| /* |
| * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <openssl/evp.h> |
| |
| #include <assert.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/type_check.h> |
| |
| #include "../internal.h" |
| |
| |
| // This file implements scrypt, described in RFC 7914. |
| // |
| // Note scrypt refers to both "blocks" and a "block size" parameter, r. These |
| // are two different notions of blocks. A Salsa20 block is 64 bytes long, |
| // represented in this implementation by 16 |uint32_t|s. |r| determines the |
| // number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r| |
| // Salsa20 blocks. This implementation refers to them as Salsa20 blocks and |
| // scrypt blocks, respectively. |
| |
| // A block_t is a Salsa20 block. |
| typedef struct { uint32_t words[16]; } block_t; |
| |
| OPENSSL_STATIC_ASSERT(sizeof(block_t) == 64, "block_t has padding"); |
| |
| #define R(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
| |
| // salsa208_word_specification implements the Salsa20/8 core function, also |
| // described in RFC 7914, section 3. It modifies the block at |inout| |
| // in-place. |
| static void salsa208_word_specification(block_t *inout) { |
| block_t x; |
| OPENSSL_memcpy(&x, inout, sizeof(x)); |
| |
| for (int i = 8; i > 0; i -= 2) { |
| x.words[4] ^= R(x.words[0] + x.words[12], 7); |
| x.words[8] ^= R(x.words[4] + x.words[0], 9); |
| x.words[12] ^= R(x.words[8] + x.words[4], 13); |
| x.words[0] ^= R(x.words[12] + x.words[8], 18); |
| x.words[9] ^= R(x.words[5] + x.words[1], 7); |
| x.words[13] ^= R(x.words[9] + x.words[5], 9); |
| x.words[1] ^= R(x.words[13] + x.words[9], 13); |
| x.words[5] ^= R(x.words[1] + x.words[13], 18); |
| x.words[14] ^= R(x.words[10] + x.words[6], 7); |
| x.words[2] ^= R(x.words[14] + x.words[10], 9); |
| x.words[6] ^= R(x.words[2] + x.words[14], 13); |
| x.words[10] ^= R(x.words[6] + x.words[2], 18); |
| x.words[3] ^= R(x.words[15] + x.words[11], 7); |
| x.words[7] ^= R(x.words[3] + x.words[15], 9); |
| x.words[11] ^= R(x.words[7] + x.words[3], 13); |
| x.words[15] ^= R(x.words[11] + x.words[7], 18); |
| x.words[1] ^= R(x.words[0] + x.words[3], 7); |
| x.words[2] ^= R(x.words[1] + x.words[0], 9); |
| x.words[3] ^= R(x.words[2] + x.words[1], 13); |
| x.words[0] ^= R(x.words[3] + x.words[2], 18); |
| x.words[6] ^= R(x.words[5] + x.words[4], 7); |
| x.words[7] ^= R(x.words[6] + x.words[5], 9); |
| x.words[4] ^= R(x.words[7] + x.words[6], 13); |
| x.words[5] ^= R(x.words[4] + x.words[7], 18); |
| x.words[11] ^= R(x.words[10] + x.words[9], 7); |
| x.words[8] ^= R(x.words[11] + x.words[10], 9); |
| x.words[9] ^= R(x.words[8] + x.words[11], 13); |
| x.words[10] ^= R(x.words[9] + x.words[8], 18); |
| x.words[12] ^= R(x.words[15] + x.words[14], 7); |
| x.words[13] ^= R(x.words[12] + x.words[15], 9); |
| x.words[14] ^= R(x.words[13] + x.words[12], 13); |
| x.words[15] ^= R(x.words[14] + x.words[13], 18); |
| } |
| |
| for (int i = 0; i < 16; ++i) { |
| inout->words[i] += x.words[i]; |
| } |
| } |
| |
| // xor_block sets |*out| to be |*a| XOR |*b|. |
| static void xor_block(block_t *out, const block_t *a, const block_t *b) { |
| for (size_t i = 0; i < 16; i++) { |
| out->words[i] = a->words[i] ^ b->words[i]; |
| } |
| } |
| |
| // scryptBlockMix implements the function described in RFC 7914, section 4. B' |
| // is written to |out|. |out| and |B| may not alias and must be each one scrypt |
| // block (2 * |r| Salsa20 blocks) long. |
| static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) { |
| assert(out != B); |
| |
| block_t X; |
| OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X)); |
| for (uint64_t i = 0; i < r * 2; i++) { |
| xor_block(&X, &X, &B[i]); |
| salsa208_word_specification(&X); |
| |
| // This implements the permutation in step 3. |
| OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X)); |
| } |
| } |
| |
| // scryptROMix implements the function described in RFC 7914, section 5. |B| is |
| // an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and |
| // |V| are scratch space allocated by the caller. |T| must have space for one |
| // scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt |
| // blocks (2 * |r| * |N| Salsa20 blocks). |
| static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T, |
| block_t *V) { |
| // Steps 1 and 2. |
| OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t)); |
| for (uint64_t i = 1; i < N; i++) { |
| scryptBlockMix(&V[2 * r * i /* scrypt block i */], |
| &V[2 * r * (i - 1) /* scrypt block i-1 */], r); |
| } |
| scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r); |
| |
| // Step 3. |
| for (uint64_t i = 0; i < N; i++) { |
| // Note this assumes |N| <= 2^32 and is a power of 2. |
| uint32_t j = B[2 * r - 1].words[0] & (N - 1); |
| for (size_t k = 0; k < 2 * r; k++) { |
| xor_block(&T[k], &B[k], &V[2 * r * j + k]); |
| } |
| scryptBlockMix(B, T, r); |
| } |
| } |
| |
| // SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the |
| // bounds on p in section 6: |
| // |
| // p <= ((2^32-1) * hLen) / MFLen iff |
| // p <= ((2^32-1) * 32) / (128 * r) iff |
| // p * r <= (2^30-1) |
| #define SCRYPT_PR_MAX ((1 << 30) - 1) |
| |
| // SCRYPT_MAX_MEM is the default maximum memory that may be allocated by |
| // |EVP_PBE_scrypt|. |
| #define SCRYPT_MAX_MEM (1024 * 1024 * 32) |
| |
| int EVP_PBE_scrypt(const char *password, size_t password_len, |
| const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r, |
| uint64_t p, size_t max_mem, uint8_t *out_key, |
| size_t key_len) { |
| if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r || |
| // |N| must be a power of two. |
| N < 2 || (N & (N - 1)) || |
| // We only support |N| <= 2^32 in |scryptROMix|. |
| N > UINT64_C(1) << 32 || |
| // Check that |N| < 2^(128×r / 8). |
| (16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PARAMETERS); |
| return 0; |
| } |
| |
| // Determine the amount of memory needed. B, T, and V are |p|, 1, and |N| |
| // scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s. |
| if (max_mem == 0) { |
| max_mem = SCRYPT_MAX_MEM; |
| } |
| |
| size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t)); |
| if (max_scrypt_blocks < p + 1 || |
| max_scrypt_blocks - p - 1 < N) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| return 0; |
| } |
| |
| // Allocate and divide up the scratch space. |max_mem| fits in a size_t, which |
| // is no bigger than uint64_t, so none of these operations may overflow. |
| OPENSSL_STATIC_ASSERT(UINT64_MAX >= ((size_t)-1), "size_t exceeds uint64_t"); |
| size_t B_blocks = p * 2 * r; |
| size_t B_bytes = B_blocks * sizeof(block_t); |
| size_t T_blocks = 2 * r; |
| size_t V_blocks = N * 2 * r; |
| block_t *B = OPENSSL_malloc((B_blocks + T_blocks + V_blocks) * sizeof(block_t)); |
| if (B == NULL) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| int ret = 0; |
| block_t *T = B + B_blocks; |
| block_t *V = T + T_blocks; |
| |
| // NOTE: PKCS5_PBKDF2_HMAC can only fail due to allocation failure |
| // or |iterations| of 0 (we pass 1 here). This is consistent with |
| // the documented failure conditions of EVP_PBE_scrypt. |
| if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1, |
| EVP_sha256(), B_bytes, (uint8_t *)B)) { |
| goto err; |
| } |
| |
| for (uint64_t i = 0; i < p; i++) { |
| scryptROMix(B + 2 * r * i, r, N, T, V); |
| } |
| |
| if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1, |
| EVP_sha256(), key_len, out_key)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_free(B); |
| return ret; |
| } |