GenerateCurve(p *ProjectivePoint) CurveCoefficientsEquiv { |
| var t0, t1, t2, t3, t4 Fp2 |
| var coefEq CurveCoefficientsEquiv |
| var K1, K2 = &phi.K1, &phi.K2 |
| |
| sub(K1, &p.X, &p.Z) // K1 = XP3 - ZP3 |
| sqr(&t0, K1) // t0 = K1^2 |
| add(K2, &p.X, &p.Z) // K2 = XP3 + ZP3 |
| sqr(&t1, K2) // t1 = K2^2 |
| add(&t2, &t0, &t1) // t2 = t0 + t1 |
| add(&t3, K1, K2) // t3 = K1 + K2 |
| sqr(&t3, &t3) // t3 = t3^2 |
| sub(&t3, &t3, &t2) // t3 = t3 - t2 |
| add(&t2, &t1, &t3) // t2 = t1 + t3 |
| add(&t3, &t3, &t0) // t3 = t3 + t0 |
| add(&t4, &t3, &t0) // t4 = t3 + t0 |
| add(&t4, &t4, &t4) // t4 = t4 + t4 |
| add(&t4, &t1, &t4) // t4 = t1 + t4 |
| mul(&coefEq.C, &t2, &t4) // A24m = t2 * t4 |
| add(&t4, &t1, &t2) // t4 = t1 + t2 |
| add(&t4, &t4, &t4) // t4 = t4 + t4 |
| add(&t4, &t0, &t4) // t4 = t0 + t4 |
| mul(&t4, &t3, &t4) // t4 = t3 * t4 |
| sub(&t0, &t4, &coefEq.C) // t0 = t4 - A24m |
| add(&coefEq.A, &coefEq.C, &t0) // A24p = A24m + t0 |
| return coefEq |
| } |
| |
| // Given a 3-isogeny phi and a point pB = x(PB), compute x(QB), the x-coordinate |
| // of the image QB = phi(PB) of PB under phi : E_(A:C) -> E_(A':C'). |
| // |
| // The output xQ = x(Q) is then a point on the curve E_(A':C'); the curve |
| // parameters are returned by the GenerateCurve function used to construct phi. |
| func (phi *isogeny3) EvaluatePoint(p *ProjectivePoint) ProjectivePoint { |
| var t0, t1, t2 Fp2 |
| var q ProjectivePoint |
| var K1, K2 = &phi.K1, &phi.K2 |
| var px, pz = &p.X, &p.Z |
| |
| add(&t0, px, pz) // t0 = XQ + ZQ |
| sub(&t1, px, pz) // t1 = XQ - ZQ |
| mul(&t0, K1, &t0) // t2 = K1 * t0 |
| mul(&t1, K2, &t1) // t1 = K2 * t1 |
| add(&t2, &t0, &t1) // t2 = t0 + t1 |
| sub(&t0, &t1, &t0) // t0 = t1 - t0 |
| sqr(&t2, &t2) // t2 = t2 ^ 2 |
| sqr(&t0, &t0) // t0 = t0 ^ 2 |
| mul(&q.X, px, &t2) // XQ'= XQ * t2 |
| mul(&q.Z, pz, &t0) // ZQ'= ZQ * t0 |
| return q |
| } |
| |
| // Given a four-torsion point p = x(PB) on the curve E_(A:C), construct the |
| // four-isogeny phi : E_(A:C) -> E_(A:C)/<P_4> = E_(A':C'). |
| // |
| // Input: (XP_4: ZP_4), where P_4 has exact order 4 on E_A/C |
| // Output: * Curve coordinates (A' + 2C', 4C') corresponding to E_A'/C' = A_E/C/<P4> |
| // * isogeny phi with constants in F_p^2 |
| func (phi *isogeny4) GenerateCurve(p *ProjectivePoint) CurveCoefficientsEquiv { |
| var coefEq CurveCoefficientsEquiv |
| var xp4, zp4 = &p.X, &p.Z |
| var K1, K2, K3 = &phi.K1, &phi.K2, &phi.K3 |
| |
| sub(K2, xp4, zp4) |
| add(K3, xp4, zp4) |
| sqr(K1, zp4) |
| add(K1, K1, K1) |
| sqr(&coefEq.C, K1) |
| add(K1, K1, K1) |
| sqr(&coefEq.A, xp4) |
| add(&coefEq.A, &coefEq.A, &coefEq.A) |
| sqr(&coefEq.A, &coefEq.A) |
| return coefEq |
| } |
| |
| // Given a 4-isogeny phi and a point xP = x(P), compute x(Q), the x-coordinate |
| // of the image Q = phi(P) of P under phi : E_(A:C) -> E_(A':C'). |
| // |
| // Input: isogeny returned by GenerateCurve and point q=(Qx,Qz) from E0_A/C |
| // Output: Corresponding point q from E1_A'/C', where E1 is 4-isogenous to E0 |
| func (phi *isogeny4) EvaluatePoint(p *ProjectivePoint) ProjectivePoint { |
| var t0, t1 Fp2 |
| var q = *p |
| var xq, zq = &q.X, &q.Z |
| var K1, K2, K3 = &phi.K1, &phi.K2, &phi.K3 |
| |
| add(&t0, xq, zq) |
| sub(&t1, xq, zq) |
| mul(xq, &t0, K2) |
| mul(zq, &t1, K3) |
| mul(&t0, &t0, &t1) |
| mul(&t0, &t0, K1) |
| add(&t1, xq, zq) |
| sub(zq, xq, zq) |
| sqr(&t1, &t1) |
| sqr(zq, zq) |
| add(xq, &t0, &t1) |
| sub(&t0, zq, &t0) |
| mul(xq, xq, &t1) |
| mul(zq, zq, &t0) |
| return q |
| } |