|  | /* Copyright (c) 2016, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include <map> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include <openssl/asn1.h> | 
|  | #include <openssl/asn1t.h> | 
|  | #include <openssl/bio.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/obj.h> | 
|  | #include <openssl/pem.h> | 
|  | #include <openssl/posix_time.h> | 
|  | #include <openssl/span.h> | 
|  | #include <openssl/x509.h> | 
|  |  | 
|  | #include "../test/test_util.h" | 
|  | #include "internal.h" | 
|  |  | 
|  | #if defined(OPENSSL_THREADS) | 
|  | #include <thread> | 
|  | #endif | 
|  |  | 
|  |  | 
|  | // |obj| and |i2d_func| require different template parameters because C++ may | 
|  | // deduce, say, |ASN1_STRING*| via |obj| and |const ASN1_STRING*| via | 
|  | // |i2d_func|. Template argument deduction then fails. The language is not able | 
|  | // to resolve this by observing that |const ASN1_STRING*| works for both. | 
|  | template <typename T, typename U> | 
|  | void TestSerialize(T obj, int (*i2d_func)(U a, uint8_t **pp), | 
|  | bssl::Span<const uint8_t> expected) { | 
|  | static_assert(std::is_convertible<T, U>::value, | 
|  | "incompatible parameter to i2d_func"); | 
|  | // Test the allocating version first. It is easiest to debug. | 
|  | uint8_t *ptr = nullptr; | 
|  | int len = i2d_func(obj, &ptr); | 
|  | ASSERT_GT(len, 0); | 
|  | EXPECT_EQ(Bytes(expected), Bytes(ptr, len)); | 
|  | OPENSSL_free(ptr); | 
|  |  | 
|  | len = i2d_func(obj, nullptr); | 
|  | ASSERT_GT(len, 0); | 
|  | EXPECT_EQ(len, static_cast<int>(expected.size())); | 
|  |  | 
|  | std::vector<uint8_t> buf(len); | 
|  | ptr = buf.data(); | 
|  | len = i2d_func(obj, &ptr); | 
|  | ASSERT_EQ(len, static_cast<int>(expected.size())); | 
|  | EXPECT_EQ(ptr, buf.data() + buf.size()); | 
|  | EXPECT_EQ(Bytes(expected), Bytes(buf)); | 
|  | } | 
|  |  | 
|  | // Historically, unknown universal tags were represented in |ASN1_TYPE| as | 
|  | // |ASN1_STRING|s with the type matching the tag number. This can collide with | 
|  | // |V_ASN_NEG|, which was one of the causes of CVE-2016-2108. We now represent | 
|  | // unsupported values with |V_ASN1_OTHER|, but retain the |V_ASN1_MAX_UNIVERSAL| | 
|  | // limit. | 
|  | TEST(ASN1Test, UnknownTags) { | 
|  | // kTag258 is an ASN.1 structure with a universal tag with number 258. | 
|  | static const uint8_t kTag258[] = {0x1f, 0x82, 0x02, 0x01, 0x00}; | 
|  | static_assert( | 
|  | V_ASN1_NEG_INTEGER == 258, | 
|  | "V_ASN1_NEG_INTEGER changed. Update kTag258 to collide with it."); | 
|  | const uint8_t *p = kTag258; | 
|  | bssl::UniquePtr<ASN1_TYPE> obj(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag258))); | 
|  | EXPECT_FALSE(obj) << "Parsed value with illegal tag" << obj->type; | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // kTagOverflow is an ASN.1 structure with a universal tag with number 2^35-1, | 
|  | // which will not fit in an int. | 
|  | static const uint8_t kTagOverflow[] = {0x1f, 0xff, 0xff, 0xff, | 
|  | 0xff, 0x7f, 0x01, 0x00}; | 
|  | p = kTagOverflow; | 
|  | obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTagOverflow))); | 
|  | EXPECT_FALSE(obj) << "Parsed value with tag overflow" << obj->type; | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // kTag128 is an ASN.1 structure with a universal tag with number 128. It | 
|  | // should be parsed as |V_ASN1_OTHER|. | 
|  | static const uint8_t kTag128[] = {0x1f, 0x81, 0x00, 0x01, 0x00}; | 
|  | p = kTag128; | 
|  | obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag128))); | 
|  | ASSERT_TRUE(obj); | 
|  | EXPECT_EQ(V_ASN1_OTHER, obj->type); | 
|  | EXPECT_EQ(Bytes(kTag128), Bytes(obj->value.asn1_string->data, | 
|  | obj->value.asn1_string->length)); | 
|  | TestSerialize(obj.get(), i2d_ASN1_TYPE, kTag128); | 
|  |  | 
|  | // The historical in-memory representation of |kTag128| was for both | 
|  | // |obj->type| and |obj->value.asn1_string->type| to be 128. This is no | 
|  | // longer used but is still accepted by the encoder. | 
|  | // | 
|  | // TODO(crbug.com/boringssl/412): The encoder should reject it. However, it is | 
|  | // still needed to support some edge cases in |ASN1_PRINTABLE|. When that is | 
|  | // fixed, test that we reject it. | 
|  | obj.reset(ASN1_TYPE_new()); | 
|  | ASSERT_TRUE(obj); | 
|  | obj->type = 128; | 
|  | obj->value.asn1_string = ASN1_STRING_type_new(128); | 
|  | ASSERT_TRUE(obj->value.asn1_string); | 
|  | const uint8_t zero = 0; | 
|  | ASSERT_TRUE(ASN1_STRING_set(obj->value.asn1_string, &zero, sizeof(zero))); | 
|  | TestSerialize(obj.get(), i2d_ASN1_TYPE, kTag128); | 
|  |  | 
|  | // If a tag is known, but has the wrong constructed bit, it should be | 
|  | // rejected, not placed in |V_ASN1_OTHER|. | 
|  | static const uint8_t kConstructedOctetString[] = {0x24, 0x00}; | 
|  | p = kConstructedOctetString; | 
|  | obj.reset(d2i_ASN1_TYPE(nullptr, &p, sizeof(kConstructedOctetString))); | 
|  | EXPECT_FALSE(obj); | 
|  |  | 
|  | static const uint8_t kPrimitiveSequence[] = {0x10, 0x00}; | 
|  | p = kPrimitiveSequence; | 
|  | obj.reset(d2i_ASN1_TYPE(nullptr, &p, sizeof(kPrimitiveSequence))); | 
|  | EXPECT_FALSE(obj); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<BIGNUM> BIGNUMPow2(unsigned bit) { | 
|  | bssl::UniquePtr<BIGNUM> bn(BN_new()); | 
|  | if (!bn || | 
|  | !BN_set_bit(bn.get(), bit)) { | 
|  | return nullptr; | 
|  | } | 
|  | return bn; | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, Integer) { | 
|  | bssl::UniquePtr<BIGNUM> int64_min = BIGNUMPow2(63); | 
|  | ASSERT_TRUE(int64_min); | 
|  | BN_set_negative(int64_min.get(), 1); | 
|  |  | 
|  | bssl::UniquePtr<BIGNUM> int64_max = BIGNUMPow2(63); | 
|  | ASSERT_TRUE(int64_max); | 
|  | ASSERT_TRUE(BN_sub_word(int64_max.get(), 1)); | 
|  |  | 
|  | bssl::UniquePtr<BIGNUM> int32_min = BIGNUMPow2(31); | 
|  | ASSERT_TRUE(int32_min); | 
|  | BN_set_negative(int32_min.get(), 1); | 
|  |  | 
|  | bssl::UniquePtr<BIGNUM> int32_max = BIGNUMPow2(31); | 
|  | ASSERT_TRUE(int32_max); | 
|  | ASSERT_TRUE(BN_sub_word(int32_max.get(), 1)); | 
|  |  | 
|  | struct { | 
|  | // der is the DER encoding of the INTEGER, including the tag and length. | 
|  | std::vector<uint8_t> der; | 
|  | // type and data are the corresponding fields of the |ASN1_STRING| | 
|  | // representation. | 
|  | int type; | 
|  | std::vector<uint8_t> data; | 
|  | // bn_asc is the |BIGNUM| representation, as parsed by the |BN_asc2bn| | 
|  | // function. | 
|  | const char *bn_asc; | 
|  | } kTests[] = { | 
|  | // -2^64 - 1 | 
|  | {{0x02, 0x09, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, | 
|  | "-0x10000000000000001"}, | 
|  | // -2^64 | 
|  | {{0x02, 0x09, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | 
|  | "-0x10000000000000000"}, | 
|  | // -2^64 + 1 | 
|  | {{0x02, 0x09, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | 
|  | "-0xffffffffffffffff"}, | 
|  | // -2^63 - 1 | 
|  | {{0x02, 0x09, 0xff, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, | 
|  | "-0x8000000000000001"}, | 
|  | // -2^63 (INT64_MIN) | 
|  | {{0x02, 0x08, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | 
|  | "-0x8000000000000000"}, | 
|  | // -2^63 + 1 | 
|  | {{0x02, 0x08, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | 
|  | "-0x7fffffffffffffff"}, | 
|  | // -2^32 - 1 | 
|  | {{0x02, 0x05, 0xfe, 0xff, 0xff, 0xff, 0xff}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0x01, 0x00, 0x00, 0x00, 0x01}, | 
|  | "-0x100000001"}, | 
|  | // -2^32 | 
|  | {{0x02, 0x05, 0xff, 0x00, 0x00, 0x00, 0x00}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0x01, 0x00, 0x00, 0x00, 0x00}, | 
|  | "-0x100000000"}, | 
|  | // -2^32 + 1 | 
|  | {{0x02, 0x05, 0xff, 0x00, 0x00, 0x00, 0x01}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0xff, 0xff, 0xff, 0xff}, | 
|  | "-0xffffffff"}, | 
|  | // -2^31 - 1 | 
|  | {{0x02, 0x05, 0xff, 0x7f, 0xff, 0xff, 0xff}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0x80, 0x00, 0x00, 0x01}, | 
|  | "-0x80000001"}, | 
|  | // -2^31 (INT32_MIN) | 
|  | {{0x02, 0x04, 0x80, 0x00, 0x00, 0x00}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0x80, 0x00, 0x00, 0x00}, | 
|  | "-0x80000000"}, | 
|  | // -2^31 + 1 | 
|  | {{0x02, 0x04, 0x80, 0x00, 0x00, 0x01}, | 
|  | V_ASN1_NEG_INTEGER, | 
|  | {0x7f, 0xff, 0xff, 0xff}, | 
|  | "-0x7fffffff"}, | 
|  | // -257 | 
|  | {{0x02, 0x02, 0xfe, 0xff}, V_ASN1_NEG_INTEGER, {0x01, 0x01}, "-257"}, | 
|  | // -256 | 
|  | {{0x02, 0x02, 0xff, 0x00}, V_ASN1_NEG_INTEGER, {0x01, 0x00}, "-256"}, | 
|  | // -255 | 
|  | {{0x02, 0x02, 0xff, 0x01}, V_ASN1_NEG_INTEGER, {0xff}, "-255"}, | 
|  | // -129 | 
|  | {{0x02, 0x02, 0xff, 0x7f}, V_ASN1_NEG_INTEGER, {0x81}, "-129"}, | 
|  | // -128 | 
|  | {{0x02, 0x01, 0x80}, V_ASN1_NEG_INTEGER, {0x80}, "-128"}, | 
|  | // -127 | 
|  | {{0x02, 0x01, 0x81}, V_ASN1_NEG_INTEGER, {0x7f}, "-127"}, | 
|  | // -1 | 
|  | {{0x02, 0x01, 0xff}, V_ASN1_NEG_INTEGER, {0x01}, "-1"}, | 
|  | // 0 | 
|  | {{0x02, 0x01, 0x00}, V_ASN1_INTEGER, {}, "0"}, | 
|  | // 1 | 
|  | {{0x02, 0x01, 0x01}, V_ASN1_INTEGER, {0x01}, "1"}, | 
|  | // 127 | 
|  | {{0x02, 0x01, 0x7f}, V_ASN1_INTEGER, {0x7f}, "127"}, | 
|  | // 128 | 
|  | {{0x02, 0x02, 0x00, 0x80}, V_ASN1_INTEGER, {0x80}, "128"}, | 
|  | // 129 | 
|  | {{0x02, 0x02, 0x00, 0x81}, V_ASN1_INTEGER, {0x81}, "129"}, | 
|  | // 255 | 
|  | {{0x02, 0x02, 0x00, 0xff}, V_ASN1_INTEGER, {0xff}, "255"}, | 
|  | // 256 | 
|  | {{0x02, 0x02, 0x01, 0x00}, V_ASN1_INTEGER, {0x01, 0x00}, "256"}, | 
|  | // 257 | 
|  | {{0x02, 0x02, 0x01, 0x01}, V_ASN1_INTEGER, {0x01, 0x01}, "257"}, | 
|  | // 2^31 - 2 | 
|  | {{0x02, 0x04, 0x7f, 0xff, 0xff, 0xfe}, | 
|  | V_ASN1_INTEGER, | 
|  | {0x7f, 0xff, 0xff, 0xfe}, | 
|  | "0x7ffffffe"}, | 
|  | // 2^31 - 1 (INT32_MAX) | 
|  | {{0x02, 0x04, 0x7f, 0xff, 0xff, 0xff}, | 
|  | V_ASN1_INTEGER, | 
|  | {0x7f, 0xff, 0xff, 0xff}, | 
|  | "0x7fffffff"}, | 
|  | // 2^31 | 
|  | {{0x02, 0x05, 0x00, 0x80, 0x00, 0x00, 0x00}, | 
|  | V_ASN1_INTEGER, | 
|  | {0x80, 0x00, 0x00, 0x00}, | 
|  | "0x80000000"}, | 
|  | // 2^32 - 2 | 
|  | {{0x02, 0x05, 0x00, 0xff, 0xff, 0xff, 0xfe}, | 
|  | V_ASN1_INTEGER, | 
|  | {0xff, 0xff, 0xff, 0xfe}, | 
|  | "0xfffffffe"}, | 
|  | // 2^32 - 1 (UINT32_MAX) | 
|  | {{0x02, 0x05, 0x00, 0xff, 0xff, 0xff, 0xff}, | 
|  | V_ASN1_INTEGER, | 
|  | {0xff, 0xff, 0xff, 0xff}, | 
|  | "0xffffffff"}, | 
|  | // 2^32 | 
|  | {{0x02, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00}, | 
|  | V_ASN1_INTEGER, | 
|  | {0x01, 0x00, 0x00, 0x00, 0x00}, | 
|  | "0x100000000"}, | 
|  | // 2^63 - 2 | 
|  | {{0x02, 0x08, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, | 
|  | V_ASN1_INTEGER, | 
|  | {0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, | 
|  | "0x7ffffffffffffffe"}, | 
|  | // 2^63 - 1 (INT64_MAX) | 
|  | {{0x02, 0x08, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | 
|  | V_ASN1_INTEGER, | 
|  | {0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | 
|  | "0x7fffffffffffffff"}, | 
|  | // 2^63 | 
|  | {{0x02, 0x09, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | 
|  | V_ASN1_INTEGER, | 
|  | {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | 
|  | "0x8000000000000000"}, | 
|  | // 2^64 - 2 | 
|  | {{0x02, 0x09, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, | 
|  | V_ASN1_INTEGER, | 
|  | {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe}, | 
|  | "0xfffffffffffffffe"}, | 
|  | // 2^64 - 1 (UINT64_MAX) | 
|  | {{0x02, 0x09, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | 
|  | V_ASN1_INTEGER, | 
|  | {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, | 
|  | "0xffffffffffffffff"}, | 
|  | // 2^64 | 
|  | {{0x02, 0x09, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | 
|  | V_ASN1_INTEGER, | 
|  | {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, | 
|  | "0x10000000000000000"}, | 
|  | // 2^64 + 1 | 
|  | {{0x02, 0x09, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, | 
|  | V_ASN1_INTEGER, | 
|  | {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, | 
|  | "0x10000000000000001"}, | 
|  | }; | 
|  |  | 
|  | for (const auto &t : kTests) { | 
|  | SCOPED_TRACE(t.bn_asc); | 
|  | // Collect a map of different ways to construct the integer. The key is the | 
|  | // method used and is only retained to aid debugging. | 
|  | std::map<std::string, bssl::UniquePtr<ASN1_INTEGER>> objs; | 
|  |  | 
|  | // Construct |ASN1_INTEGER| by setting the type and data manually. | 
|  | bssl::UniquePtr<ASN1_INTEGER> by_data(ASN1_STRING_type_new(t.type)); | 
|  | ASSERT_TRUE(by_data); | 
|  | ASSERT_TRUE(ASN1_STRING_set(by_data.get(), t.data.data(), t.data.size())); | 
|  | objs["data"] = std::move(by_data); | 
|  |  | 
|  | // Construct |ASN1_INTEGER| from a |BIGNUM|. | 
|  | BIGNUM *bn_raw = nullptr; | 
|  | ASSERT_TRUE(BN_asc2bn(&bn_raw, t.bn_asc)); | 
|  | bssl::UniquePtr<BIGNUM> bn(bn_raw); | 
|  | bssl::UniquePtr<ASN1_INTEGER> by_bn(BN_to_ASN1_INTEGER(bn.get(), nullptr)); | 
|  | ASSERT_TRUE(by_bn); | 
|  | objs["bn"] = std::move(by_bn); | 
|  |  | 
|  | // Construct |ASN1_INTEGER| from decoding. | 
|  | const uint8_t *ptr = t.der.data(); | 
|  | bssl::UniquePtr<ASN1_INTEGER> by_der( | 
|  | d2i_ASN1_INTEGER(nullptr, &ptr, t.der.size())); | 
|  | ASSERT_TRUE(by_der); | 
|  | EXPECT_EQ(ptr, t.der.data() + t.der.size()); | 
|  | objs["der"] = std::move(by_der); | 
|  |  | 
|  | // Construct |ASN1_INTEGER| from various C types, if it fits. | 
|  | bool fits_in_long = false, fits_in_i64 = false, fits_in_u64 = false; | 
|  | uint64_t u64 = 0; | 
|  | int64_t i64 = 0; | 
|  | long l = 0; | 
|  | uint64_t abs_u64; | 
|  | if (BN_get_u64(bn.get(), &abs_u64)) { | 
|  | fits_in_u64 = !BN_is_negative(bn.get()); | 
|  | if (fits_in_u64) { | 
|  | u64 = abs_u64; | 
|  | bssl::UniquePtr<ASN1_INTEGER> by_u64(ASN1_INTEGER_new()); | 
|  | ASSERT_TRUE(by_u64); | 
|  | ASSERT_TRUE(ASN1_INTEGER_set_uint64(by_u64.get(), u64)); | 
|  | objs["u64"] = std::move(by_u64); | 
|  | } | 
|  |  | 
|  | fits_in_i64 = BN_cmp(int64_min.get(), bn.get()) <= 0 && | 
|  | BN_cmp(bn.get(), int64_max.get()) <= 0; | 
|  | if (fits_in_i64) { | 
|  | if (BN_is_negative(bn.get())) { | 
|  | i64 = static_cast<int64_t>(0u - abs_u64); | 
|  | } else { | 
|  | i64 = static_cast<int64_t>(abs_u64); | 
|  | } | 
|  | bssl::UniquePtr<ASN1_INTEGER> by_i64(ASN1_INTEGER_new()); | 
|  | ASSERT_TRUE(by_i64); | 
|  | ASSERT_TRUE(ASN1_INTEGER_set_int64(by_i64.get(), i64)); | 
|  | objs["i64"] = std::move(by_i64); | 
|  | } | 
|  |  | 
|  | if (sizeof(long) == 8) { | 
|  | fits_in_long = fits_in_i64; | 
|  | } else { | 
|  | ASSERT_EQ(4u, sizeof(long)); | 
|  | fits_in_long = BN_cmp(int32_min.get(), bn.get()) <= 0 && | 
|  | BN_cmp(bn.get(), int32_max.get()) <= 0; | 
|  | } | 
|  | if (fits_in_long) { | 
|  | l = static_cast<long>(i64); | 
|  | bssl::UniquePtr<ASN1_INTEGER> by_long(ASN1_INTEGER_new()); | 
|  | ASSERT_TRUE(by_long); | 
|  | ASSERT_TRUE(ASN1_INTEGER_set(by_long.get(), l)); | 
|  | objs["long"] = std::move(by_long); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Default construction should return the zero |ASN1_INTEGER|. | 
|  | if (BN_is_zero(bn.get())) { | 
|  | bssl::UniquePtr<ASN1_INTEGER> by_default(ASN1_INTEGER_new()); | 
|  | ASSERT_TRUE(by_default); | 
|  | objs["default"] = std::move(by_default); | 
|  | } | 
|  |  | 
|  | // Test that every |ASN1_INTEGER| constructed behaves as expected. | 
|  | for (const auto &pair : objs) { | 
|  | // The fields should be as expected. | 
|  | SCOPED_TRACE(pair.first); | 
|  | const ASN1_INTEGER *obj = pair.second.get(); | 
|  | EXPECT_EQ(t.type, ASN1_STRING_type(obj)); | 
|  | EXPECT_EQ(Bytes(t.data), Bytes(ASN1_STRING_get0_data(obj), | 
|  | ASN1_STRING_length(obj))); | 
|  |  | 
|  | // The object should encode correctly. | 
|  | TestSerialize(obj, i2d_ASN1_INTEGER, t.der); | 
|  |  | 
|  | bssl::UniquePtr<BIGNUM> bn2(ASN1_INTEGER_to_BN(obj, nullptr)); | 
|  | ASSERT_TRUE(bn2); | 
|  | EXPECT_EQ(0, BN_cmp(bn.get(), bn2.get())); | 
|  |  | 
|  | if (fits_in_u64) { | 
|  | uint64_t v; | 
|  | ASSERT_TRUE(ASN1_INTEGER_get_uint64(&v, obj)); | 
|  | EXPECT_EQ(v, u64); | 
|  | } else { | 
|  | uint64_t v; | 
|  | EXPECT_FALSE(ASN1_INTEGER_get_uint64(&v, obj)); | 
|  | } | 
|  |  | 
|  | if (fits_in_i64) { | 
|  | int64_t v; | 
|  | ASSERT_TRUE(ASN1_INTEGER_get_int64(&v, obj)); | 
|  | EXPECT_EQ(v, i64); | 
|  | } else { | 
|  | int64_t v; | 
|  | EXPECT_FALSE(ASN1_INTEGER_get_int64(&v, obj)); | 
|  | } | 
|  |  | 
|  | if (fits_in_long) { | 
|  | EXPECT_EQ(l, ASN1_INTEGER_get(obj)); | 
|  | } else { | 
|  | EXPECT_EQ(-1, ASN1_INTEGER_get(obj)); | 
|  | } | 
|  |  | 
|  | // All variations of integers should compare as equal to each other, as | 
|  | // strings or integers. (Functions like |ASN1_TYPE_cmp| rely on | 
|  | // string-based comparison.) | 
|  | for (const auto &pair2 : objs) { | 
|  | SCOPED_TRACE(pair2.first); | 
|  | EXPECT_EQ(0, ASN1_INTEGER_cmp(obj, pair2.second.get())); | 
|  | EXPECT_EQ(0, ASN1_STRING_cmp(obj, pair2.second.get())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Although our parsers will never output non-minimal |ASN1_INTEGER|s, it is | 
|  | // possible to construct them manually. They should encode correctly. | 
|  | std::vector<uint8_t> data = t.data; | 
|  | const int kMaxExtraBytes = 5; | 
|  | for (int i = 0; i < kMaxExtraBytes; i++) { | 
|  | data.insert(data.begin(), 0x00); | 
|  | SCOPED_TRACE(Bytes(data)); | 
|  |  | 
|  | bssl::UniquePtr<ASN1_INTEGER> non_minimal(ASN1_STRING_type_new(t.type)); | 
|  | ASSERT_TRUE(non_minimal); | 
|  | ASSERT_TRUE(ASN1_STRING_set(non_minimal.get(), data.data(), data.size())); | 
|  |  | 
|  | TestSerialize(non_minimal.get(), i2d_ASN1_INTEGER, t.der); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kTests); i++) { | 
|  | SCOPED_TRACE(Bytes(kTests[i].der)); | 
|  | const uint8_t *ptr = kTests[i].der.data(); | 
|  | bssl::UniquePtr<ASN1_INTEGER> a( | 
|  | d2i_ASN1_INTEGER(nullptr, &ptr, kTests[i].der.size())); | 
|  | ASSERT_TRUE(a); | 
|  | for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(kTests); j++) { | 
|  | SCOPED_TRACE(Bytes(kTests[j].der)); | 
|  | ptr = kTests[j].der.data(); | 
|  | bssl::UniquePtr<ASN1_INTEGER> b( | 
|  | d2i_ASN1_INTEGER(nullptr, &ptr, kTests[j].der.size())); | 
|  | ASSERT_TRUE(b); | 
|  |  | 
|  | // |ASN1_INTEGER_cmp| should compare numerically. |ASN1_STRING_cmp| does | 
|  | // not but should preserve equality. | 
|  | if (i < j) { | 
|  | EXPECT_LT(ASN1_INTEGER_cmp(a.get(), b.get()), 0); | 
|  | EXPECT_NE(ASN1_STRING_cmp(a.get(), b.get()), 0); | 
|  | } else if (i > j) { | 
|  | EXPECT_GT(ASN1_INTEGER_cmp(a.get(), b.get()), 0); | 
|  | EXPECT_NE(ASN1_STRING_cmp(a.get(), b.get()), 0); | 
|  | } else { | 
|  | EXPECT_EQ(ASN1_INTEGER_cmp(a.get(), b.get()), 0); | 
|  | EXPECT_EQ(ASN1_STRING_cmp(a.get(), b.get()), 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<uint8_t> kInvalidTests[] = { | 
|  | // The empty string is not an integer. | 
|  | {0x02, 0x00}, | 
|  | // Integers must be minimally-encoded. | 
|  | {0x02, 0x02, 0x00, 0x00}, | 
|  | {0x02, 0x02, 0x00, 0x7f}, | 
|  | {0x02, 0x02, 0xff, 0xff}, | 
|  | {0x02, 0x02, 0xff, 0x80}, | 
|  | }; | 
|  | for (const auto &invalid : kInvalidTests) { | 
|  | SCOPED_TRACE(Bytes(invalid)); | 
|  |  | 
|  | const uint8_t *ptr = invalid.data(); | 
|  | bssl::UniquePtr<ASN1_INTEGER> integer( | 
|  | d2i_ASN1_INTEGER(nullptr, &ptr, invalid.size())); | 
|  | EXPECT_FALSE(integer); | 
|  | } | 
|  |  | 
|  | // Callers expect |ASN1_INTEGER_get| and |ASN1_ENUMERATED_get| to return zero | 
|  | // given NULL. | 
|  | EXPECT_EQ(0, ASN1_INTEGER_get(nullptr)); | 
|  | EXPECT_EQ(0, ASN1_ENUMERATED_get(nullptr)); | 
|  | } | 
|  |  | 
|  | // Although invalid, a negative zero should encode correctly. | 
|  | TEST(ASN1Test, NegativeZero) { | 
|  | bssl::UniquePtr<ASN1_INTEGER> neg_zero( | 
|  | ASN1_STRING_type_new(V_ASN1_NEG_INTEGER)); | 
|  | ASSERT_TRUE(neg_zero); | 
|  | EXPECT_EQ(0, ASN1_INTEGER_get(neg_zero.get())); | 
|  |  | 
|  | static const uint8_t kDER[] = {0x02, 0x01, 0x00}; | 
|  | TestSerialize(neg_zero.get(), i2d_ASN1_INTEGER, kDER); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, SerializeObject) { | 
|  | static const uint8_t kDER[] = {0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, | 
|  | 0xf7, 0x0d, 0x01, 0x01, 0x01}; | 
|  | const ASN1_OBJECT *obj = OBJ_nid2obj(NID_rsaEncryption); | 
|  | TestSerialize(obj, i2d_ASN1_OBJECT, kDER); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, Boolean) { | 
|  | static const uint8_t kTrue[] = {0x01, 0x01, 0xff}; | 
|  | TestSerialize(0xff, i2d_ASN1_BOOLEAN, kTrue); | 
|  | // Other constants are also correctly encoded as TRUE. | 
|  | TestSerialize(1, i2d_ASN1_BOOLEAN, kTrue); | 
|  | TestSerialize(0x100, i2d_ASN1_BOOLEAN, kTrue); | 
|  |  | 
|  | const uint8_t *ptr = kTrue; | 
|  | EXPECT_EQ(0xff, d2i_ASN1_BOOLEAN(nullptr, &ptr, sizeof(kTrue))); | 
|  | EXPECT_EQ(ptr, kTrue + sizeof(kTrue)); | 
|  |  | 
|  | static const uint8_t kFalse[] = {0x01, 0x01, 0x00}; | 
|  | TestSerialize(0x00, i2d_ASN1_BOOLEAN, kFalse); | 
|  |  | 
|  | ptr = kFalse; | 
|  | EXPECT_EQ(0, d2i_ASN1_BOOLEAN(nullptr, &ptr, sizeof(kFalse))); | 
|  | EXPECT_EQ(ptr, kFalse + sizeof(kFalse)); | 
|  |  | 
|  | const std::vector<uint8_t> kInvalidBooleans[] = { | 
|  | // No tag header. | 
|  | {}, | 
|  | // No length. | 
|  | {0x01}, | 
|  | // Truncated contents. | 
|  | {0x01, 0x01}, | 
|  | // Contents too short or too long. | 
|  | {0x01, 0x00}, | 
|  | {0x01, 0x02, 0x00, 0x00}, | 
|  | // Wrong tag number. | 
|  | {0x02, 0x01, 0x00}, | 
|  | // Wrong tag class. | 
|  | {0x81, 0x01, 0x00}, | 
|  | // Element is constructed. | 
|  | {0x21, 0x01, 0x00}, | 
|  | // Not a DER encoding of TRUE. | 
|  | {0x01, 0x01, 0x01}, | 
|  | // Non-minimal tag length. | 
|  | {0x01, 0x81, 0x01, 0xff}, | 
|  | }; | 
|  | for (const auto &invalid : kInvalidBooleans) { | 
|  | SCOPED_TRACE(Bytes(invalid)); | 
|  | ptr = invalid.data(); | 
|  | EXPECT_EQ(-1, d2i_ASN1_BOOLEAN(nullptr, &ptr, invalid.size())); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The templates go through a different codepath, so test them separately. | 
|  | TEST(ASN1Test, SerializeEmbeddedBoolean) { | 
|  | bssl::UniquePtr<BASIC_CONSTRAINTS> val(BASIC_CONSTRAINTS_new()); | 
|  | ASSERT_TRUE(val); | 
|  |  | 
|  | // BasicConstraints defaults to FALSE, so the encoding should be empty. | 
|  | static const uint8_t kLeaf[] = {0x30, 0x00}; | 
|  | val->ca = 0; | 
|  | TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kLeaf); | 
|  |  | 
|  | // TRUE should always be encoded as 0xff, independent of what value the caller | 
|  | // placed in the |ASN1_BOOLEAN|. | 
|  | static const uint8_t kCA[] = {0x30, 0x03, 0x01, 0x01, 0xff}; | 
|  | val->ca = 0xff; | 
|  | TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); | 
|  | val->ca = 1; | 
|  | TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); | 
|  | val->ca = 0x100; | 
|  | TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, ASN1Type) { | 
|  | const struct { | 
|  | int type; | 
|  | std::vector<uint8_t> der; | 
|  | } kTests[] = { | 
|  | // BOOLEAN { TRUE } | 
|  | {V_ASN1_BOOLEAN, {0x01, 0x01, 0xff}}, | 
|  | // BOOLEAN { FALSE } | 
|  | {V_ASN1_BOOLEAN, {0x01, 0x01, 0x00}}, | 
|  | // OCTET_STRING { "a" } | 
|  | {V_ASN1_OCTET_STRING, {0x04, 0x01, 0x61}}, | 
|  | // OCTET_STRING { } | 
|  | {V_ASN1_OCTET_STRING, {0x04, 0x00}}, | 
|  | // BIT_STRING { `01` `00` } | 
|  | {V_ASN1_BIT_STRING, {0x03, 0x02, 0x01, 0x00}}, | 
|  | // INTEGER { -1 } | 
|  | {V_ASN1_INTEGER, {0x02, 0x01, 0xff}}, | 
|  | // OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2 } | 
|  | {V_ASN1_OBJECT, | 
|  | {0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, | 
|  | 0x09, 0x02}}, | 
|  | // NULL {} | 
|  | {V_ASN1_NULL, {0x05, 0x00}}, | 
|  | // SEQUENCE {} | 
|  | {V_ASN1_SEQUENCE, {0x30, 0x00}}, | 
|  | // SET {} | 
|  | {V_ASN1_SET, {0x31, 0x00}}, | 
|  | // [0] { UTF8String { "a" } } | 
|  | {V_ASN1_OTHER, {0xa0, 0x03, 0x0c, 0x01, 0x61}}, | 
|  | }; | 
|  | for (const auto &t : kTests) { | 
|  | SCOPED_TRACE(Bytes(t.der)); | 
|  |  | 
|  | // The input should successfully parse. | 
|  | const uint8_t *ptr = t.der.data(); | 
|  | bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, t.der.size())); | 
|  | ASSERT_TRUE(val); | 
|  |  | 
|  | EXPECT_EQ(ASN1_TYPE_get(val.get()), t.type); | 
|  | EXPECT_EQ(val->type, t.type); | 
|  | TestSerialize(val.get(), i2d_ASN1_TYPE, t.der); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test that reading |value.ptr| from a FALSE |ASN1_TYPE| behaves correctly. The | 
|  | // type historically supported this, so maintain the invariant in case external | 
|  | // code relies on it. | 
|  | TEST(ASN1Test, UnusedBooleanBits) { | 
|  | // OCTET_STRING { "a" } | 
|  | static const uint8_t kDER[] = {0x04, 0x01, 0x61}; | 
|  | const uint8_t *ptr = kDER; | 
|  | bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, sizeof(kDER))); | 
|  | ASSERT_TRUE(val); | 
|  | EXPECT_EQ(V_ASN1_OCTET_STRING, val->type); | 
|  | EXPECT_TRUE(val->value.ptr); | 
|  |  | 
|  | // Set |val| to a BOOLEAN containing FALSE. | 
|  | ASN1_TYPE_set(val.get(), V_ASN1_BOOLEAN, NULL); | 
|  | EXPECT_EQ(V_ASN1_BOOLEAN, val->type); | 
|  | EXPECT_FALSE(val->value.ptr); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, ParseASN1Object) { | 
|  | // 1.2.840.113554.4.1.72585.2, an arbitrary unknown OID. | 
|  | static const uint8_t kOID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, | 
|  | 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02}; | 
|  | ASN1_OBJECT *obj = ASN1_OBJECT_create(NID_undef, kOID, sizeof(kOID), | 
|  | "short name", "long name"); | 
|  | ASSERT_TRUE(obj); | 
|  |  | 
|  | // OBJECT_IDENTIFIER { 1.3.101.112 } | 
|  | static const uint8_t kDER[] = {0x06, 0x03, 0x2b, 0x65, 0x70}; | 
|  | const uint8_t *ptr = kDER; | 
|  | // Parse an |ASN1_OBJECT| with object reuse. | 
|  | EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER))); | 
|  | EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj)); | 
|  | ASN1_OBJECT_free(obj); | 
|  |  | 
|  | // Repeat the test, this time overriding a static |ASN1_OBJECT|. It should | 
|  | // detect this and construct a new one. | 
|  | obj = OBJ_nid2obj(NID_rsaEncryption); | 
|  | ptr = kDER; | 
|  | EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER))); | 
|  | EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj)); | 
|  | ASN1_OBJECT_free(obj); | 
|  |  | 
|  | const std::vector<uint8_t> kInvalidObjects[] = { | 
|  | // No tag header. | 
|  | {}, | 
|  | // No length. | 
|  | {0x06}, | 
|  | // Truncated contents. | 
|  | {0x06, 0x01}, | 
|  | // An OID may not be empty. | 
|  | {0x06, 0x00}, | 
|  | // The last byte may not be a continuation byte (high bit set). | 
|  | {0x06, 0x03, 0x2b, 0x65, 0xf0}, | 
|  | // Each component must be minimally-encoded. | 
|  | {0x06, 0x03, 0x2b, 0x65, 0x80, 0x70}, | 
|  | {0x06, 0x03, 0x80, 0x2b, 0x65, 0x70}, | 
|  | // Wrong tag number. | 
|  | {0x01, 0x03, 0x2b, 0x65, 0x70}, | 
|  | // Wrong tag class. | 
|  | {0x86, 0x03, 0x2b, 0x65, 0x70}, | 
|  | // Element is constructed. | 
|  | {0x26, 0x03, 0x2b, 0x65, 0x70}, | 
|  | // Non-minimal tag length. | 
|  | {0x06, 0x81, 0x03, 0x2b, 0x65, 0x70}, | 
|  | }; | 
|  | for (const auto &invalid : kInvalidObjects) { | 
|  | SCOPED_TRACE(Bytes(invalid)); | 
|  | ptr = invalid.data(); | 
|  | obj = d2i_ASN1_OBJECT(nullptr, &ptr, invalid.size()); | 
|  | EXPECT_FALSE(obj); | 
|  | ASN1_OBJECT_free(obj); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, BitString) { | 
|  | const size_t kNotWholeBytes = static_cast<size_t>(-1); | 
|  | const struct { | 
|  | std::vector<uint8_t> in; | 
|  | size_t num_bytes; | 
|  | } kValidInputs[] = { | 
|  | // Empty bit string | 
|  | {{0x03, 0x01, 0x00}, 0}, | 
|  | // 0b1 | 
|  | {{0x03, 0x02, 0x07, 0x80}, kNotWholeBytes}, | 
|  | // 0b1010 | 
|  | {{0x03, 0x02, 0x04, 0xa0}, kNotWholeBytes}, | 
|  | // 0b1010101 | 
|  | {{0x03, 0x02, 0x01, 0xaa}, kNotWholeBytes}, | 
|  | // 0b10101010 | 
|  | {{0x03, 0x02, 0x00, 0xaa}, 1}, | 
|  | // Bits 0 and 63 are set | 
|  | {{0x03, 0x09, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, 8}, | 
|  | // 64 zero bits | 
|  | {{0x03, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 8}, | 
|  | }; | 
|  | for (const auto &test : kValidInputs) { | 
|  | SCOPED_TRACE(Bytes(test.in)); | 
|  | // The input should parse and round-trip correctly. | 
|  | const uint8_t *ptr = test.in.data(); | 
|  | bssl::UniquePtr<ASN1_BIT_STRING> val( | 
|  | d2i_ASN1_BIT_STRING(nullptr, &ptr, test.in.size())); | 
|  | ASSERT_TRUE(val); | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, test.in); | 
|  |  | 
|  | // Check the byte count. | 
|  | size_t num_bytes; | 
|  | if (test.num_bytes == kNotWholeBytes) { | 
|  | EXPECT_FALSE(ASN1_BIT_STRING_num_bytes(val.get(), &num_bytes)); | 
|  | } else { | 
|  | ASSERT_TRUE(ASN1_BIT_STRING_num_bytes(val.get(), &num_bytes)); | 
|  | EXPECT_EQ(num_bytes, test.num_bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | const std::vector<uint8_t> kInvalidInputs[] = { | 
|  | // Wrong tag | 
|  | {0x04, 0x01, 0x00}, | 
|  | // Missing leading byte | 
|  | {0x03, 0x00}, | 
|  | // Leading byte too high | 
|  | {0x03, 0x02, 0x08, 0x00}, | 
|  | {0x03, 0x02, 0xff, 0x00}, | 
|  | // Empty bit strings must have a zero leading byte. | 
|  | {0x03, 0x01, 0x01}, | 
|  | // Unused bits must all be zero. | 
|  | {0x03, 0x02, 0x06, 0xc1 /* 0b11000001 */}, | 
|  | }; | 
|  | for (const auto &test : kInvalidInputs) { | 
|  | SCOPED_TRACE(Bytes(test)); | 
|  | const uint8_t *ptr = test.data(); | 
|  | bssl::UniquePtr<ASN1_BIT_STRING> val( | 
|  | d2i_ASN1_BIT_STRING(nullptr, &ptr, test.size())); | 
|  | EXPECT_FALSE(val); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, SetBit) { | 
|  | bssl::UniquePtr<ASN1_BIT_STRING> val(ASN1_BIT_STRING_new()); | 
|  | ASSERT_TRUE(val); | 
|  | static const uint8_t kBitStringEmpty[] = {0x03, 0x01, 0x00}; | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringEmpty); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 0)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 100)); | 
|  |  | 
|  | // Set a few bits via |ASN1_BIT_STRING_set_bit|. | 
|  | ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 0, 1)); | 
|  | ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 1, 1)); | 
|  | ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 2, 0)); | 
|  | ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 3, 1)); | 
|  | static const uint8_t kBitString1101[] = {0x03, 0x02, 0x04, 0xd0}; | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1101); | 
|  | EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); | 
|  | EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 1)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); | 
|  | EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 3)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); | 
|  |  | 
|  | // Bits that were set may be cleared. | 
|  | ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 1, 0)); | 
|  | static const uint8_t kBitString1001[] = {0x03, 0x02, 0x04, 0x90}; | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1001); | 
|  | EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 1)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); | 
|  | EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 3)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); | 
|  |  | 
|  | // Clearing trailing bits truncates the string. | 
|  | ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 3, 0)); | 
|  | static const uint8_t kBitString1[] = {0x03, 0x02, 0x07, 0x80}; | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); | 
|  | EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 1)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 3)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4)); | 
|  |  | 
|  | // Bits may be set beyond the end of the string. | 
|  | ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 1)); | 
|  | static const uint8_t kBitStringLong[] = {0x03, 0x09, 0x00, 0x80, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x01}; | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringLong); | 
|  | EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); | 
|  | EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 63)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); | 
|  |  | 
|  | // The string can be truncated back down again. | 
|  | ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 0)); | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); | 
|  | EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); | 
|  |  | 
|  | // |ASN1_BIT_STRING_set_bit| also truncates when starting from a parsed | 
|  | // string. | 
|  | const uint8_t *ptr = kBitStringLong; | 
|  | val.reset(d2i_ASN1_BIT_STRING(nullptr, &ptr, sizeof(kBitStringLong))); | 
|  | ASSERT_TRUE(val); | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringLong); | 
|  | ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 0)); | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1); | 
|  | EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); | 
|  |  | 
|  | // A parsed bit string preserves trailing zero bits. | 
|  | static const uint8_t kBitString10010[] = {0x03, 0x02, 0x03, 0x90}; | 
|  | ptr = kBitString10010; | 
|  | val.reset(d2i_ASN1_BIT_STRING(nullptr, &ptr, sizeof(kBitString10010))); | 
|  | ASSERT_TRUE(val); | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString10010); | 
|  | // But |ASN1_BIT_STRING_set_bit| will truncate it even if otherwise a no-op. | 
|  | ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 0, 1)); | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1001); | 
|  | EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63)); | 
|  | EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64)); | 
|  |  | 
|  | // By default, a BIT STRING implicitly truncates trailing zeros. | 
|  | val.reset(ASN1_BIT_STRING_new()); | 
|  | ASSERT_TRUE(val); | 
|  | static const uint8_t kZeros[64] = {0}; | 
|  | ASSERT_TRUE(ASN1_STRING_set(val.get(), kZeros, sizeof(kZeros))); | 
|  | TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringEmpty); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, StringToUTF8) { | 
|  | static const struct { | 
|  | std::vector<uint8_t> in; | 
|  | int type; | 
|  | const char *expected; | 
|  | } kTests[] = { | 
|  | // Non-minimal, two-byte UTF-8. | 
|  | {{0xc0, 0x81}, V_ASN1_UTF8STRING, nullptr}, | 
|  | // Non-minimal, three-byte UTF-8. | 
|  | {{0xe0, 0x80, 0x81}, V_ASN1_UTF8STRING, nullptr}, | 
|  | // Non-minimal, four-byte UTF-8. | 
|  | {{0xf0, 0x80, 0x80, 0x81}, V_ASN1_UTF8STRING, nullptr}, | 
|  | // Truncated, four-byte UTF-8. | 
|  | {{0xf0, 0x80, 0x80}, V_ASN1_UTF8STRING, nullptr}, | 
|  | // Low-surrogate value. | 
|  | {{0xed, 0xa0, 0x80}, V_ASN1_UTF8STRING, nullptr}, | 
|  | // High-surrogate value. | 
|  | {{0xed, 0xb0, 0x81}, V_ASN1_UTF8STRING, nullptr}, | 
|  | // Initial BOMs should be rejected from UCS-2 and UCS-4. | 
|  | {{0xfe, 0xff, 0, 88}, V_ASN1_BMPSTRING, nullptr}, | 
|  | {{0, 0, 0xfe, 0xff, 0, 0, 0, 88}, V_ASN1_UNIVERSALSTRING, nullptr}, | 
|  | // Otherwise, BOMs should pass through. | 
|  | {{0, 88, 0xfe, 0xff}, V_ASN1_BMPSTRING, "X\xef\xbb\xbf"}, | 
|  | {{0, 0, 0, 88, 0, 0, 0xfe, 0xff}, V_ASN1_UNIVERSALSTRING, | 
|  | "X\xef\xbb\xbf"}, | 
|  | // The maximum code-point should pass though. | 
|  | {{0, 16, 0xff, 0xfd}, V_ASN1_UNIVERSALSTRING, "\xf4\x8f\xbf\xbd"}, | 
|  | // Values outside the Unicode space should not. | 
|  | {{0, 17, 0, 0}, V_ASN1_UNIVERSALSTRING, nullptr}, | 
|  | // Non-characters should be rejected. | 
|  | {{0, 1, 0xff, 0xff}, V_ASN1_UNIVERSALSTRING, nullptr}, | 
|  | {{0, 1, 0xff, 0xfe}, V_ASN1_UNIVERSALSTRING, nullptr}, | 
|  | {{0, 0, 0xfd, 0xd5}, V_ASN1_UNIVERSALSTRING, nullptr}, | 
|  | // BMPString is UCS-2, not UTF-16, so surrogate pairs are invalid. | 
|  | {{0xd8, 0, 0xdc, 1}, V_ASN1_BMPSTRING, nullptr}, | 
|  | // INTEGERs are stored as strings, but cannot be converted to UTF-8. | 
|  | {{0x01}, V_ASN1_INTEGER, nullptr}, | 
|  | }; | 
|  |  | 
|  | for (const auto &test : kTests) { | 
|  | SCOPED_TRACE(Bytes(test.in)); | 
|  | SCOPED_TRACE(test.type); | 
|  | bssl::UniquePtr<ASN1_STRING> s(ASN1_STRING_type_new(test.type)); | 
|  | ASSERT_TRUE(s); | 
|  | ASSERT_TRUE(ASN1_STRING_set(s.get(), test.in.data(), test.in.size())); | 
|  |  | 
|  | uint8_t *utf8; | 
|  | const int utf8_len = ASN1_STRING_to_UTF8(&utf8, s.get()); | 
|  | EXPECT_EQ(utf8_len < 0, test.expected == nullptr); | 
|  | if (utf8_len >= 0) { | 
|  | if (test.expected != nullptr) { | 
|  | EXPECT_EQ(Bytes(test.expected), Bytes(utf8, utf8_len)); | 
|  | } | 
|  | OPENSSL_free(utf8); | 
|  | } else { | 
|  | ERR_clear_error(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static std::string ASN1StringToStdString(const ASN1_STRING *str) { | 
|  | return std::string(ASN1_STRING_get0_data(str), | 
|  | ASN1_STRING_get0_data(str) + ASN1_STRING_length(str)); | 
|  | } | 
|  |  | 
|  | static bool ASN1Time_check_posix(const ASN1_TIME *s, int64_t t) { | 
|  | struct tm stm, ttm; | 
|  | int day, sec; | 
|  |  | 
|  | switch (ASN1_STRING_type(s)) { | 
|  | case V_ASN1_GENERALIZEDTIME: | 
|  | if (!asn1_generalizedtime_to_tm(&stm, s)) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case V_ASN1_UTCTIME: | 
|  | if (!asn1_utctime_to_tm(&stm, s, /*allow_timezone_offset=*/1)) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | if (!OPENSSL_posix_to_tm(t, &ttm) || | 
|  | !OPENSSL_gmtime_diff(&day, &sec, &ttm, &stm)) { | 
|  | return false; | 
|  | } | 
|  | return day == 0 && sec ==0; | 
|  | } | 
|  |  | 
|  | static std::string PrintStringToBIO(const ASN1_STRING *str, | 
|  | int (*print_func)(BIO *, | 
|  | const ASN1_STRING *)) { | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); | 
|  | if (!bio ||  // | 
|  | !print_func(bio.get(), str) || | 
|  | !BIO_mem_contents(bio.get(), &data, &len)) { | 
|  | ADD_FAILURE() << "Could not print to BIO"; | 
|  | return ""; | 
|  | } | 
|  | return std::string(data, data + len); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, SetTime) { | 
|  | static const struct { | 
|  | int64_t time; | 
|  | const char *generalized; | 
|  | const char *utc; | 
|  | const char *printed; | 
|  | } kTests[] = { | 
|  | {-631152001, "19491231235959Z", nullptr, "Dec 31 23:59:59 1949 GMT"}, | 
|  | {-631152000, "19500101000000Z", "500101000000Z", | 
|  | "Jan  1 00:00:00 1950 GMT"}, | 
|  | {0, "19700101000000Z", "700101000000Z", "Jan  1 00:00:00 1970 GMT"}, | 
|  | {981173106, "20010203040506Z", "010203040506Z", | 
|  | "Feb  3 04:05:06 2001 GMT"}, | 
|  | {951804000, "20000229060000Z", "000229060000Z", | 
|  | "Feb 29 06:00:00 2000 GMT"}, | 
|  | // NASA says this is the correct time for posterity. | 
|  | {-16751025, "19690621025615Z", "690621025615Z", | 
|  | "Jun 21 02:56:15 1969 GMT"}, | 
|  | // -1 is sometimes used as an error value. Ensure we correctly handle it. | 
|  | {-1, "19691231235959Z", "691231235959Z", "Dec 31 23:59:59 1969 GMT"}, | 
|  | {2524607999, "20491231235959Z", "491231235959Z", | 
|  | "Dec 31 23:59:59 2049 GMT"}, | 
|  | {2524608000, "20500101000000Z", nullptr, "Jan  1 00:00:00 2050 GMT"}, | 
|  | // Test boundary conditions. | 
|  | {-62167219200, "00000101000000Z", nullptr, "Jan  1 00:00:00 0 GMT"}, | 
|  | {-62167219201, nullptr, nullptr, nullptr}, | 
|  | {253402300799, "99991231235959Z", nullptr, "Dec 31 23:59:59 9999 GMT"}, | 
|  | {253402300800, nullptr, nullptr, nullptr}, | 
|  | }; | 
|  | for (const auto &t : kTests) { | 
|  | int64_t tt; | 
|  | SCOPED_TRACE(t.time); | 
|  |  | 
|  | bssl::UniquePtr<ASN1_UTCTIME> utc(ASN1_UTCTIME_set(nullptr, t.time)); | 
|  | if (t.utc) { | 
|  | ASSERT_TRUE(utc); | 
|  | EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(utc.get())); | 
|  | EXPECT_EQ(t.utc, ASN1StringToStdString(utc.get())); | 
|  | EXPECT_TRUE(ASN1Time_check_posix(utc.get(), t.time)); | 
|  | EXPECT_EQ(ASN1_TIME_to_posix(utc.get(), &tt), 1); | 
|  | EXPECT_EQ(tt, t.time); | 
|  | EXPECT_EQ(PrintStringToBIO(utc.get(), &ASN1_UTCTIME_print), t.printed); | 
|  | EXPECT_EQ(PrintStringToBIO(utc.get(), &ASN1_TIME_print), t.printed); | 
|  | } else { | 
|  | EXPECT_FALSE(utc); | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<ASN1_GENERALIZEDTIME> generalized( | 
|  | ASN1_GENERALIZEDTIME_set(nullptr, t.time)); | 
|  | if (t.generalized) { | 
|  | ASSERT_TRUE(generalized); | 
|  | EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(generalized.get())); | 
|  | EXPECT_EQ(t.generalized, ASN1StringToStdString(generalized.get())); | 
|  | EXPECT_TRUE(ASN1Time_check_posix(generalized.get(), t.time)); | 
|  | EXPECT_EQ(ASN1_TIME_to_posix(generalized.get(), &tt), 1); | 
|  | EXPECT_EQ(tt, t.time); | 
|  | EXPECT_EQ( | 
|  | PrintStringToBIO(generalized.get(), &ASN1_GENERALIZEDTIME_print), | 
|  | t.printed); | 
|  | EXPECT_EQ(PrintStringToBIO(generalized.get(), &ASN1_TIME_print), | 
|  | t.printed); | 
|  | } else { | 
|  | EXPECT_FALSE(generalized); | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<ASN1_TIME> choice(ASN1_TIME_set_posix(nullptr, t.time)); | 
|  | if (t.generalized) { | 
|  | ASSERT_TRUE(choice); | 
|  | if (t.utc) { | 
|  | EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(choice.get())); | 
|  | EXPECT_EQ(t.utc, ASN1StringToStdString(choice.get())); | 
|  | } else { | 
|  | EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(choice.get())); | 
|  | EXPECT_EQ(t.generalized, ASN1StringToStdString(choice.get())); | 
|  | } | 
|  | EXPECT_TRUE(ASN1Time_check_posix(choice.get(), t.time)); | 
|  | EXPECT_EQ(ASN1_TIME_to_posix(choice.get(), &tt), 1); | 
|  | EXPECT_EQ(tt, t.time); | 
|  | } else { | 
|  | EXPECT_FALSE(choice); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, TimeSetString) { | 
|  | bssl::UniquePtr<ASN1_STRING> s(ASN1_STRING_new()); | 
|  | ASSERT_TRUE(s); | 
|  |  | 
|  | ASSERT_TRUE(ASN1_UTCTIME_set_string(s.get(), "700101000000Z")); | 
|  | EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); | 
|  | EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get())); | 
|  |  | 
|  | ASSERT_TRUE(ASN1_GENERALIZEDTIME_set_string(s.get(), "19700101000000Z")); | 
|  | EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get())); | 
|  | EXPECT_EQ("19700101000000Z", ASN1StringToStdString(s.get())); | 
|  |  | 
|  | // |ASN1_TIME_set_string| accepts either format. It relies on there being no | 
|  | // overlap between the two. | 
|  | ASSERT_TRUE(ASN1_TIME_set_string(s.get(), "700101000000Z")); | 
|  | EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); | 
|  | EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get())); | 
|  |  | 
|  | ASSERT_TRUE(ASN1_TIME_set_string(s.get(), "19700101000000Z")); | 
|  | EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get())); | 
|  | EXPECT_EQ("19700101000000Z", ASN1StringToStdString(s.get())); | 
|  |  | 
|  | // |ASN1_TIME_set_string_X509| behaves similarly except it additionally | 
|  | // converts GeneralizedTime to UTCTime if it fits. | 
|  | ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "700101000000Z")); | 
|  | EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); | 
|  | EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get())); | 
|  |  | 
|  | ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "19700101000000Z")); | 
|  | EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); | 
|  | EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get())); | 
|  |  | 
|  | ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "19500101000000Z")); | 
|  | EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); | 
|  | EXPECT_EQ("500101000000Z", ASN1StringToStdString(s.get())); | 
|  |  | 
|  | ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "19491231235959Z")); | 
|  | EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get())); | 
|  | EXPECT_EQ("19491231235959Z", ASN1StringToStdString(s.get())); | 
|  |  | 
|  | ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "20491231235959Z")); | 
|  | EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get())); | 
|  | EXPECT_EQ("491231235959Z", ASN1StringToStdString(s.get())); | 
|  |  | 
|  | ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "20500101000000Z")); | 
|  | EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get())); | 
|  | EXPECT_EQ("20500101000000Z", ASN1StringToStdString(s.get())); | 
|  |  | 
|  | // Invalid inputs are rejected. | 
|  | EXPECT_FALSE(ASN1_UTCTIME_set_string(s.get(), "nope")); | 
|  | EXPECT_FALSE(ASN1_UTCTIME_set_string(s.get(), "19700101000000Z")); | 
|  | EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(s.get(), "nope")); | 
|  | EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(s.get(), "700101000000Z")); | 
|  | EXPECT_FALSE(ASN1_TIME_set_string(s.get(), "nope")); | 
|  |  | 
|  | // If passed a null object, the functions validate the input without writing | 
|  | // to anything. | 
|  | EXPECT_TRUE(ASN1_UTCTIME_set_string(nullptr, "700101000000Z")); | 
|  | EXPECT_TRUE(ASN1_TIME_set_string(nullptr, "700101000000Z")); | 
|  | EXPECT_TRUE(ASN1_TIME_set_string_X509(nullptr, "700101000000Z")); | 
|  | EXPECT_TRUE(ASN1_GENERALIZEDTIME_set_string(nullptr, "19700101000000Z")); | 
|  | EXPECT_TRUE(ASN1_TIME_set_string(nullptr, "19700101000000Z")); | 
|  | EXPECT_TRUE(ASN1_TIME_set_string_X509(nullptr, "19700101000000Z")); | 
|  | // Test an input |ASN1_TIME_set_string_X509| won't convert to UTCTime. | 
|  | EXPECT_TRUE(ASN1_GENERALIZEDTIME_set_string(nullptr, "20500101000000Z")); | 
|  | EXPECT_TRUE(ASN1_TIME_set_string(nullptr, "20500101000000Z")); | 
|  | EXPECT_TRUE(ASN1_TIME_set_string_X509(nullptr, "20500101000000Z")); | 
|  | EXPECT_FALSE(ASN1_UTCTIME_set_string(nullptr, "nope")); | 
|  | EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(nullptr, "nope")); | 
|  | EXPECT_FALSE(ASN1_TIME_set_string(nullptr, "nope")); | 
|  | EXPECT_FALSE(ASN1_TIME_set_string_X509(nullptr, "nope")); | 
|  |  | 
|  | // Timezone offsets are not allowed by DER. | 
|  | EXPECT_FALSE(ASN1_UTCTIME_set_string(nullptr, "700101000000-0400")); | 
|  | EXPECT_FALSE(ASN1_TIME_set_string(nullptr, "700101000000-0400")); | 
|  | EXPECT_FALSE(ASN1_TIME_set_string_X509(nullptr, "700101000000-0400")); | 
|  | EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(nullptr, "19700101000000-0400")); | 
|  | EXPECT_FALSE(ASN1_TIME_set_string(nullptr, "19700101000000-0400")); | 
|  | EXPECT_FALSE(ASN1_TIME_set_string_X509(nullptr, "19700101000000-0400")); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, AdjTime) { | 
|  | struct tm tm1, tm2; | 
|  | int days, secs; | 
|  |  | 
|  | EXPECT_TRUE(OPENSSL_posix_to_tm(0, &tm1)); | 
|  | EXPECT_TRUE(OPENSSL_posix_to_tm(0, &tm2)); | 
|  | // Test values that are too large and should be rejected. | 
|  | EXPECT_FALSE(OPENSSL_gmtime_adj(&tm1, INT_MIN, INT_MIN)); | 
|  | EXPECT_FALSE(OPENSSL_gmtime_adj(&tm1, INT_MAX, INT_MAX)); | 
|  | // Basic functionality. | 
|  | EXPECT_TRUE(OPENSSL_gmtime_adj(&tm2, 1, 1)); | 
|  | EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm1, &tm2)); | 
|  | EXPECT_EQ(days, 1); | 
|  | EXPECT_EQ(secs, 1); | 
|  | EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm2, &tm1)); | 
|  | EXPECT_EQ(days, -1); | 
|  | EXPECT_EQ(secs, -1); | 
|  | // Test a value of days that is very large, but valid. | 
|  | EXPECT_TRUE(OPENSSL_gmtime_adj(&tm2, 2932800, 0)); | 
|  | EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm1, &tm2)); | 
|  | EXPECT_EQ(days, 2932801); | 
|  | EXPECT_EQ(secs, 1); | 
|  | EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm2, &tm1)); | 
|  | EXPECT_EQ(days, -2932801); | 
|  | EXPECT_EQ(secs, -1); | 
|  | } | 
|  | static std::vector<uint8_t> StringToVector(const std::string &str) { | 
|  | return std::vector<uint8_t>(str.begin(), str.end()); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, StringPrintEx) { | 
|  | const struct { | 
|  | int type; | 
|  | std::vector<uint8_t> data; | 
|  | int str_flags; | 
|  | unsigned long flags; | 
|  | std::string expected; | 
|  | } kTests[] = { | 
|  | // A string like "hello" is never escaped or quoted. | 
|  | // |ASN1_STRFLGS_ESC_QUOTE| only introduces quotes when needed. Note | 
|  | // OpenSSL interprets T61String as Latin-1. | 
|  | {V_ASN1_T61STRING, StringToVector("hello"), 0, 0, "hello"}, | 
|  | {V_ASN1_T61STRING, StringToVector("hello"), 0, | 
|  | ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB, | 
|  | "hello"}, | 
|  | {V_ASN1_T61STRING, StringToVector("hello"), 0, | 
|  | ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | | 
|  | ASN1_STRFLGS_ESC_QUOTE, | 
|  | "hello"}, | 
|  |  | 
|  | // By default, 8-bit characters are printed without escaping. | 
|  | {V_ASN1_T61STRING, | 
|  | {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, | 
|  | 0, | 
|  | 0, | 
|  | std::string(1, '\0') + "\n\x80\xff,+\"\\<>;"}, | 
|  |  | 
|  | // Flags control different escapes. Note that any escape flag will cause | 
|  | // blackslashes to be escaped. | 
|  | {V_ASN1_T61STRING, | 
|  | {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_2253, | 
|  | std::string(1, '\0') + "\n\x80\xff\\,\\+\\\"\\\\\\<\\>\\;"}, | 
|  | {V_ASN1_T61STRING, | 
|  | {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_CTRL, | 
|  | "\\00\\0A\x80\xff,+\"\\\\<>;"}, | 
|  | {V_ASN1_T61STRING, | 
|  | {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_MSB, | 
|  | std::string(1, '\0') + "\n\\80\\FF,+\"\\\\<>;"}, | 
|  | {V_ASN1_T61STRING, | 
|  | {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB, | 
|  | "\\00\\0A\\80\\FF\\,\\+\\\"\\\\\\<\\>\\;"}, | 
|  |  | 
|  | // When quoted, fewer characters need to be escaped in RFC 2253. | 
|  | {V_ASN1_T61STRING, | 
|  | {0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | | 
|  | ASN1_STRFLGS_ESC_QUOTE, | 
|  | "\"\\00\\0A\\80\\FF,+\\\"\\\\<>;\""}, | 
|  |  | 
|  | // If no characters benefit from quotes, no quotes are added. | 
|  | {V_ASN1_T61STRING, | 
|  | {0, '\n', 0x80, 0xff, '"', '\\'}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | | 
|  | ASN1_STRFLGS_ESC_QUOTE, | 
|  | "\\00\\0A\\80\\FF\\\"\\\\"}, | 
|  |  | 
|  | // RFC 2253 only escapes spaces at the start and end of a string. | 
|  | {V_ASN1_T61STRING, StringToVector("   "), 0, ASN1_STRFLGS_ESC_2253, | 
|  | "\\  \\ "}, | 
|  | {V_ASN1_T61STRING, StringToVector("   "), 0, | 
|  | ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_UTF8_CONVERT, "\\  \\ "}, | 
|  | {V_ASN1_T61STRING, StringToVector("   "), 0, | 
|  | ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_QUOTE, "\"   \""}, | 
|  |  | 
|  | // RFC 2253 only escapes # at the start of a string. | 
|  | {V_ASN1_T61STRING, StringToVector("###"), 0, ASN1_STRFLGS_ESC_2253, | 
|  | "\\###"}, | 
|  | {V_ASN1_T61STRING, StringToVector("###"), 0, | 
|  | ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_QUOTE, "\"###\""}, | 
|  |  | 
|  | // By default, strings are decoded and Unicode code points are | 
|  | // individually escaped. | 
|  | {V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"), | 
|  | 0, ASN1_STRFLGS_ESC_MSB, "a\\80\\U0100\\W00010000"}, | 
|  | {V_ASN1_BMPSTRING, | 
|  | {0x00, 'a', 0x00, 0x80, 0x01, 0x00}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_MSB, | 
|  | "a\\80\\U0100"}, | 
|  | {V_ASN1_UNIVERSALSTRING, | 
|  | {0x00, 0x00, 0x00, 'a',   // | 
|  | 0x00, 0x00, 0x00, 0x80,  // | 
|  | 0x00, 0x00, 0x01, 0x00,  // | 
|  | 0x00, 0x01, 0x00, 0x00}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_MSB, | 
|  | "a\\80\\U0100\\W00010000"}, | 
|  |  | 
|  | // |ASN1_STRFLGS_UTF8_CONVERT| normalizes everything to UTF-8 and then | 
|  | // escapes individual bytes. | 
|  | {V_ASN1_IA5STRING, StringToVector("a\x80"), 0, | 
|  | ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, "a\\C2\\80"}, | 
|  | {V_ASN1_T61STRING, StringToVector("a\x80"), 0, | 
|  | ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, "a\\C2\\80"}, | 
|  | {V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"), | 
|  | 0, ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, | 
|  | "a\\C2\\80\\C4\\80\\F0\\90\\80\\80"}, | 
|  | {V_ASN1_BMPSTRING, | 
|  | {0x00, 'a', 0x00, 0x80, 0x01, 0x00}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, | 
|  | "a\\C2\\80\\C4\\80"}, | 
|  | {V_ASN1_UNIVERSALSTRING, | 
|  | {0x00, 0x00, 0x00, 'a',   // | 
|  | 0x00, 0x00, 0x00, 0x80,  // | 
|  | 0x00, 0x00, 0x01, 0x00,  // | 
|  | 0x00, 0x01, 0x00, 0x00}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, | 
|  | "a\\C2\\80\\C4\\80\\F0\\90\\80\\80"}, | 
|  |  | 
|  | // The same as above, but without escaping the UTF-8 encoding. | 
|  | {V_ASN1_IA5STRING, StringToVector("a\x80"), 0, ASN1_STRFLGS_UTF8_CONVERT, | 
|  | "a\xc2\x80"}, | 
|  | {V_ASN1_T61STRING, StringToVector("a\x80"), 0, ASN1_STRFLGS_UTF8_CONVERT, | 
|  | "a\xc2\x80"}, | 
|  | {V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"), | 
|  | 0, ASN1_STRFLGS_UTF8_CONVERT, "a\xc2\x80\xc4\x80\xf0\x90\x80\x80"}, | 
|  | {V_ASN1_BMPSTRING, | 
|  | {0x00, 'a', 0x00, 0x80, 0x01, 0x00}, | 
|  | 0, | 
|  | ASN1_STRFLGS_UTF8_CONVERT, | 
|  | "a\xc2\x80\xc4\x80"}, | 
|  | {V_ASN1_UNIVERSALSTRING, | 
|  | {0x00, 0x00, 0x00, 'a',   // | 
|  | 0x00, 0x00, 0x00, 0x80,  // | 
|  | 0x00, 0x00, 0x01, 0x00,  // | 
|  | 0x00, 0x01, 0x00, 0x00}, | 
|  | 0, | 
|  | ASN1_STRFLGS_UTF8_CONVERT, | 
|  | "a\xc2\x80\xc4\x80\xf0\x90\x80\x80"}, | 
|  |  | 
|  | // Types that cannot be decoded are, by default, treated as a byte string. | 
|  | {V_ASN1_OCTET_STRING, {0xff}, 0, 0, "\xff"}, | 
|  | {-1, {0xff}, 0, 0, "\xff"}, | 
|  | {100, {0xff}, 0, 0, "\xff"}, | 
|  |  | 
|  | // |ASN1_STRFLGS_UTF8_CONVERT| still converts these bytes to UTF-8. | 
|  | // | 
|  | // TODO(davidben): This seems like a bug. Although it's unclear because | 
|  | // the non-RFC-2253 options aren't especially sound. Can we just remove | 
|  | // them? | 
|  | {V_ASN1_OCTET_STRING, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"}, | 
|  | {-1, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"}, | 
|  | {100, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"}, | 
|  |  | 
|  | // |ASN1_STRFLGS_IGNORE_TYPE| causes the string type to be ignored, so it | 
|  | // is always treated as a byte string, even if it is not a valid encoding. | 
|  | {V_ASN1_UTF8STRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"}, | 
|  | {V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"}, | 
|  | {V_ASN1_UNIVERSALSTRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"}, | 
|  |  | 
|  | // |ASN1_STRFLGS_SHOW_TYPE| prepends the type name. | 
|  | {V_ASN1_UTF8STRING, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "UTF8STRING:a"}, | 
|  | {-1, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "(unknown):a"}, | 
|  | {100, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "(unknown):a"}, | 
|  |  | 
|  | // |ASN1_STRFLGS_DUMP_ALL| and |ASN1_STRFLGS_DUMP_UNKNOWN| cause | 
|  | // non-string types to be printed in hex, though without the DER wrapper | 
|  | // by default. | 
|  | {V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0, | 
|  | ASN1_STRFLGS_DUMP_UNKNOWN, "\\U2603"}, | 
|  | {V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0, | 
|  | ASN1_STRFLGS_DUMP_ALL, "#E29883"}, | 
|  | {V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0, | 
|  | ASN1_STRFLGS_DUMP_UNKNOWN, "#E29883"}, | 
|  | {V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0, | 
|  | ASN1_STRFLGS_DUMP_ALL, "#E29883"}, | 
|  |  | 
|  | // |ASN1_STRFLGS_DUMP_DER| includes the entire element. | 
|  | {V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0, | 
|  | ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, "#0C03E29883"}, | 
|  | {V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0, | 
|  | ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, "#0403E29883"}, | 
|  | {V_ASN1_BIT_STRING, | 
|  | {0x80}, | 
|  | ASN1_STRING_FLAG_BITS_LEFT | 4, | 
|  | ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, | 
|  | "#03020480"}, | 
|  | // INTEGER { 1 } | 
|  | {V_ASN1_INTEGER, | 
|  | {0x01}, | 
|  | 0, | 
|  | ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, | 
|  | "#020101"}, | 
|  | // INTEGER { -1 } | 
|  | {V_ASN1_NEG_INTEGER, | 
|  | {0x01}, | 
|  | 0, | 
|  | ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, | 
|  | "#0201FF"}, | 
|  | // ENUMERATED { 1 } | 
|  | {V_ASN1_ENUMERATED, | 
|  | {0x01}, | 
|  | 0, | 
|  | ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, | 
|  | "#0A0101"}, | 
|  | // ENUMERATED { -1 } | 
|  | {V_ASN1_NEG_ENUMERATED, | 
|  | {0x01}, | 
|  | 0, | 
|  | ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, | 
|  | "#0A01FF"}, | 
|  | }; | 
|  | for (const auto &t : kTests) { | 
|  | SCOPED_TRACE(t.type); | 
|  | SCOPED_TRACE(Bytes(t.data)); | 
|  | SCOPED_TRACE(t.str_flags); | 
|  | SCOPED_TRACE(t.flags); | 
|  |  | 
|  | bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(t.type)); | 
|  | ASSERT_TRUE(str); | 
|  | ASSERT_TRUE(ASN1_STRING_set(str.get(), t.data.data(), t.data.size())); | 
|  | str->flags = t.str_flags; | 
|  |  | 
|  | // If the |BIO| is null, it should measure the size. | 
|  | int len = ASN1_STRING_print_ex(nullptr, str.get(), t.flags); | 
|  | EXPECT_EQ(len, static_cast<int>(t.expected.size())); | 
|  |  | 
|  | // Measuring the size should also work for the |FILE| version | 
|  | len = ASN1_STRING_print_ex_fp(nullptr, str.get(), t.flags); | 
|  | EXPECT_EQ(len, static_cast<int>(t.expected.size())); | 
|  |  | 
|  | // Actually print the string. | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(bio); | 
|  | len = ASN1_STRING_print_ex(bio.get(), str.get(), t.flags); | 
|  | EXPECT_EQ(len, static_cast<int>(t.expected.size())); | 
|  |  | 
|  | const uint8_t *bio_contents; | 
|  | size_t bio_len; | 
|  | ASSERT_TRUE(BIO_mem_contents(bio.get(), &bio_contents, &bio_len)); | 
|  | EXPECT_EQ(t.expected, std::string(bio_contents, bio_contents + bio_len)); | 
|  | } | 
|  |  | 
|  | const struct { | 
|  | int type; | 
|  | std::vector<uint8_t> data; | 
|  | int str_flags; | 
|  | unsigned long flags; | 
|  | } kUnprintableTests[] = { | 
|  | // It is an error if the string cannot be decoded. | 
|  | {V_ASN1_UTF8STRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, | 
|  | {V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, | 
|  | {V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, | 
|  | {V_ASN1_UNIVERSALSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB}, | 
|  | // Invalid codepoints are errors. | 
|  | {V_ASN1_UTF8STRING, {0xed, 0xa0, 0x80}, 0, ASN1_STRFLGS_ESC_MSB}, | 
|  | {V_ASN1_BMPSTRING, {0xd8, 0x00}, 0, ASN1_STRFLGS_ESC_MSB}, | 
|  | {V_ASN1_UNIVERSALSTRING, | 
|  | {0x00, 0x00, 0xd8, 0x00}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_MSB}, | 
|  | // Even when re-encoding UTF-8 back into UTF-8, we should check validity. | 
|  | {V_ASN1_UTF8STRING, | 
|  | {0xff}, | 
|  | 0, | 
|  | ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT}, | 
|  | }; | 
|  | for (const auto &t : kUnprintableTests) { | 
|  | SCOPED_TRACE(t.type); | 
|  | SCOPED_TRACE(Bytes(t.data)); | 
|  | SCOPED_TRACE(t.str_flags); | 
|  | SCOPED_TRACE(t.flags); | 
|  |  | 
|  | bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(t.type)); | 
|  | ASSERT_TRUE(str); | 
|  | ASSERT_TRUE(ASN1_STRING_set(str.get(), t.data.data(), t.data.size())); | 
|  | str->flags = t.str_flags; | 
|  |  | 
|  | // If the |BIO| is null, it should measure the size. | 
|  | int len = ASN1_STRING_print_ex(nullptr, str.get(), t.flags); | 
|  | EXPECT_EQ(len, -1); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // Measuring the size should also work for the |FILE| version | 
|  | len = ASN1_STRING_print_ex_fp(nullptr, str.get(), t.flags); | 
|  | EXPECT_EQ(len, -1); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // Actually print the string. | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(bio); | 
|  | len = ASN1_STRING_print_ex(bio.get(), str.get(), t.flags); | 
|  | EXPECT_EQ(len, -1); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, MBString) { | 
|  | const unsigned long kAll = B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING | | 
|  | B_ASN1_T61STRING | B_ASN1_BMPSTRING | | 
|  | B_ASN1_UNIVERSALSTRING | B_ASN1_UTF8STRING; | 
|  |  | 
|  | const struct { | 
|  | int format; | 
|  | std::vector<uint8_t> in; | 
|  | unsigned long mask; | 
|  | int expected_type; | 
|  | std::vector<uint8_t> expected_data; | 
|  | int num_codepoints; | 
|  | } kTests[] = { | 
|  | // Given a choice of formats, we pick the smallest that fits. | 
|  | {MBSTRING_UTF8, {}, kAll, V_ASN1_PRINTABLESTRING, {}, 0}, | 
|  | {MBSTRING_UTF8, {'a'}, kAll, V_ASN1_PRINTABLESTRING, {'a'}, 1}, | 
|  | {MBSTRING_UTF8, | 
|  | {'a', 'A', '0', '\'', '(', ')', '+', ',', '-', '.', '/', ':', '=', '?'}, | 
|  | kAll, | 
|  | V_ASN1_PRINTABLESTRING, | 
|  | {'a', 'A', '0', '\'', '(', ')', '+', ',', '-', '.', '/', ':', '=', '?'}, | 
|  | 14}, | 
|  | {MBSTRING_UTF8, {'*'}, kAll, V_ASN1_IA5STRING, {'*'}, 1}, | 
|  | {MBSTRING_UTF8, {'\n'}, kAll, V_ASN1_IA5STRING, {'\n'}, 1}, | 
|  | {MBSTRING_UTF8, | 
|  | {0xc2, 0x80 /* U+0080 */}, | 
|  | kAll, | 
|  | V_ASN1_T61STRING, | 
|  | {0x80}, | 
|  | 1}, | 
|  | {MBSTRING_UTF8, | 
|  | {0xc4, 0x80 /* U+0100 */}, | 
|  | kAll, | 
|  | V_ASN1_BMPSTRING, | 
|  | {0x01, 0x00}, | 
|  | 1}, | 
|  | {MBSTRING_UTF8, | 
|  | {0xf0, 0x90, 0x80, 0x80 /* U+10000 */}, | 
|  | kAll, | 
|  | V_ASN1_UNIVERSALSTRING, | 
|  | {0x00, 0x01, 0x00, 0x00}, | 
|  | 1}, | 
|  | {MBSTRING_UTF8, | 
|  | {0xf0, 0x90, 0x80, 0x80 /* U+10000 */}, | 
|  | kAll & ~B_ASN1_UNIVERSALSTRING, | 
|  | V_ASN1_UTF8STRING, | 
|  | {0xf0, 0x90, 0x80, 0x80}, | 
|  | 1}, | 
|  |  | 
|  | // NUL is not printable. It should also not terminate iteration. | 
|  | {MBSTRING_UTF8, {0}, kAll, V_ASN1_IA5STRING, {0}, 1}, | 
|  | {MBSTRING_UTF8, {0, 'a'}, kAll, V_ASN1_IA5STRING, {0, 'a'}, 2}, | 
|  |  | 
|  | // When a particular format is specified, we use it. | 
|  | {MBSTRING_UTF8, | 
|  | {'a'}, | 
|  | B_ASN1_PRINTABLESTRING, | 
|  | V_ASN1_PRINTABLESTRING, | 
|  | {'a'}, | 
|  | 1}, | 
|  | {MBSTRING_UTF8, {'a'}, B_ASN1_IA5STRING, V_ASN1_IA5STRING, {'a'}, 1}, | 
|  | {MBSTRING_UTF8, {'a'}, B_ASN1_T61STRING, V_ASN1_T61STRING, {'a'}, 1}, | 
|  | {MBSTRING_UTF8, {'a'}, B_ASN1_UTF8STRING, V_ASN1_UTF8STRING, {'a'}, 1}, | 
|  | {MBSTRING_UTF8, | 
|  | {'a'}, | 
|  | B_ASN1_BMPSTRING, | 
|  | V_ASN1_BMPSTRING, | 
|  | {0x00, 'a'}, | 
|  | 1}, | 
|  | {MBSTRING_UTF8, | 
|  | {'a'}, | 
|  | B_ASN1_UNIVERSALSTRING, | 
|  | V_ASN1_UNIVERSALSTRING, | 
|  | {0x00, 0x00, 0x00, 'a'}, | 
|  | 1}, | 
|  |  | 
|  | // A long string with characters of many widths, to test sizes are | 
|  | // measured in code points. | 
|  | {MBSTRING_UTF8, | 
|  | { | 
|  | 'a',                     // | 
|  | 0xc2, 0x80,              // U+0080 | 
|  | 0xc4, 0x80,              // U+0100 | 
|  | 0xf0, 0x90, 0x80, 0x80,  // U+10000 | 
|  | }, | 
|  | B_ASN1_UNIVERSALSTRING, | 
|  | V_ASN1_UNIVERSALSTRING, | 
|  | { | 
|  | 0x00, 0x00, 0x00, 'a',   // | 
|  | 0x00, 0x00, 0x00, 0x80,  // | 
|  | 0x00, 0x00, 0x01, 0x00,  // | 
|  | 0x00, 0x01, 0x00, 0x00,  // | 
|  | }, | 
|  | 4}, | 
|  | }; | 
|  | for (const auto &t : kTests) { | 
|  | SCOPED_TRACE(t.format); | 
|  | SCOPED_TRACE(Bytes(t.in)); | 
|  | SCOPED_TRACE(t.mask); | 
|  |  | 
|  | // Passing in nullptr should do a dry run. | 
|  | EXPECT_EQ(t.expected_type, | 
|  | ASN1_mbstring_copy(nullptr, t.in.data(), t.in.size(), t.format, | 
|  | t.mask)); | 
|  |  | 
|  | // Test allocating a new object. | 
|  | ASN1_STRING *str = nullptr; | 
|  | EXPECT_EQ( | 
|  | t.expected_type, | 
|  | ASN1_mbstring_copy(&str, t.in.data(), t.in.size(), t.format, t.mask)); | 
|  | ASSERT_TRUE(str); | 
|  | EXPECT_EQ(t.expected_type, ASN1_STRING_type(str)); | 
|  | EXPECT_EQ(Bytes(t.expected_data), | 
|  | Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str))); | 
|  |  | 
|  | // Test writing into an existing object. | 
|  | ASN1_STRING_free(str); | 
|  | str = ASN1_STRING_new(); | 
|  | ASSERT_TRUE(str); | 
|  | ASN1_STRING *old_str = str; | 
|  | EXPECT_EQ( | 
|  | t.expected_type, | 
|  | ASN1_mbstring_copy(&str, t.in.data(), t.in.size(), t.format, t.mask)); | 
|  | ASSERT_EQ(old_str, str); | 
|  | EXPECT_EQ(t.expected_type, ASN1_STRING_type(str)); | 
|  | EXPECT_EQ(Bytes(t.expected_data), | 
|  | Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str))); | 
|  | ASN1_STRING_free(str); | 
|  | str = nullptr; | 
|  |  | 
|  | // minsize and maxsize should be enforced, even in a dry run. | 
|  | EXPECT_EQ(t.expected_type, | 
|  | ASN1_mbstring_ncopy(nullptr, t.in.data(), t.in.size(), t.format, | 
|  | t.mask, /*minsize=*/t.num_codepoints, | 
|  | /*maxsize=*/t.num_codepoints)); | 
|  |  | 
|  | EXPECT_EQ(t.expected_type, | 
|  | ASN1_mbstring_ncopy(&str, t.in.data(), t.in.size(), t.format, | 
|  | t.mask, /*minsize=*/t.num_codepoints, | 
|  | /*maxsize=*/t.num_codepoints)); | 
|  | ASSERT_TRUE(str); | 
|  | EXPECT_EQ(t.expected_type, ASN1_STRING_type(str)); | 
|  | EXPECT_EQ(Bytes(t.expected_data), | 
|  | Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str))); | 
|  | ASN1_STRING_free(str); | 
|  | str = nullptr; | 
|  |  | 
|  | EXPECT_EQ(-1, ASN1_mbstring_ncopy( | 
|  | nullptr, t.in.data(), t.in.size(), t.format, t.mask, | 
|  | /*minsize=*/t.num_codepoints + 1, /*maxsize=*/0)); | 
|  | ERR_clear_error(); | 
|  | EXPECT_EQ(-1, ASN1_mbstring_ncopy( | 
|  | &str, t.in.data(), t.in.size(), t.format, t.mask, | 
|  | /*minsize=*/t.num_codepoints + 1, /*maxsize=*/0)); | 
|  | EXPECT_FALSE(str); | 
|  | ERR_clear_error(); | 
|  | if (t.num_codepoints > 1) { | 
|  | EXPECT_EQ(-1, ASN1_mbstring_ncopy( | 
|  | nullptr, t.in.data(), t.in.size(), t.format, t.mask, | 
|  | /*minsize=*/0, /*maxsize=*/t.num_codepoints - 1)); | 
|  | ERR_clear_error(); | 
|  | EXPECT_EQ(-1, ASN1_mbstring_ncopy( | 
|  | &str, t.in.data(), t.in.size(), t.format, t.mask, | 
|  | /*minsize=*/0, /*maxsize=*/t.num_codepoints - 1)); | 
|  | EXPECT_FALSE(str); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | } | 
|  |  | 
|  | const struct { | 
|  | int format; | 
|  | std::vector<uint8_t> in; | 
|  | unsigned long mask; | 
|  | } kInvalidTests[] = { | 
|  | // Invalid encodings are rejected. | 
|  | {MBSTRING_UTF8, {0xff}, B_ASN1_UTF8STRING}, | 
|  | {MBSTRING_BMP, {0xff}, B_ASN1_UTF8STRING}, | 
|  | {MBSTRING_UNIV, {0xff}, B_ASN1_UTF8STRING}, | 
|  |  | 
|  | // Lone surrogates are not code points. | 
|  | {MBSTRING_UTF8, {0xed, 0xa0, 0x80}, B_ASN1_UTF8STRING}, | 
|  | {MBSTRING_BMP, {0xd8, 0x00}, B_ASN1_UTF8STRING}, | 
|  | {MBSTRING_UNIV, {0x00, 0x00, 0xd8, 0x00}, B_ASN1_UTF8STRING}, | 
|  |  | 
|  | // The input does not fit in the allowed output types. | 
|  | {MBSTRING_UTF8, {'\n'}, B_ASN1_PRINTABLESTRING}, | 
|  | {MBSTRING_UTF8, | 
|  | {0xc2, 0x80 /* U+0080 */}, | 
|  | B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING}, | 
|  | {MBSTRING_UTF8, | 
|  | {0xc4, 0x80 /* U+0100 */}, | 
|  | B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING | B_ASN1_T61STRING}, | 
|  | {MBSTRING_UTF8, | 
|  | {0xf0, 0x90, 0x80, 0x80 /* U+10000 */}, | 
|  | B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING | B_ASN1_T61STRING | | 
|  | B_ASN1_BMPSTRING}, | 
|  |  | 
|  | // Unrecognized bits are ignored. | 
|  | {MBSTRING_UTF8, {'\n'}, B_ASN1_PRINTABLESTRING | B_ASN1_SEQUENCE}, | 
|  | }; | 
|  | for (const auto &t : kInvalidTests) { | 
|  | SCOPED_TRACE(t.format); | 
|  | SCOPED_TRACE(Bytes(t.in)); | 
|  | SCOPED_TRACE(t.mask); | 
|  |  | 
|  | EXPECT_EQ(-1, ASN1_mbstring_copy(nullptr, t.in.data(), t.in.size(), | 
|  | t.format, t.mask)); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | ASN1_STRING *str = nullptr; | 
|  | EXPECT_EQ(-1, ASN1_mbstring_copy(&str, t.in.data(), t.in.size(), | 
|  | t.format, t.mask)); | 
|  | ERR_clear_error(); | 
|  | EXPECT_EQ(nullptr, str); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, StringByNID) { | 
|  | // |ASN1_mbstring_*| tests above test most of the interactions with |inform|, | 
|  | // so all tests below use UTF-8. | 
|  | const struct { | 
|  | int nid; | 
|  | std::string in; | 
|  | int expected_type; | 
|  | std::string expected; | 
|  | } kTests[] = { | 
|  | // Although DirectoryString and PKCS9String allow many types of strings, | 
|  | // we prefer UTF8String. | 
|  | {NID_commonName, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_commonName, "\xe2\x98\x83", V_ASN1_UTF8STRING, "\xe2\x98\x83"}, | 
|  | {NID_localityName, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_stateOrProvinceName, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_organizationName, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_organizationalUnitName, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_pkcs9_unstructuredName, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_pkcs9_challengePassword, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_pkcs9_unstructuredAddress, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_surname, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_initials, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | {NID_name, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  |  | 
|  | // Some attribute types use a particular string type. | 
|  | {NID_countryName, "US", V_ASN1_PRINTABLESTRING, "US"}, | 
|  | {NID_pkcs9_emailAddress, "example@example.com", V_ASN1_IA5STRING, | 
|  | "example@example.com"}, | 
|  | {NID_serialNumber, "1234", V_ASN1_PRINTABLESTRING, "1234"}, | 
|  | {NID_friendlyName, "abc", V_ASN1_BMPSTRING, | 
|  | std::string({'\0', 'a', '\0', 'b', '\0', 'c'})}, | 
|  | {NID_dnQualifier, "US", V_ASN1_PRINTABLESTRING, "US"}, | 
|  | {NID_domainComponent, "com", V_ASN1_IA5STRING, "com"}, | 
|  | {NID_ms_csp_name, "abc", V_ASN1_BMPSTRING, | 
|  | std::string({'\0', 'a', '\0', 'b', '\0', 'c'})}, | 
|  |  | 
|  | // Unknown NIDs default to UTF8String. | 
|  | {NID_rsaEncryption, "abc", V_ASN1_UTF8STRING, "abc"}, | 
|  | }; | 
|  | for (const auto &t : kTests) { | 
|  | SCOPED_TRACE(t.nid); | 
|  | SCOPED_TRACE(t.in); | 
|  |  | 
|  | // Test allocating a new object. | 
|  | bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( | 
|  | nullptr, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(), | 
|  | MBSTRING_UTF8, t.nid)); | 
|  | ASSERT_TRUE(str); | 
|  | EXPECT_EQ(t.expected_type, ASN1_STRING_type(str.get())); | 
|  | EXPECT_EQ(Bytes(t.expected), Bytes(ASN1_STRING_get0_data(str.get()), | 
|  | ASN1_STRING_length(str.get()))); | 
|  |  | 
|  | // Test writing into an existing object. | 
|  | str.reset(ASN1_STRING_new()); | 
|  | ASSERT_TRUE(str); | 
|  | ASN1_STRING *old_str = str.get(); | 
|  | ASSERT_TRUE(ASN1_STRING_set_by_NID( | 
|  | &old_str, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(), | 
|  | MBSTRING_UTF8, t.nid)); | 
|  | ASSERT_EQ(old_str, str.get()); | 
|  | EXPECT_EQ(t.expected_type, ASN1_STRING_type(str.get())); | 
|  | EXPECT_EQ(Bytes(t.expected), Bytes(ASN1_STRING_get0_data(str.get()), | 
|  | ASN1_STRING_length(str.get()))); | 
|  | } | 
|  |  | 
|  | const struct { | 
|  | int nid; | 
|  | std::string in; | 
|  | } kInvalidTests[] = { | 
|  | // DirectoryString forbids empty inputs. | 
|  | {NID_commonName, ""}, | 
|  | {NID_localityName, ""}, | 
|  | {NID_stateOrProvinceName, ""}, | 
|  | {NID_organizationName, ""}, | 
|  | {NID_organizationalUnitName, ""}, | 
|  | {NID_pkcs9_unstructuredName, ""}, | 
|  | {NID_pkcs9_challengePassword, ""}, | 
|  | {NID_pkcs9_unstructuredAddress, ""}, | 
|  | {NID_givenName, ""}, | 
|  | {NID_givenName, ""}, | 
|  | {NID_givenName, ""}, | 
|  | {NID_surname, ""}, | 
|  | {NID_initials, ""}, | 
|  | {NID_name, ""}, | 
|  |  | 
|  | // Test upper bounds from RFC 5280. | 
|  | {NID_name, std::string(32769, 'a')}, | 
|  | {NID_commonName, std::string(65, 'a')}, | 
|  | {NID_localityName, std::string(129, 'a')}, | 
|  | {NID_stateOrProvinceName, std::string(129, 'a')}, | 
|  | {NID_organizationName, std::string(65, 'a')}, | 
|  | {NID_organizationalUnitName, std::string(65, 'a')}, | 
|  | {NID_pkcs9_emailAddress, std::string(256, 'a')}, | 
|  | {NID_serialNumber, std::string(65, 'a')}, | 
|  |  | 
|  | // X520countryName must be exactly two characters. | 
|  | {NID_countryName, "A"}, | 
|  | {NID_countryName, "AAA"}, | 
|  |  | 
|  | // Some string types cannot represent all codepoints. | 
|  | {NID_countryName, "\xe2\x98\x83"}, | 
|  | {NID_pkcs9_emailAddress, "\xe2\x98\x83"}, | 
|  | {NID_serialNumber, "\xe2\x98\x83"}, | 
|  | {NID_dnQualifier, "\xe2\x98\x83"}, | 
|  | {NID_domainComponent, "\xe2\x98\x83"}, | 
|  | }; | 
|  | for (const auto &t : kInvalidTests) { | 
|  | SCOPED_TRACE(t.nid); | 
|  | SCOPED_TRACE(t.in); | 
|  | bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( | 
|  | nullptr, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(), | 
|  | MBSTRING_UTF8, t.nid)); | 
|  | EXPECT_FALSE(str); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, StringByCustomNID) { | 
|  | // This test affects library-global state. We rely on nothing else in the test | 
|  | // suite using these OIDs. | 
|  | int nid1 = OBJ_create("1.2.840.113554.4.1.72585.1000", "custom OID 1000", | 
|  | "custom OID 1000"); | 
|  | ASSERT_NE(NID_undef, nid1); | 
|  | int nid2 = OBJ_create("1.2.840.113554.4.1.72585.1001", "custom OID 1001", | 
|  | "custom OID 1001"); | 
|  | ASSERT_NE(NID_undef, nid2); | 
|  |  | 
|  | // Values registered in the string table should be picked up. | 
|  | ASSERT_TRUE(ASN1_STRING_TABLE_add(nid1, 5, 10, V_ASN1_PRINTABLESTRING, | 
|  | STABLE_NO_MASK)); | 
|  | bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( | 
|  | nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8, | 
|  | nid1)); | 
|  | ASSERT_TRUE(str); | 
|  | EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get())); | 
|  | EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), | 
|  | ASN1_STRING_length(str.get()))); | 
|  |  | 
|  | // Minimum and maximum lengths are enforced. | 
|  | str.reset(ASN1_STRING_set_by_NID( | 
|  | nullptr, reinterpret_cast<const uint8_t *>("1234"), 4, MBSTRING_UTF8, | 
|  | nid1)); | 
|  | EXPECT_FALSE(str); | 
|  | ERR_clear_error(); | 
|  | str.reset(ASN1_STRING_set_by_NID( | 
|  | nullptr, reinterpret_cast<const uint8_t *>("12345678901"), 11, | 
|  | MBSTRING_UTF8, nid1)); | 
|  | EXPECT_FALSE(str); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // Without |STABLE_NO_MASK|, we always pick UTF8String. -1 means there is no | 
|  | // length limit. | 
|  | ASSERT_TRUE(ASN1_STRING_TABLE_add(nid2, -1, -1, DIRSTRING_TYPE, 0)); | 
|  | str.reset(ASN1_STRING_set_by_NID(nullptr, | 
|  | reinterpret_cast<const uint8_t *>("12345"), | 
|  | 5, MBSTRING_UTF8, nid2)); | 
|  | ASSERT_TRUE(str); | 
|  | EXPECT_EQ(V_ASN1_UTF8STRING, ASN1_STRING_type(str.get())); | 
|  | EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), | 
|  | ASN1_STRING_length(str.get()))); | 
|  |  | 
|  | // Overriding existing entries, built-in or custom, is an error. | 
|  | EXPECT_FALSE( | 
|  | ASN1_STRING_TABLE_add(NID_countryName, -1, -1, DIRSTRING_TYPE, 0)); | 
|  | EXPECT_FALSE(ASN1_STRING_TABLE_add(nid1, -1, -1, DIRSTRING_TYPE, 0)); | 
|  | } | 
|  |  | 
|  | #if defined(OPENSSL_THREADS) | 
|  | TEST(ASN1Test, StringByCustomNIDThreads) { | 
|  | // This test affects library-global state. We rely on nothing else in the test | 
|  | // suite using these OIDs. | 
|  | int nid1 = OBJ_create("1.2.840.113554.4.1.72585.1002", "custom OID 1002", | 
|  | "custom OID 1002"); | 
|  | ASSERT_NE(NID_undef, nid1); | 
|  | int nid2 = OBJ_create("1.2.840.113554.4.1.72585.1003", "custom OID 1003", | 
|  | "custom OID 1003"); | 
|  | ASSERT_NE(NID_undef, nid2); | 
|  |  | 
|  | std::vector<std::thread> threads; | 
|  | threads.emplace_back([&] { | 
|  | ASSERT_TRUE(ASN1_STRING_TABLE_add(nid1, 5, 10, V_ASN1_PRINTABLESTRING, | 
|  | STABLE_NO_MASK)); | 
|  | bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( | 
|  | nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8, | 
|  | nid1)); | 
|  | ASSERT_TRUE(str); | 
|  | EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get())); | 
|  | EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), | 
|  | ASN1_STRING_length(str.get()))); | 
|  | }); | 
|  | threads.emplace_back([&] { | 
|  | ASSERT_TRUE(ASN1_STRING_TABLE_add(nid2, 5, 10, V_ASN1_PRINTABLESTRING, | 
|  | STABLE_NO_MASK)); | 
|  | bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID( | 
|  | nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8, | 
|  | nid2)); | 
|  | ASSERT_TRUE(str); | 
|  | EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get())); | 
|  | EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()), | 
|  | ASN1_STRING_length(str.get()))); | 
|  | }); | 
|  | for (auto &thread : threads) { | 
|  | thread.join(); | 
|  | } | 
|  | } | 
|  | #endif  // OPENSSL_THREADS | 
|  |  | 
|  | // Test that multi-string types correctly encode negative ENUMERATED. | 
|  | // Multi-string types cannot contain INTEGER, so we only test ENUMERATED. | 
|  | TEST(ASN1Test, NegativeEnumeratedMultistring) { | 
|  | static const uint8_t kMinusOne[] = {0x0a, 0x01, 0xff};  // ENUMERATED { -1 } | 
|  | // |ASN1_PRINTABLE| is a multi-string type that allows ENUMERATED. | 
|  | const uint8_t *p = kMinusOne; | 
|  | bssl::UniquePtr<ASN1_STRING> str( | 
|  | d2i_ASN1_PRINTABLE(nullptr, &p, sizeof(kMinusOne))); | 
|  | ASSERT_TRUE(str); | 
|  | TestSerialize(str.get(), i2d_ASN1_PRINTABLE, kMinusOne); | 
|  | } | 
|  |  | 
|  | // Encoding a CHOICE type with an invalid selector should fail. | 
|  | TEST(ASN1Test, InvalidChoice) { | 
|  | bssl::UniquePtr<GENERAL_NAME> name(GENERAL_NAME_new()); | 
|  | ASSERT_TRUE(name); | 
|  | // CHOICE types are initialized with an invalid selector. | 
|  | EXPECT_EQ(-1, name->type); | 
|  | // |name| should fail to encode. | 
|  | EXPECT_EQ(-1, i2d_GENERAL_NAME(name.get(), nullptr)); | 
|  |  | 
|  | // The error should be propagated through types containing |name|. | 
|  | bssl::UniquePtr<GENERAL_NAMES> names(GENERAL_NAMES_new()); | 
|  | ASSERT_TRUE(names); | 
|  | EXPECT_TRUE(bssl::PushToStack(names.get(), std::move(name))); | 
|  | EXPECT_EQ(-1, i2d_GENERAL_NAMES(names.get(), nullptr)); | 
|  | } | 
|  |  | 
|  | // Encoding NID-only |ASN1_OBJECT|s should fail. | 
|  | TEST(ASN1Test, InvalidObject) { | 
|  | EXPECT_EQ(-1, i2d_ASN1_OBJECT(OBJ_nid2obj(NID_kx_ecdhe), nullptr)); | 
|  |  | 
|  | bssl::UniquePtr<X509_ALGOR> alg(X509_ALGOR_new()); | 
|  | ASSERT_TRUE(alg); | 
|  | ASSERT_TRUE(X509_ALGOR_set0(alg.get(), OBJ_nid2obj(NID_kx_ecdhe), | 
|  | V_ASN1_UNDEF, nullptr)); | 
|  | EXPECT_EQ(-1, i2d_X509_ALGOR(alg.get(), nullptr)); | 
|  | } | 
|  |  | 
|  | // Encoding invalid |ASN1_TYPE|s should fail. |ASN1_TYPE|s are | 
|  | // default-initialized to an invalid type. | 
|  | TEST(ASN1Test, InvalidASN1Type) { | 
|  | bssl::UniquePtr<ASN1_TYPE> obj(ASN1_TYPE_new()); | 
|  | ASSERT_TRUE(obj); | 
|  | EXPECT_EQ(-1, obj->type); | 
|  | EXPECT_EQ(-1, i2d_ASN1_TYPE(obj.get(), nullptr)); | 
|  | } | 
|  |  | 
|  | // Encoding invalid MSTRING types should fail. An MSTRING is a CHOICE of | 
|  | // string-like types. They are initialized to an invalid type. | 
|  | TEST(ASN1Test, InvalidMSTRING) { | 
|  | bssl::UniquePtr<ASN1_STRING> obj(ASN1_TIME_new()); | 
|  | ASSERT_TRUE(obj); | 
|  | EXPECT_EQ(-1, obj->type); | 
|  | EXPECT_EQ(-1, i2d_ASN1_TIME(obj.get(), nullptr)); | 
|  |  | 
|  | obj.reset(DIRECTORYSTRING_new()); | 
|  | ASSERT_TRUE(obj); | 
|  | EXPECT_EQ(-1, obj->type); | 
|  | EXPECT_EQ(-1, i2d_DIRECTORYSTRING(obj.get(), nullptr)); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, StringTableSorted) { | 
|  | const ASN1_STRING_TABLE *table; | 
|  | size_t table_len; | 
|  | asn1_get_string_table_for_testing(&table, &table_len); | 
|  | for (size_t i = 1; i < table_len; i++) { | 
|  | EXPECT_LT(table[i-1].nid, table[i].nid); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, Null) { | 
|  | // An |ASN1_NULL| is an opaque, non-null pointer. It is an arbitrary signaling | 
|  | // value and does not need to be freed. (If the pointer is null, this is an | 
|  | // omitted OPTIONAL NULL.) | 
|  | EXPECT_NE(nullptr, ASN1_NULL_new()); | 
|  |  | 
|  | // It is safe to free either the non-null pointer or the null one. | 
|  | ASN1_NULL_free(ASN1_NULL_new()); | 
|  | ASN1_NULL_free(nullptr); | 
|  |  | 
|  | // A NULL may be decoded. | 
|  | static const uint8_t kNull[] = {0x05, 0x00}; | 
|  | const uint8_t *ptr = kNull; | 
|  | EXPECT_NE(nullptr, d2i_ASN1_NULL(nullptr, &ptr, sizeof(kNull))); | 
|  | EXPECT_EQ(ptr, kNull + sizeof(kNull)); | 
|  |  | 
|  | // It may also be re-encoded. | 
|  | uint8_t *enc = nullptr; | 
|  | int enc_len = i2d_ASN1_NULL(ASN1_NULL_new(), &enc); | 
|  | ASSERT_GE(enc_len, 0); | 
|  | EXPECT_EQ(Bytes(kNull), Bytes(enc, enc_len)); | 
|  | OPENSSL_free(enc); | 
|  | enc = nullptr; | 
|  |  | 
|  | // Although the standalone representation of NULL is a non-null pointer, the | 
|  | // |ASN1_TYPE| representation is a null pointer. | 
|  | ptr = kNull; | 
|  | bssl::UniquePtr<ASN1_TYPE> null_type( | 
|  | d2i_ASN1_TYPE(nullptr, &ptr, sizeof(kNull))); | 
|  | ASSERT_TRUE(null_type); | 
|  | EXPECT_EQ(ptr, kNull + sizeof(kNull)); | 
|  | EXPECT_EQ(V_ASN1_NULL, ASN1_TYPE_get(null_type.get())); | 
|  | EXPECT_EQ(nullptr, null_type->value.ptr); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, Pack) { | 
|  | bssl::UniquePtr<BASIC_CONSTRAINTS> val(BASIC_CONSTRAINTS_new()); | 
|  | ASSERT_TRUE(val); | 
|  | val->ca = 0; | 
|  |  | 
|  | // Test all three calling conventions. | 
|  | static const uint8_t kExpected[] = {0x30, 0x00}; | 
|  | bssl::UniquePtr<ASN1_STRING> str( | 
|  | ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), nullptr)); | 
|  | ASSERT_TRUE(str); | 
|  | EXPECT_EQ( | 
|  | Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())), | 
|  | Bytes(kExpected)); | 
|  |  | 
|  | ASN1_STRING *raw = nullptr; | 
|  | str.reset(ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), &raw)); | 
|  | ASSERT_TRUE(str); | 
|  | EXPECT_EQ(raw, str.get()); | 
|  | EXPECT_EQ( | 
|  | Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())), | 
|  | Bytes(kExpected)); | 
|  |  | 
|  | str.reset(ASN1_STRING_new()); | 
|  | ASSERT_TRUE(str); | 
|  | raw = str.get(); | 
|  | EXPECT_TRUE( | 
|  | ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), &raw)); | 
|  | EXPECT_EQ(raw, str.get()); | 
|  | EXPECT_EQ( | 
|  | Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())), | 
|  | Bytes(kExpected)); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, Unpack) { | 
|  | bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_new()); | 
|  | ASSERT_TRUE(str); | 
|  |  | 
|  | static const uint8_t kValid[] = {0x30, 0x00}; | 
|  | ASSERT_TRUE( | 
|  | ASN1_STRING_set(str.get(), kValid, sizeof(kValid))); | 
|  | bssl::UniquePtr<BASIC_CONSTRAINTS> val(static_cast<BASIC_CONSTRAINTS *>( | 
|  | ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS)))); | 
|  | ASSERT_TRUE(val); | 
|  | EXPECT_EQ(val->ca, 0); | 
|  | EXPECT_EQ(val->pathlen, nullptr); | 
|  |  | 
|  | static const uint8_t kInvalid[] = {0x31, 0x00}; | 
|  | ASSERT_TRUE(ASN1_STRING_set(str.get(), kInvalid, sizeof(kInvalid))); | 
|  | val.reset(static_cast<BASIC_CONSTRAINTS *>( | 
|  | ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS)))); | 
|  | EXPECT_FALSE(val); | 
|  |  | 
|  | static const uint8_t kTraiilingData[] = {0x30, 0x00, 0x00}; | 
|  | ASSERT_TRUE( | 
|  | ASN1_STRING_set(str.get(), kTraiilingData, sizeof(kTraiilingData))); | 
|  | val.reset(static_cast<BASIC_CONSTRAINTS *>( | 
|  | ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS)))); | 
|  | EXPECT_FALSE(val); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, StringCmp) { | 
|  | struct Input { | 
|  | int type; | 
|  | std::vector<uint8_t> data; | 
|  | int flags; | 
|  | bool equals_previous; | 
|  | }; | 
|  | // kInputs is a list of |ASN1_STRING| parameters, in sorted order. The input | 
|  | // should be sorted by bit length, then data, then type. | 
|  | const Input kInputs[] = { | 
|  | {V_ASN1_BIT_STRING, {}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, | 
|  | {V_ASN1_BIT_STRING, {}, 0, true}, | 
|  | // When |ASN1_STRING_FLAG_BITS_LEFT| is unset, BIT STRINGs implicitly | 
|  | // drop trailing zeros. | 
|  | {V_ASN1_BIT_STRING, {0x00, 0x00, 0x00, 0x00}, 0, true}, | 
|  |  | 
|  | {V_ASN1_OCTET_STRING, {}, 0, false}, | 
|  | {V_ASN1_UTF8STRING, {}, 0, false}, | 
|  |  | 
|  | // BIT STRINGs with padding bits (i.e. not part of the actual value) are | 
|  | // shorter and thus sort earlier: | 
|  | // 1-bit inputs. | 
|  | {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 7, false}, | 
|  | {V_ASN1_BIT_STRING, {0x80}, ASN1_STRING_FLAG_BITS_LEFT | 7, false}, | 
|  | // 2-bit inputs. | 
|  | {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 6, false}, | 
|  | {V_ASN1_BIT_STRING, {0xc0}, ASN1_STRING_FLAG_BITS_LEFT | 6, false}, | 
|  | // 3-bit inputs. | 
|  | {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 5, false}, | 
|  | {V_ASN1_BIT_STRING, {0xe0}, ASN1_STRING_FLAG_BITS_LEFT | 5, false}, | 
|  | // 4-bit inputs. | 
|  | {V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 4, false}, | 
|  | {V_ASN1_BIT_STRING, {0xf0}, 0, true},        // 4 trailing zeros dropped. | 
|  | {V_ASN1_BIT_STRING, {0xf0, 0x00}, 0, true},  // 12 trailing zeros dropped. | 
|  | // 5-bit inputs. | 
|  | {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 3, false}, | 
|  | {V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 3, false}, | 
|  | {V_ASN1_BIT_STRING, {0xf8}, ASN1_STRING_FLAG_BITS_LEFT | 3, false}, | 
|  | // 6-bit inputs. | 
|  | {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 2, false}, | 
|  | {V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 2, false}, | 
|  | {V_ASN1_BIT_STRING, {0xfc}, ASN1_STRING_FLAG_BITS_LEFT | 2, false}, | 
|  | // 7-bit inputs. | 
|  | {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 1, false}, | 
|  | {V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 1, false}, | 
|  | {V_ASN1_BIT_STRING, {0xfe}, ASN1_STRING_FLAG_BITS_LEFT | 1, false}, | 
|  |  | 
|  | // 8-bit inputs. | 
|  | {V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, | 
|  | {V_ASN1_OCTET_STRING, {0x00}, 0, false}, | 
|  | {V_ASN1_UTF8STRING, {0x00}, 0, false}, | 
|  |  | 
|  | {V_ASN1_BIT_STRING, {0x80}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, | 
|  | {V_ASN1_OCTET_STRING, {0x80}, 0, false}, | 
|  | {V_ASN1_UTF8STRING, {0x80}, 0, false}, | 
|  |  | 
|  | {V_ASN1_BIT_STRING, {0xff}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, | 
|  | {V_ASN1_BIT_STRING, {0xff}, 0, true},  // No trailing zeros to drop. | 
|  | {V_ASN1_OCTET_STRING, {0xff}, 0, false}, | 
|  | {V_ASN1_UTF8STRING, {0xff}, 0, false}, | 
|  |  | 
|  | // Bytes are compared lexicographically. | 
|  | {V_ASN1_BIT_STRING, {0x00, 0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, | 
|  | {V_ASN1_OCTET_STRING, {0x00, 0x00}, 0, false}, | 
|  | {V_ASN1_UTF8STRING, {0x00, 0x00}, 0, false}, | 
|  |  | 
|  | {V_ASN1_BIT_STRING, {0x00, 0xff}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, | 
|  | {V_ASN1_OCTET_STRING, {0x00, 0xff}, 0, false}, | 
|  | {V_ASN1_UTF8STRING, {0x00, 0xff}, 0, false}, | 
|  |  | 
|  | {V_ASN1_BIT_STRING, {0xff, 0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false}, | 
|  | {V_ASN1_OCTET_STRING, {0xff, 0x00}, 0, false}, | 
|  | {V_ASN1_UTF8STRING, {0xff, 0x00}, 0, false}, | 
|  | }; | 
|  | std::vector<bssl::UniquePtr<ASN1_STRING>> strs; | 
|  | strs.reserve(OPENSSL_ARRAY_SIZE(kInputs)); | 
|  | for (const auto &input : kInputs) { | 
|  | strs.emplace_back(ASN1_STRING_type_new(input.type)); | 
|  | ASSERT_TRUE(strs.back()); | 
|  | ASSERT_TRUE(ASN1_STRING_set(strs.back().get(), input.data.data(), | 
|  | input.data.size())); | 
|  | strs.back()->flags = input.flags; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < strs.size(); i++) { | 
|  | SCOPED_TRACE(i); | 
|  | bool expect_equal = true; | 
|  | for (size_t j = i; j < strs.size(); j++) { | 
|  | SCOPED_TRACE(j); | 
|  | if (j > i && !kInputs[j].equals_previous) { | 
|  | expect_equal = false; | 
|  | } | 
|  |  | 
|  | const int cmp_i_j = ASN1_STRING_cmp(strs[i].get(), strs[j].get()); | 
|  | const int cmp_j_i = ASN1_STRING_cmp(strs[j].get(), strs[i].get()); | 
|  | if (expect_equal) { | 
|  | EXPECT_EQ(cmp_i_j, 0); | 
|  | EXPECT_EQ(cmp_j_i, 0); | 
|  | } else if (i < j) { | 
|  | EXPECT_LT(cmp_i_j, 0); | 
|  | EXPECT_GT(cmp_j_i, 0); | 
|  | } else { | 
|  | EXPECT_GT(cmp_i_j, 0); | 
|  | EXPECT_LT(cmp_j_i, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, PrintASN1Object) { | 
|  | const struct { | 
|  | std::vector<uint8_t> in; | 
|  | const char *expected; | 
|  | } kDataTests[] = { | 
|  | // Known OIDs print as the name. | 
|  | {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01}, "rsaEncryption"}, | 
|  |  | 
|  | // Unknown OIDs print in decimal. | 
|  | {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x00}, | 
|  | "1.2.840.113554.4.1.72585.0"}, | 
|  |  | 
|  | // Inputs which cannot be parsed as OIDs print as "<INVALID>". | 
|  | {{0xff}, "<INVALID>"}, | 
|  |  | 
|  | // The function has an internal 80-byte buffer. Test inputs at that | 
|  | // boundary. First, 78 characters. | 
|  | {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, | 
|  | 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, | 
|  | "1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." | 
|  | "0.0.0.1"}, | 
|  | // 79 characters. | 
|  | {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, | 
|  | 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a}, | 
|  | "1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." | 
|  | "0.0.0.10"}, | 
|  | // 80 characters. | 
|  | {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, | 
|  | 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64}, | 
|  | "1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." | 
|  | "0.0.0.100"}, | 
|  | // 81 characters. | 
|  | {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, | 
|  | 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87, 0x68}, | 
|  | "1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." | 
|  | "0.0.0.1000"}, | 
|  | // 82 characters. | 
|  | {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, | 
|  | 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xce, 0x10}, | 
|  | "1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0." | 
|  | "0.0.0.10000"}, | 
|  | }; | 
|  | for (const auto &t : kDataTests) { | 
|  | SCOPED_TRACE(Bytes(t.in)); | 
|  | bssl::UniquePtr<ASN1_OBJECT> obj(ASN1_OBJECT_create( | 
|  | NID_undef, t.in.data(), t.in.size(), /*sn=*/nullptr, /*ln=*/nullptr)); | 
|  | ASSERT_TRUE(obj); | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(bio); | 
|  |  | 
|  | int len = i2a_ASN1_OBJECT(bio.get(), obj.get()); | 
|  | EXPECT_EQ(len, static_cast<int>(strlen(t.expected))); | 
|  |  | 
|  | const uint8_t *bio_data; | 
|  | size_t bio_len; | 
|  | BIO_mem_contents(bio.get(), &bio_data, &bio_len); | 
|  | EXPECT_EQ(t.expected, | 
|  | std::string(reinterpret_cast<const char *>(bio_data), bio_len)); | 
|  | } | 
|  |  | 
|  | // Test writing NULL. | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); | 
|  | ASSERT_TRUE(bio); | 
|  | int len = i2a_ASN1_OBJECT(bio.get(), nullptr); | 
|  | EXPECT_EQ(len, 4); | 
|  | const uint8_t *bio_data; | 
|  | size_t bio_len; | 
|  | BIO_mem_contents(bio.get(), &bio_data, &bio_len); | 
|  | EXPECT_EQ("NULL", | 
|  | std::string(reinterpret_cast<const char *>(bio_data), bio_len)); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, GetObject) { | 
|  | // The header is valid, but there are not enough bytes for the length. | 
|  | static const uint8_t kTruncated[] = {0x30, 0x01}; | 
|  | const uint8_t *ptr = kTruncated; | 
|  | long length; | 
|  | int tag; | 
|  | int tag_class; | 
|  | EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class, | 
|  | sizeof(kTruncated))); | 
|  |  | 
|  | // Indefinite-length encoding is not allowed in DER. | 
|  | static const uint8_t kIndefinite[] = {0x30, 0x80, 0x00, 0x00}; | 
|  | ptr = kIndefinite; | 
|  | EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class, | 
|  | sizeof(kIndefinite))); | 
|  |  | 
|  | // DER requires lengths be minimally-encoded. This should be {0x30, 0x00}. | 
|  | static const uint8_t kNonMinimal[] = {0x30, 0x81, 0x00}; | 
|  | ptr = kNonMinimal; | 
|  | EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class, | 
|  | sizeof(kNonMinimal))); | 
|  |  | 
|  | // This should be {0x04, 0x81, 0x80, ...}. | 
|  | std::vector<uint8_t> non_minimal = {0x04, 0x82, 0x00, 0x80}; | 
|  | non_minimal.resize(non_minimal.size() + 0x80); | 
|  | ptr = non_minimal.data(); | 
|  | EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class, | 
|  | non_minimal.size())); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void ExpectNoParse(T *(*d2i)(T **, const uint8_t **, long), | 
|  | const std::vector<uint8_t> &in) { | 
|  | SCOPED_TRACE(Bytes(in)); | 
|  | const uint8_t *ptr = in.data(); | 
|  | bssl::UniquePtr<T> obj(d2i(nullptr, &ptr, in.size())); | 
|  | EXPECT_FALSE(obj); | 
|  | } | 
|  |  | 
|  | // The zero tag, constructed or primitive, is reserved and should rejected by | 
|  | // the parser. | 
|  | TEST(ASN1Test, ZeroTag) { | 
|  | ExpectNoParse(d2i_ASN1_TYPE, {0x00, 0x00}); | 
|  | ExpectNoParse(d2i_ASN1_TYPE, {0x00, 0x10, 0x00}); | 
|  | ExpectNoParse(d2i_ASN1_TYPE, {0x20, 0x00}); | 
|  | ExpectNoParse(d2i_ASN1_TYPE, {0x20, 0x00}); | 
|  | ExpectNoParse(d2i_ASN1_SEQUENCE_ANY, {0x30, 0x02, 0x00, 0x00}); | 
|  | ExpectNoParse(d2i_ASN1_SET_ANY, {0x31, 0x02, 0x00, 0x00}); | 
|  | // SEQUENCE { | 
|  | //   OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 } | 
|  | //   [UNIVERSAL 0 PRIMITIVE] {} | 
|  | // } | 
|  | ExpectNoParse(d2i_X509_ALGOR, | 
|  | {0x30, 0x10, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, | 
|  | 0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x00, 0x00}); | 
|  | // SEQUENCE { | 
|  | //   OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 } | 
|  | //   [UNIVERSAL 0 CONSTRUCTED] {} | 
|  | // } | 
|  | ExpectNoParse(d2i_X509_ALGOR, | 
|  | {0x30, 0x10, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, | 
|  | 0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x20, 0x00}); | 
|  | // SEQUENCE { | 
|  | //   OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 } | 
|  | //   [UNIVERSAL 0 PRIMITIVE] { "a" } | 
|  | // } | 
|  | ExpectNoParse(d2i_X509_ALGOR, | 
|  | {0x30, 0x11, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, | 
|  | 0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x00, 0x01, 0x61}); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, StringEncoding) { | 
|  | const struct { | 
|  | ASN1_STRING *(*d2i)(ASN1_STRING **out, const uint8_t **inp, long len); | 
|  | std::vector<uint8_t> in; | 
|  | bool valid; | 
|  | } kTests[] = { | 
|  | // All OCTET STRINGs are valid. | 
|  | {d2i_ASN1_OCTET_STRING, {0x04, 0x00}, true}, | 
|  | {d2i_ASN1_OCTET_STRING, {0x04, 0x01, 0x00}, true}, | 
|  |  | 
|  | // UTF8String must be valid UTF-8. | 
|  | {d2i_ASN1_UTF8STRING, {0x0c, 0x00}, true}, | 
|  | {d2i_ASN1_UTF8STRING, {0x0c, 0x01, 'a'}, true}, | 
|  | {d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xe2, 0x98, 0x83}, true}, | 
|  | // Non-minimal, two-byte UTF-8. | 
|  | {d2i_ASN1_UTF8STRING, {0x0c, 0x02, 0xc0, 0x81}, false}, | 
|  | // Truncated, four-byte UTF-8. | 
|  | {d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xf0, 0x80, 0x80}, false}, | 
|  | // Low-surrogate value. | 
|  | {d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xed, 0xa0, 0x80}, false}, | 
|  | // High-surrogate value. | 
|  | {d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xed, 0xb0, 0x81}, false}, | 
|  |  | 
|  | // BMPString must be valid UCS-2. | 
|  | {d2i_ASN1_BMPSTRING, {0x1e, 0x00}, true}, | 
|  | {d2i_ASN1_BMPSTRING, {0x1e, 0x02, 0x00, 'a'}, true}, | 
|  | // Truncated code unit. | 
|  | {d2i_ASN1_BMPSTRING, {0x1e, 0x01, 'a'}, false}, | 
|  | // Lone surrogate. | 
|  | {d2i_ASN1_BMPSTRING, {0x1e, 0x02, 0xd8, 0}, false}, | 
|  | // BMPString is UCS-2, not UTF-16, so surrogate pairs are also invalid. | 
|  | {d2i_ASN1_BMPSTRING, {0x1e, 0x04, 0xd8, 0, 0xdc, 1}, false}, | 
|  |  | 
|  | // UniversalString must be valid UTF-32. | 
|  | {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x00}, true}, | 
|  | {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x00, 0x00, 'a'}, true}, | 
|  | // Maximum code point. | 
|  | {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xfd}, true}, | 
|  | // Reserved. | 
|  | {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xfe}, false}, | 
|  | {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xff}, false}, | 
|  | // Too high. | 
|  | {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x11, 0x00, 0x00}, false}, | 
|  | // Surrogates are not characters. | 
|  | {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x00, 0xd8, 0}, false}, | 
|  | // Truncated codepoint. | 
|  | {d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x03, 0x00, 0x00, 0x00}, false}, | 
|  |  | 
|  | // We interpret T61String as Latin-1, so all inputs are valid. | 
|  | {d2i_ASN1_T61STRING, {0x14, 0x00}, true}, | 
|  | {d2i_ASN1_T61STRING, {0x14, 0x01, 0x00}, true}, | 
|  | }; | 
|  | for (const auto& t : kTests) { | 
|  | SCOPED_TRACE(Bytes(t.in)); | 
|  | const uint8_t *inp; | 
|  |  | 
|  | if (t.d2i != nullptr) { | 
|  | inp = t.in.data(); | 
|  | bssl::UniquePtr<ASN1_STRING> str(t.d2i(nullptr, &inp, t.in.size())); | 
|  | EXPECT_EQ(t.valid, str != nullptr); | 
|  | } | 
|  |  | 
|  | // Also test with the ANY parser. | 
|  | inp = t.in.data(); | 
|  | bssl::UniquePtr<ASN1_TYPE> any(d2i_ASN1_TYPE(nullptr, &inp, t.in.size())); | 
|  | EXPECT_EQ(t.valid, any != nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Exhaustively test POSIX time conversions for every day across the millenium. | 
|  | TEST(ASN1Test, POSIXTime) { | 
|  | const int kDaysInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; | 
|  |  | 
|  | // Test the epoch explicitly, to confirm our baseline is correct. | 
|  | struct tm civil_time; | 
|  | ASSERT_TRUE(OPENSSL_posix_to_tm(0, &civil_time)); | 
|  | ASSERT_EQ(civil_time.tm_year + 1900, 1970); | 
|  | ASSERT_EQ(civil_time.tm_mon + 1, 1); | 
|  | ASSERT_EQ(civil_time.tm_mday, 1); | 
|  | ASSERT_EQ(civil_time.tm_hour, 0); | 
|  | ASSERT_EQ(civil_time.tm_min, 0); | 
|  | ASSERT_EQ(civil_time.tm_sec, 0); | 
|  |  | 
|  | int64_t posix_time = -11676096000;  // Sat, 01 Jan 1600 00:00:00 +0000 | 
|  | for (int year = 1600; year < 3000; year++) { | 
|  | SCOPED_TRACE(year); | 
|  | bool is_leap_year = (year % 4 == 0 && year % 100 != 0) || year % 400 == 0; | 
|  | for (int month = 1; month <= 12; month++) { | 
|  | SCOPED_TRACE(month); | 
|  | int days = kDaysInMonth[month - 1]; | 
|  | if (month == 2 && is_leap_year) { | 
|  | days++; | 
|  | } | 
|  | for (int day = 1; day <= days; day++) { | 
|  | SCOPED_TRACE(day); | 
|  | SCOPED_TRACE(posix_time); | 
|  |  | 
|  | ASSERT_TRUE(OPENSSL_posix_to_tm(posix_time, &civil_time)); | 
|  | ASSERT_EQ(civil_time.tm_year + 1900, year); | 
|  | ASSERT_EQ(civil_time.tm_mon + 1, month); | 
|  | ASSERT_EQ(civil_time.tm_mday, day); | 
|  | ASSERT_EQ(civil_time.tm_hour, 0); | 
|  | ASSERT_EQ(civil_time.tm_min, 0); | 
|  | ASSERT_EQ(civil_time.tm_sec, 0); | 
|  |  | 
|  | int64_t posix_time_computed; | 
|  | ASSERT_TRUE(OPENSSL_tm_to_posix(&civil_time, &posix_time_computed)); | 
|  | ASSERT_EQ(posix_time_computed, posix_time); | 
|  |  | 
|  | // Advance to the next day. | 
|  | posix_time += 24 * 60 * 60; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, LargeString) { | 
|  | bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(V_ASN1_OCTET_STRING)); | 
|  | ASSERT_TRUE(str); | 
|  | // Very large strings should be rejected by |ASN1_STRING_set|. Strictly | 
|  | // speaking, this is an invalid call because the buffer does not have that | 
|  | // much size available. |ASN1_STRING_set| should cleanly fail before it | 
|  | // crashes, and actually allocating 512 MiB in a test is likely to break. | 
|  | char b = 0; | 
|  | EXPECT_FALSE(ASN1_STRING_set(str.get(), &b, INT_MAX / 4)); | 
|  |  | 
|  | #if defined(OPENSSL_64_BIT) | 
|  | // |ASN1_STRING_set| should tolerate lengths that exceed |int| without | 
|  | // overflow. | 
|  | EXPECT_FALSE(ASN1_STRING_set(str.get(), &b, 1 + (ossl_ssize_t{1} << 48))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static auto TimeToTuple(const tm &t) { | 
|  | return std::make_tuple(t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, | 
|  | t.tm_sec); | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, TimeOverflow) { | 
|  | // Input time is out of range and may overflow internal calculations to shift | 
|  | // |tm_year| and |tm_mon| to a more normal value. | 
|  | tm overflow_year = {}; | 
|  | overflow_year.tm_year = INT_MAX - 1899; | 
|  | overflow_year.tm_mday = 1; | 
|  | tm overflow_month = {}; | 
|  | overflow_month.tm_mon = INT_MAX; | 
|  | overflow_month.tm_mday = 1; | 
|  | int64_t posix_u64; | 
|  | EXPECT_FALSE(OPENSSL_tm_to_posix(&overflow_year, &posix_u64)); | 
|  | EXPECT_FALSE(OPENSSL_tm_to_posix(&overflow_month, &posix_u64)); | 
|  | time_t posix; | 
|  | EXPECT_FALSE(OPENSSL_timegm(&overflow_year, &posix)); | 
|  | EXPECT_FALSE(OPENSSL_timegm(&overflow_month, &posix)); | 
|  | EXPECT_FALSE( | 
|  | OPENSSL_gmtime_adj(&overflow_year, /*offset_day=*/0, /*offset_sec=*/0)); | 
|  | EXPECT_FALSE( | 
|  | OPENSSL_gmtime_adj(&overflow_month, /*offset_day=*/0, /*offset_sec=*/0)); | 
|  | int days, secs; | 
|  | EXPECT_FALSE( | 
|  | OPENSSL_gmtime_diff(&days, &secs, &overflow_year, &overflow_year)); | 
|  | EXPECT_FALSE( | 
|  | OPENSSL_gmtime_diff(&days, &secs, &overflow_month, &overflow_month)); | 
|  |  | 
|  | // Input time is in range, but even adding one second puts it out of range. | 
|  | tm max_time = {}; | 
|  | max_time.tm_year = 9999 - 1900; | 
|  | max_time.tm_mon = 12 - 1; | 
|  | max_time.tm_mday = 31; | 
|  | max_time.tm_hour = 23; | 
|  | max_time.tm_min = 59; | 
|  | max_time.tm_sec = 59; | 
|  | tm copy = max_time; | 
|  | EXPECT_TRUE(OPENSSL_gmtime_adj(©, /*offset_day=*/0, /*offset_sec=*/0)); | 
|  | EXPECT_EQ(TimeToTuple(copy), TimeToTuple(max_time)); | 
|  | EXPECT_FALSE(OPENSSL_gmtime_adj(©, /*offset_day=*/0, /*offset_sec=*/1)); | 
|  |  | 
|  | // Likewise for the earliest representable time. | 
|  | tm min_time = {}; | 
|  | min_time.tm_year = 0 - 1900; | 
|  | min_time.tm_mon = 1 - 1; | 
|  | min_time.tm_mday = 1; | 
|  | min_time.tm_hour = 0; | 
|  | min_time.tm_min = 0; | 
|  | min_time.tm_sec = 0; | 
|  | copy = min_time; | 
|  | EXPECT_TRUE(OPENSSL_gmtime_adj(©, /*offset_day=*/0, /*offset_sec=*/0)); | 
|  | EXPECT_EQ(TimeToTuple(copy), TimeToTuple(min_time)); | 
|  | EXPECT_FALSE(OPENSSL_gmtime_adj(©, /*offset_day=*/0, /*offset_sec=*/-1)); | 
|  |  | 
|  | // Test we can offset between the minimum and maximum times. | 
|  | const int64_t kValidTimeRange = 315569519999; | 
|  | copy = min_time; | 
|  | EXPECT_TRUE(OPENSSL_gmtime_adj(©, /*offset_day=*/0, kValidTimeRange)); | 
|  | EXPECT_EQ(TimeToTuple(copy), TimeToTuple(max_time)); | 
|  | EXPECT_TRUE(OPENSSL_gmtime_adj(©, /*offset_day=*/0, -kValidTimeRange)); | 
|  | EXPECT_EQ(TimeToTuple(copy), TimeToTuple(min_time)); | 
|  |  | 
|  | // The second offset may even exceed kValidTimeRange if it is canceled out by | 
|  | // offset_day. | 
|  | EXPECT_TRUE(OPENSSL_gmtime_adj(©, /*offset_day=*/-1, | 
|  | kValidTimeRange + 24 * 3600)); | 
|  | EXPECT_EQ(TimeToTuple(copy), TimeToTuple(max_time)); | 
|  | EXPECT_TRUE(OPENSSL_gmtime_adj(©, /*offset_day=*/1, | 
|  | -kValidTimeRange - 24 * 3600)); | 
|  | EXPECT_EQ(TimeToTuple(copy), TimeToTuple(min_time)); | 
|  |  | 
|  | // Make sure the internal calculations for |OPENSSL_gmtime_adj| stay in | 
|  | // bounds. | 
|  | copy = max_time; | 
|  | EXPECT_FALSE(OPENSSL_gmtime_adj(©, INT_MAX, LONG_MAX)); | 
|  | copy = min_time; | 
|  | EXPECT_FALSE(OPENSSL_gmtime_adj(©, INT_MIN, LONG_MIN)); | 
|  | } | 
|  |  | 
|  | // The ASN.1 macros do not work on Windows shared library builds, where usage of | 
|  | // |OPENSSL_EXPORT| is a bit stricter. | 
|  | #if !defined(OPENSSL_WINDOWS) || !defined(BORINGSSL_SHARED_LIBRARY) | 
|  |  | 
|  | typedef struct asn1_linked_list_st { | 
|  | struct asn1_linked_list_st *next; | 
|  | } ASN1_LINKED_LIST; | 
|  |  | 
|  | DECLARE_ASN1_ITEM(ASN1_LINKED_LIST) | 
|  | DECLARE_ASN1_FUNCTIONS(ASN1_LINKED_LIST) | 
|  |  | 
|  | ASN1_SEQUENCE(ASN1_LINKED_LIST) = { | 
|  | ASN1_OPT(ASN1_LINKED_LIST, next, ASN1_LINKED_LIST), | 
|  | } ASN1_SEQUENCE_END(ASN1_LINKED_LIST) | 
|  |  | 
|  | IMPLEMENT_ASN1_FUNCTIONS(ASN1_LINKED_LIST) | 
|  |  | 
|  | static bool MakeLinkedList(bssl::UniquePtr<uint8_t> *out, size_t *out_len, | 
|  | size_t count) { | 
|  | bssl::ScopedCBB cbb; | 
|  | std::vector<CBB> cbbs(count); | 
|  | if (!CBB_init(cbb.get(), 2 * count) || | 
|  | !CBB_add_asn1(cbb.get(), &cbbs[0], CBS_ASN1_SEQUENCE)) { | 
|  | return false; | 
|  | } | 
|  | for (size_t i = 1; i < count; i++) { | 
|  | if (!CBB_add_asn1(&cbbs[i - 1], &cbbs[i], CBS_ASN1_SEQUENCE)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | uint8_t *ptr; | 
|  | if (!CBB_finish(cbb.get(), &ptr, out_len)) { | 
|  | return false; | 
|  | } | 
|  | out->reset(ptr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TEST(ASN1Test, Recursive) { | 
|  | bssl::UniquePtr<uint8_t> data; | 
|  | size_t len; | 
|  |  | 
|  | // Sanity-check that MakeLinkedList can be parsed. | 
|  | ASSERT_TRUE(MakeLinkedList(&data, &len, 5)); | 
|  | const uint8_t *ptr = data.get(); | 
|  | ASN1_LINKED_LIST *list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len); | 
|  | EXPECT_TRUE(list); | 
|  | ASN1_LINKED_LIST_free(list); | 
|  |  | 
|  | // Excessively deep structures are rejected. | 
|  | ASSERT_TRUE(MakeLinkedList(&data, &len, 100)); | 
|  | ptr = data.get(); | 
|  | list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len); | 
|  | EXPECT_FALSE(list); | 
|  | // Note checking the error queue here does not work. The error "stack trace" | 
|  | // is too deep, so the |ASN1_R_NESTED_TOO_DEEP| entry drops off the queue. | 
|  | ASN1_LINKED_LIST_free(list); | 
|  | } | 
|  |  | 
|  | struct IMPLICIT_CHOICE { | 
|  | ASN1_STRING *string; | 
|  | }; | 
|  |  | 
|  | DECLARE_ASN1_FUNCTIONS(IMPLICIT_CHOICE) | 
|  |  | 
|  | ASN1_SEQUENCE(IMPLICIT_CHOICE) = { | 
|  | ASN1_IMP(IMPLICIT_CHOICE, string, DIRECTORYSTRING, 0), | 
|  | } ASN1_SEQUENCE_END(IMPLICIT_CHOICE) | 
|  |  | 
|  | IMPLEMENT_ASN1_FUNCTIONS(IMPLICIT_CHOICE) | 
|  |  | 
|  | // Test that the ASN.1 templates reject types with implicitly-tagged CHOICE | 
|  | // types. | 
|  | TEST(ASN1Test, ImplicitChoice) { | 
|  | // Serializing a type with an implicitly tagged CHOICE should fail. | 
|  | std::unique_ptr<IMPLICIT_CHOICE, decltype(&IMPLICIT_CHOICE_free)> obj( | 
|  | IMPLICIT_CHOICE_new(), IMPLICIT_CHOICE_free); | 
|  | EXPECT_EQ(-1, i2d_IMPLICIT_CHOICE(obj.get(), nullptr)); | 
|  |  | 
|  | // An implicitly-tagged CHOICE is an error. Depending on the implementation, | 
|  | // it may be misinterpreted as without the tag, or as clobbering the CHOICE | 
|  | // tag. Test both inputs and ensure they fail. | 
|  |  | 
|  | // SEQUENCE { UTF8String {} } | 
|  | static const uint8_t kInput1[] = {0x30, 0x02, 0x0c, 0x00}; | 
|  | const uint8_t *ptr = kInput1; | 
|  | EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput1))); | 
|  |  | 
|  | // SEQUENCE { [0 PRIMITIVE] {} } | 
|  | static const uint8_t kInput2[] = {0x30, 0x02, 0x80, 0x00}; | 
|  | ptr = kInput2; | 
|  | EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput2))); | 
|  | } | 
|  |  | 
|  | struct REQUIRED_FIELD { | 
|  | ASN1_INTEGER *value; | 
|  | ASN1_INTEGER *value_imp; | 
|  | ASN1_INTEGER *value_exp; | 
|  | STACK_OF(ASN1_INTEGER) *seq; | 
|  | STACK_OF(ASN1_INTEGER) *seq_imp; | 
|  | STACK_OF(ASN1_INTEGER) *seq_exp; | 
|  | ASN1_NULL *null; | 
|  | ASN1_NULL *null_imp; | 
|  | ASN1_NULL *null_exp; | 
|  | }; | 
|  |  | 
|  | DECLARE_ASN1_FUNCTIONS(REQUIRED_FIELD) | 
|  | ASN1_SEQUENCE(REQUIRED_FIELD) = { | 
|  | ASN1_SIMPLE(REQUIRED_FIELD, value, ASN1_INTEGER), | 
|  | ASN1_IMP(REQUIRED_FIELD, value_imp, ASN1_INTEGER, 0), | 
|  | ASN1_EXP(REQUIRED_FIELD, value_exp, ASN1_INTEGER, 1), | 
|  | ASN1_SEQUENCE_OF(REQUIRED_FIELD, seq, ASN1_INTEGER), | 
|  | ASN1_IMP_SEQUENCE_OF(REQUIRED_FIELD, seq_imp, ASN1_INTEGER, 2), | 
|  | ASN1_EXP_SEQUENCE_OF(REQUIRED_FIELD, seq_exp, ASN1_INTEGER, 3), | 
|  | ASN1_SIMPLE(REQUIRED_FIELD, null, ASN1_NULL), | 
|  | ASN1_IMP(REQUIRED_FIELD, null_imp, ASN1_NULL, 4), | 
|  | ASN1_EXP(REQUIRED_FIELD, null_exp, ASN1_NULL, 5), | 
|  | } ASN1_SEQUENCE_END(REQUIRED_FIELD) | 
|  | IMPLEMENT_ASN1_FUNCTIONS(REQUIRED_FIELD) | 
|  |  | 
|  | // Test that structures with missing required fields cannot be serialized. Test | 
|  | // the full combination of tagging and SEQUENCE OF. | 
|  | TEST(ASN1Test, MissingRequiredField) { | 
|  | EXPECT_EQ(-1, i2d_REQUIRED_FIELD(nullptr, nullptr)); | 
|  |  | 
|  | std::unique_ptr<REQUIRED_FIELD, decltype(&REQUIRED_FIELD_free)> obj( | 
|  | nullptr, REQUIRED_FIELD_free); | 
|  | for (auto field : {&REQUIRED_FIELD::value, &REQUIRED_FIELD::value_imp, | 
|  | &REQUIRED_FIELD::value_exp}) { | 
|  | obj.reset(REQUIRED_FIELD_new()); | 
|  | ASSERT_TRUE(obj); | 
|  | ASN1_INTEGER_free((*obj).*field); | 
|  | (*obj).*field = nullptr; | 
|  | EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr)); | 
|  | } | 
|  |  | 
|  | for (auto field : {&REQUIRED_FIELD::seq, &REQUIRED_FIELD::seq_imp, | 
|  | &REQUIRED_FIELD::seq_exp}) { | 
|  | obj.reset(REQUIRED_FIELD_new()); | 
|  | ASSERT_TRUE(obj); | 
|  | sk_ASN1_INTEGER_pop_free((*obj).*field, ASN1_INTEGER_free); | 
|  | (*obj).*field = nullptr; | 
|  | EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr)); | 
|  | } | 
|  |  | 
|  | for (auto field : {&REQUIRED_FIELD::null, &REQUIRED_FIELD::null_imp, | 
|  | &REQUIRED_FIELD::null_exp}) { | 
|  | obj.reset(REQUIRED_FIELD_new()); | 
|  | ASSERT_TRUE(obj); | 
|  | (*obj).*field = nullptr; | 
|  | EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct BOOLEANS { | 
|  | ASN1_BOOLEAN required; | 
|  | ASN1_BOOLEAN optional; | 
|  | ASN1_BOOLEAN default_true; | 
|  | ASN1_BOOLEAN default_false; | 
|  | }; | 
|  |  | 
|  | DECLARE_ASN1_FUNCTIONS(BOOLEANS) | 
|  | ASN1_SEQUENCE(BOOLEANS) = { | 
|  | ASN1_SIMPLE(BOOLEANS, required, ASN1_BOOLEAN), | 
|  | ASN1_IMP_OPT(BOOLEANS, optional, ASN1_BOOLEAN, 1), | 
|  | // Although not actually optional, |ASN1_TBOOLEAN| and |ASN1_FBOOLEAN| need | 
|  | // to be marked optional in the template. | 
|  | ASN1_IMP_OPT(BOOLEANS, default_true, ASN1_TBOOLEAN, 2), | 
|  | ASN1_IMP_OPT(BOOLEANS, default_false, ASN1_FBOOLEAN, 3), | 
|  | } ASN1_SEQUENCE_END(BOOLEANS) | 
|  | IMPLEMENT_ASN1_FUNCTIONS(BOOLEANS) | 
|  |  | 
|  | TEST(ASN1Test, OptionalAndDefaultBooleans) { | 
|  | std::unique_ptr<BOOLEANS, decltype(&BOOLEANS_free)> obj(nullptr, | 
|  | BOOLEANS_free); | 
|  |  | 
|  | // A default-constructed object should use, respectively, omitted, omitted, | 
|  | // TRUE, FALSE. | 
|  | // | 
|  | // TODO(davidben): Is the first one a bug? It seems more consistent for a | 
|  | // required BOOLEAN default to FALSE. |FOO_new| typically default-initializes | 
|  | // fields valid states. (Though there are exceptions. CHOICE, ANY, and OBJECT | 
|  | // IDENTIFIER are default-initialized to something invalid.) | 
|  | obj.reset(BOOLEANS_new()); | 
|  | ASSERT_TRUE(obj); | 
|  | EXPECT_EQ(obj->required, ASN1_BOOLEAN_NONE); | 
|  | EXPECT_EQ(obj->optional, ASN1_BOOLEAN_NONE); | 
|  | EXPECT_EQ(obj->default_true, ASN1_BOOLEAN_TRUE); | 
|  | EXPECT_EQ(obj->default_false, ASN1_BOOLEAN_FALSE); | 
|  |  | 
|  | // Trying to serialize this should fail, because |obj->required| is omitted. | 
|  | EXPECT_EQ(-1, i2d_BOOLEANS(obj.get(), nullptr)); | 
|  |  | 
|  | // Otherwise, this object is serializable. Most fields are omitted, due to | 
|  | // them being optional or defaulted. | 
|  | static const uint8_t kFieldsOmitted[] = {0x30, 0x03, 0x01, 0x01, 0x00}; | 
|  | obj->required = 0; | 
|  | TestSerialize(obj.get(), i2d_BOOLEANS, kFieldsOmitted); | 
|  |  | 
|  | const uint8_t *der = kFieldsOmitted; | 
|  | obj.reset(d2i_BOOLEANS(nullptr, &der, sizeof(kFieldsOmitted))); | 
|  | ASSERT_TRUE(obj); | 
|  | EXPECT_EQ(obj->required, ASN1_BOOLEAN_FALSE); | 
|  | EXPECT_EQ(obj->optional, ASN1_BOOLEAN_NONE); | 
|  | EXPECT_EQ(obj->default_true, ASN1_BOOLEAN_TRUE); | 
|  | EXPECT_EQ(obj->default_false, ASN1_BOOLEAN_FALSE); | 
|  |  | 
|  | // Include the optinonal fields instead. | 
|  | static const uint8_t kFieldsIncluded[] = {0x30, 0x0c, 0x01, 0x01, 0xff, | 
|  | 0x81, 0x01, 0x00, 0x82, 0x01, | 
|  | 0x00, 0x83, 0x01, 0xff}; | 
|  | obj->required = ASN1_BOOLEAN_TRUE; | 
|  | obj->optional = ASN1_BOOLEAN_FALSE; | 
|  | obj->default_true = ASN1_BOOLEAN_FALSE; | 
|  | obj->default_false = ASN1_BOOLEAN_TRUE; | 
|  | TestSerialize(obj.get(), i2d_BOOLEANS, kFieldsIncluded); | 
|  |  | 
|  | der = kFieldsIncluded; | 
|  | obj.reset(d2i_BOOLEANS(nullptr, &der, sizeof(kFieldsIncluded))); | 
|  | ASSERT_TRUE(obj); | 
|  | EXPECT_EQ(obj->required, ASN1_BOOLEAN_TRUE); | 
|  | EXPECT_EQ(obj->optional, ASN1_BOOLEAN_FALSE); | 
|  | EXPECT_EQ(obj->default_true, ASN1_BOOLEAN_FALSE); | 
|  | EXPECT_EQ(obj->default_false, ASN1_BOOLEAN_TRUE); | 
|  |  | 
|  | // TODO(https://crbug.com/boringssl/354): Reject explicit DEFAULTs. | 
|  | } | 
|  |  | 
|  | // EXPLICIT_BOOLEAN is a [1] EXPLICIT BOOLEAN. | 
|  | ASN1_ITEM_TEMPLATE(EXPLICIT_BOOLEAN) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_EXPLICIT, | 
|  | 1, | 
|  | EXPLICIT_BOOLEAN, | 
|  | ASN1_BOOLEAN) | 
|  | ASN1_ITEM_TEMPLATE_END(EXPLICIT_BOOLEAN) | 
|  |  | 
|  | // EXPLICIT_OCTET_STRING is a [2] EXPLICIT OCTET STRING. | 
|  | ASN1_ITEM_TEMPLATE(EXPLICIT_OCTET_STRING) = ASN1_EX_TEMPLATE_TYPE( | 
|  | ASN1_TFLG_EXPLICIT, 2, EXPLICIT_OCTET_STRING, ASN1_OCTET_STRING) | 
|  | ASN1_ITEM_TEMPLATE_END(EXPLICIT_OCTET_STRING) | 
|  |  | 
|  | // DOUBLY_TAGGED is | 
|  | //   SEQUENCE { | 
|  | //     b   [3] EXPLICIT [1] EXPLICIT BOOLEAN OPTIONAL, | 
|  | //     oct [4] EXPLICIT [2] EXPLICIT OCTET STRING OPTIONAL } | 
|  | // with explicit tagging. | 
|  | struct DOUBLY_TAGGED { | 
|  | ASN1_BOOLEAN b; | 
|  | ASN1_OCTET_STRING *oct; | 
|  | }; | 
|  |  | 
|  | DECLARE_ASN1_FUNCTIONS(DOUBLY_TAGGED) | 
|  | ASN1_SEQUENCE(DOUBLY_TAGGED) = { | 
|  | ASN1_EXP_OPT(DOUBLY_TAGGED, b, EXPLICIT_BOOLEAN, 3), | 
|  | ASN1_EXP_OPT(DOUBLY_TAGGED, oct, EXPLICIT_OCTET_STRING, 4), | 
|  | } ASN1_SEQUENCE_END(DOUBLY_TAGGED) | 
|  | IMPLEMENT_ASN1_FUNCTIONS(DOUBLY_TAGGED) | 
|  |  | 
|  | // Test that optional fields with two layers of explicit tagging are correctly | 
|  | // handled. | 
|  | TEST(ASN1Test, DoublyTagged) { | 
|  | std::unique_ptr<DOUBLY_TAGGED, decltype(&DOUBLY_TAGGED_free)> obj( | 
|  | nullptr, DOUBLY_TAGGED_free); | 
|  |  | 
|  | // Both fields missing. | 
|  | static const uint8_t kOmitted[] = {0x30, 0x00}; | 
|  | const uint8_t *inp = kOmitted; | 
|  | obj.reset(d2i_DOUBLY_TAGGED(nullptr, &inp, sizeof(kOmitted))); | 
|  | ASSERT_TRUE(obj); | 
|  | EXPECT_EQ(obj->b, -1); | 
|  | EXPECT_FALSE(obj->oct); | 
|  | TestSerialize(obj.get(), i2d_DOUBLY_TAGGED, kOmitted); | 
|  |  | 
|  | // Both fields present, true and the empty string. | 
|  | static const uint8_t kTrueEmpty[] = {0x30, 0x0d, 0xa3, 0x05, 0xa1, | 
|  | 0x03, 0x01, 0x01, 0xff, 0xa4, | 
|  | 0x04, 0xa2, 0x02, 0x04, 0x00}; | 
|  | inp = kTrueEmpty; | 
|  | obj.reset(d2i_DOUBLY_TAGGED(nullptr, &inp, sizeof(kTrueEmpty))); | 
|  | ASSERT_TRUE(obj); | 
|  | EXPECT_EQ(obj->b, 0xff); | 
|  | ASSERT_TRUE(obj->oct); | 
|  | EXPECT_EQ(ASN1_STRING_length(obj->oct), 0); | 
|  | TestSerialize(obj.get(), i2d_DOUBLY_TAGGED, kTrueEmpty); | 
|  | } | 
|  |  | 
|  | #define CHOICE_TYPE_OCT 0 | 
|  | #define CHOICE_TYPE_BOOL 1 | 
|  |  | 
|  | struct CHOICE_TYPE { | 
|  | int type; | 
|  | union { | 
|  | ASN1_OCTET_STRING *oct; | 
|  | ASN1_BOOLEAN b; | 
|  | } value; | 
|  | }; | 
|  |  | 
|  | DECLARE_ASN1_FUNCTIONS(CHOICE_TYPE) | 
|  | ASN1_CHOICE(CHOICE_TYPE) = { | 
|  | ASN1_SIMPLE(CHOICE_TYPE, value.oct, ASN1_OCTET_STRING), | 
|  | ASN1_SIMPLE(CHOICE_TYPE, value.b, ASN1_BOOLEAN), | 
|  | } ASN1_CHOICE_END(CHOICE_TYPE) | 
|  | IMPLEMENT_ASN1_FUNCTIONS(CHOICE_TYPE) | 
|  |  | 
|  | struct OPTIONAL_CHOICE { | 
|  | CHOICE_TYPE *choice; | 
|  | }; | 
|  |  | 
|  | DECLARE_ASN1_FUNCTIONS(OPTIONAL_CHOICE) | 
|  | ASN1_SEQUENCE(OPTIONAL_CHOICE) = { | 
|  | ASN1_OPT(OPTIONAL_CHOICE, choice, CHOICE_TYPE), | 
|  | } ASN1_SEQUENCE_END(OPTIONAL_CHOICE) | 
|  | IMPLEMENT_ASN1_FUNCTIONS(OPTIONAL_CHOICE) | 
|  |  | 
|  | TEST(ASN1Test, OptionalChoice) { | 
|  | std::unique_ptr<OPTIONAL_CHOICE, decltype(&OPTIONAL_CHOICE_free)> obj( | 
|  | nullptr, OPTIONAL_CHOICE_free); | 
|  |  | 
|  | // Value omitted. | 
|  | static const uint8_t kOmitted[] = {0x30, 0x00}; | 
|  | const uint8_t *inp = kOmitted; | 
|  | obj.reset(d2i_OPTIONAL_CHOICE(nullptr, &inp, sizeof(kOmitted))); | 
|  | ASSERT_TRUE(obj); | 
|  | EXPECT_FALSE(obj->choice); | 
|  | TestSerialize(obj.get(), i2d_OPTIONAL_CHOICE, kOmitted); | 
|  |  | 
|  | // Value is present as an OCTET STRING. | 
|  | static const uint8_t kOct[] = {0x30, 0x02, 0x04, 0x00}; | 
|  | inp = kOct; | 
|  | obj.reset(d2i_OPTIONAL_CHOICE(nullptr, &inp, sizeof(kOct))); | 
|  | ASSERT_TRUE(obj); | 
|  | ASSERT_TRUE(obj->choice); | 
|  | ASSERT_EQ(obj->choice->type, CHOICE_TYPE_OCT); | 
|  | ASSERT_TRUE(obj->choice->value.oct); | 
|  | EXPECT_EQ(ASN1_STRING_length(obj->choice->value.oct), 0); | 
|  | TestSerialize(obj.get(), i2d_OPTIONAL_CHOICE, kOct); | 
|  |  | 
|  | // Value is present as TRUE. | 
|  | static const uint8_t kTrue[] = {0x30, 0x03, 0x01, 0x01, 0xff}; | 
|  | inp = kTrue; | 
|  | obj.reset(d2i_OPTIONAL_CHOICE(nullptr, &inp, sizeof(kTrue))); | 
|  | ASSERT_TRUE(obj); | 
|  | ASSERT_TRUE(obj->choice); | 
|  | ASSERT_EQ(obj->choice->type, CHOICE_TYPE_BOOL); | 
|  | EXPECT_EQ(obj->choice->value.b, ASN1_BOOLEAN_TRUE); | 
|  | TestSerialize(obj.get(), i2d_OPTIONAL_CHOICE, kTrue); | 
|  | } | 
|  |  | 
|  | struct EMBED_X509_ALGOR { | 
|  | X509_ALGOR *simple; | 
|  | X509_ALGOR *opt; | 
|  | STACK_OF(X509_ALGOR) *seq; | 
|  | }; | 
|  |  | 
|  | struct EMBED_X509_EXTENSION { | 
|  | X509_EXTENSION *simple; | 
|  | X509_EXTENSION *opt; | 
|  | STACK_OF(X509_EXTENSION) *seq; | 
|  | }; | 
|  |  | 
|  | struct EMBED_X509_NAME { | 
|  | X509_NAME *simple; | 
|  | X509_NAME *opt; | 
|  | STACK_OF(X509_NAME) *seq; | 
|  | }; | 
|  |  | 
|  | struct EMBED_X509 { | 
|  | X509 *simple; | 
|  | X509 *opt; | 
|  | STACK_OF(X509) *seq; | 
|  | }; | 
|  |  | 
|  | DECLARE_ASN1_FUNCTIONS(EMBED_X509_ALGOR) | 
|  | ASN1_SEQUENCE(EMBED_X509_ALGOR) = { | 
|  | ASN1_SIMPLE(EMBED_X509_ALGOR, simple, X509_ALGOR), | 
|  | ASN1_EXP_OPT(EMBED_X509_ALGOR, opt, X509_ALGOR, 0), | 
|  | ASN1_IMP_SEQUENCE_OF_OPT(EMBED_X509_ALGOR, seq, X509_ALGOR, 1), | 
|  | } ASN1_SEQUENCE_END(EMBED_X509_ALGOR) | 
|  | IMPLEMENT_ASN1_FUNCTIONS(EMBED_X509_ALGOR) | 
|  |  | 
|  | DECLARE_ASN1_FUNCTIONS(EMBED_X509_NAME) | 
|  | ASN1_SEQUENCE(EMBED_X509_NAME) = { | 
|  | ASN1_SIMPLE(EMBED_X509_NAME, simple, X509_NAME), | 
|  | ASN1_EXP_OPT(EMBED_X509_NAME, opt, X509_NAME, 0), | 
|  | ASN1_IMP_SEQUENCE_OF_OPT(EMBED_X509_NAME, seq, X509_NAME, 1), | 
|  | } ASN1_SEQUENCE_END(EMBED_X509_NAME) | 
|  | IMPLEMENT_ASN1_FUNCTIONS(EMBED_X509_NAME) | 
|  |  | 
|  | DECLARE_ASN1_FUNCTIONS(EMBED_X509_EXTENSION) | 
|  | ASN1_SEQUENCE(EMBED_X509_EXTENSION) = { | 
|  | ASN1_SIMPLE(EMBED_X509_EXTENSION, simple, X509_EXTENSION), | 
|  | ASN1_EXP_OPT(EMBED_X509_EXTENSION, opt, X509_EXTENSION, 0), | 
|  | ASN1_IMP_SEQUENCE_OF_OPT(EMBED_X509_EXTENSION, seq, X509_EXTENSION, 1), | 
|  | } ASN1_SEQUENCE_END(EMBED_X509_EXTENSION) | 
|  | IMPLEMENT_ASN1_FUNCTIONS(EMBED_X509_EXTENSION) | 
|  |  | 
|  | DECLARE_ASN1_FUNCTIONS(EMBED_X509) | 
|  | ASN1_SEQUENCE(EMBED_X509) = { | 
|  | ASN1_SIMPLE(EMBED_X509, simple, X509), | 
|  | ASN1_EXP_OPT(EMBED_X509, opt, X509, 0), | 
|  | ASN1_IMP_SEQUENCE_OF_OPT(EMBED_X509, seq, X509, 1), | 
|  | } ASN1_SEQUENCE_END(EMBED_X509) | 
|  | IMPLEMENT_ASN1_FUNCTIONS(EMBED_X509) | 
|  |  | 
|  | template <typename EmbedT, typename T, typename MaybeConstT, typename StackT> | 
|  | void TestEmbedType(bssl::Span<const uint8_t> inp, | 
|  | int (*i2d)(MaybeConstT *, uint8_t **), | 
|  | EmbedT *(*embed_new)(), void (*embed_free)(EmbedT *), | 
|  | EmbedT *(*d2i_embed)(EmbedT **, const uint8_t **, long), | 
|  | int (*i2d_embed)(EmbedT *, uint8_t **), | 
|  | size_t (*sk_num)(const StackT *), | 
|  | T *(*sk_value)(const StackT *, size_t)) { | 
|  | std::unique_ptr<EmbedT, decltype(embed_free)> obj(nullptr, embed_free); | 
|  |  | 
|  | // Test only the first field present. | 
|  | bssl::ScopedCBB cbb; | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 64)); | 
|  | CBB seq; | 
|  | ASSERT_TRUE(CBB_add_asn1(cbb.get(), &seq, CBS_ASN1_SEQUENCE)); | 
|  | ASSERT_TRUE(CBB_add_bytes(&seq, inp.data(), inp.size())); | 
|  | ASSERT_TRUE(CBB_flush(cbb.get())); | 
|  | const uint8_t *ptr = CBB_data(cbb.get()); | 
|  | obj.reset(d2i_embed(nullptr, &ptr, CBB_len(cbb.get()))); | 
|  | ASSERT_TRUE(obj); | 
|  | ASSERT_TRUE(obj->simple); | 
|  | // Test the field was parsed correctly by reserializing it. | 
|  | TestSerialize(obj->simple, i2d, inp); | 
|  | EXPECT_FALSE(obj->opt); | 
|  | EXPECT_FALSE(obj->seq); | 
|  | TestSerialize(obj.get(), i2d_embed, | 
|  | {CBB_data(cbb.get()), CBB_len(cbb.get())}); | 
|  |  | 
|  | // Test all fields present. | 
|  | cbb.Reset(); | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 64)); | 
|  | ASSERT_TRUE(CBB_add_asn1(cbb.get(), &seq, CBS_ASN1_SEQUENCE)); | 
|  | ASSERT_TRUE(CBB_add_bytes(&seq, inp.data(), inp.size())); | 
|  | CBB child; | 
|  | ASSERT_TRUE(CBB_add_asn1( | 
|  | &seq, &child, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)); | 
|  | ASSERT_TRUE(CBB_add_bytes(&child, inp.data(), inp.size())); | 
|  | ASSERT_TRUE(CBB_add_asn1( | 
|  | &seq, &child, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1)); | 
|  | ASSERT_TRUE(CBB_add_bytes(&child, inp.data(), inp.size())); | 
|  | ASSERT_TRUE(CBB_add_bytes(&child, inp.data(), inp.size())); | 
|  | ASSERT_TRUE(CBB_flush(cbb.get())); | 
|  | ptr = CBB_data(cbb.get()); | 
|  | obj.reset(d2i_embed(nullptr, &ptr, CBB_len(cbb.get()))); | 
|  | ASSERT_TRUE(obj); | 
|  | ASSERT_TRUE(obj->simple); | 
|  | TestSerialize(obj->simple, i2d, inp); | 
|  | ASSERT_TRUE(obj->opt); | 
|  | TestSerialize(obj->opt, i2d, inp); | 
|  | ASSERT_EQ(sk_num(obj->seq), 2u); | 
|  | TestSerialize(sk_value(obj->seq, 0), i2d, inp); | 
|  | TestSerialize(sk_value(obj->seq, 1), i2d, inp); | 
|  | TestSerialize(obj.get(), i2d_embed, | 
|  | {CBB_data(cbb.get()), CBB_len(cbb.get())}); | 
|  | } | 
|  |  | 
|  | // Test that X.509 types defined in this library can be embedded into other | 
|  | // types, as we rewrite them away from the templating system. | 
|  | TEST(ASN1Test, EmbedTypes) { | 
|  | static const uint8_t kTestAlg[] = {0x30, 0x09, 0x06, 0x07, 0x2a, 0x86, | 
|  | 0x48, 0xce, 0x3d, 0x04, 0x01}; | 
|  | TestEmbedType(kTestAlg, i2d_X509_ALGOR, EMBED_X509_ALGOR_new, | 
|  | EMBED_X509_ALGOR_free, d2i_EMBED_X509_ALGOR, | 
|  | i2d_EMBED_X509_ALGOR, sk_X509_ALGOR_num, sk_X509_ALGOR_value); | 
|  |  | 
|  | static const uint8_t kTestName[] = { | 
|  | 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, | 
|  | 0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, | 
|  | 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, | 
|  | 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, | 
|  | 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, | 
|  | 0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64}; | 
|  | TestEmbedType(kTestName, i2d_X509_NAME, EMBED_X509_NAME_new, | 
|  | EMBED_X509_NAME_free, d2i_EMBED_X509_NAME, i2d_EMBED_X509_NAME, | 
|  | sk_X509_NAME_num, sk_X509_NAME_value); | 
|  |  | 
|  | static const uint8_t kTestExtension[] = {0x30, 0x0c, 0x06, 0x03, 0x55, | 
|  | 0x1d, 0x13, 0x04, 0x05, 0x30, | 
|  | 0x03, 0x01, 0x01, 0xf}; | 
|  | TestEmbedType(kTestExtension, i2d_X509_EXTENSION, EMBED_X509_EXTENSION_new, | 
|  | EMBED_X509_EXTENSION_free, d2i_EMBED_X509_EXTENSION, | 
|  | i2d_EMBED_X509_EXTENSION, sk_X509_EXTENSION_num, | 
|  | sk_X509_EXTENSION_value); | 
|  |  | 
|  | static const uint8_t kTestCert[] = { | 
|  | 0x30, 0x82, 0x01, 0xcf, 0x30, 0x82, 0x01, 0x76, 0xa0, 0x03, 0x02, 0x01, | 
|  | 0x02, 0x02, 0x09, 0x00, 0xd9, 0x4c, 0x04, 0xda, 0x49, 0x7d, 0xbf, 0xeb, | 
|  | 0x30, 0x09, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x01, 0x30, | 
|  | 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, | 
|  | 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, 0x0c, | 
|  | 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, 0x31, | 
|  | 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, 0x6e, | 
|  | 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, 0x69, | 
|  | 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64, 0x30, 0x1e, | 
|  | 0x17, 0x0d, 0x31, 0x34, 0x30, 0x34, 0x32, 0x33, 0x32, 0x33, 0x32, 0x31, | 
|  | 0x35, 0x37, 0x5a, 0x17, 0x0d, 0x31, 0x34, 0x30, 0x35, 0x32, 0x33, 0x32, | 
|  | 0x33, 0x32, 0x31, 0x35, 0x37, 0x5a, 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, | 
|  | 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x41, 0x55, 0x31, 0x13, 0x30, | 
|  | 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, | 
|  | 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, | 
|  | 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, | 
|  | 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, 0x69, 0x74, 0x73, 0x20, 0x50, 0x74, | 
|  | 0x79, 0x20, 0x4c, 0x74, 0x64, 0x30, 0x59, 0x30, 0x13, 0x06, 0x07, 0x2a, | 
|  | 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, | 
|  | 0x3d, 0x03, 0x01, 0x07, 0x03, 0x42, 0x00, 0x04, 0xe6, 0x2b, 0x69, 0xe2, | 
|  | 0xbf, 0x65, 0x9f, 0x97, 0xbe, 0x2f, 0x1e, 0x0d, 0x94, 0x8a, 0x4c, 0xd5, | 
|  | 0x97, 0x6b, 0xb7, 0xa9, 0x1e, 0x0d, 0x46, 0xfb, 0xdd, 0xa9, 0xa9, 0x1e, | 
|  | 0x9d, 0xdc, 0xba, 0x5a, 0x01, 0xe7, 0xd6, 0x97, 0xa8, 0x0a, 0x18, 0xf9, | 
|  | 0xc3, 0xc4, 0xa3, 0x1e, 0x56, 0xe2, 0x7c, 0x83, 0x48, 0xdb, 0x16, 0x1a, | 
|  | 0x1c, 0xf5, 0x1d, 0x7e, 0xf1, 0x94, 0x2d, 0x4b, 0xcf, 0x72, 0x22, 0xc1, | 
|  | 0xa3, 0x50, 0x30, 0x4e, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x1d, 0x0e, 0x04, | 
|  | 0x16, 0x04, 0x14, 0xab, 0x84, 0xd2, 0xac, 0xab, 0x95, 0xf0, 0x82, 0x4e, | 
|  | 0x16, 0x78, 0x07, 0x55, 0x57, 0x5f, 0xe4, 0x26, 0x8d, 0x82, 0xd1, 0x30, | 
|  | 0x1f, 0x06, 0x03, 0x55, 0x1d, 0x23, 0x04, 0x18, 0x30, 0x16, 0x80, 0x14, | 
|  | 0xab, 0x84, 0xd2, 0xac, 0xab, 0x95, 0xf0, 0x82, 0x4e, 0x16, 0x78, 0x07, | 
|  | 0x55, 0x57, 0x5f, 0xe4, 0x26, 0x8d, 0x82, 0xd1, 0x30, 0x0c, 0x06, 0x03, | 
|  | 0x55, 0x1d, 0x13, 0x04, 0x05, 0x30, 0x03, 0x01, 0x01, 0xff, 0x30, 0x09, | 
|  | 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x01, 0x03, 0x48, 0x00, | 
|  | 0x30, 0x45, 0x02, 0x21, 0x00, 0xf2, 0xa0, 0x35, 0x5e, 0x51, 0x3a, 0x36, | 
|  | 0xc3, 0x82, 0x79, 0x9b, 0xee, 0x27, 0x50, 0x85, 0x8e, 0x70, 0x06, 0x74, | 
|  | 0x95, 0x57, 0xd2, 0x29, 0x74, 0x00, 0xf4, 0xbe, 0x15, 0x87, 0x5d, 0xc4, | 
|  | 0x07, 0x02, 0x20, 0x7c, 0x1e, 0x79, 0x14, 0x6a, 0x21, 0x83, 0xf0, 0x7a, | 
|  | 0x74, 0x68, 0x79, 0x5f, 0x14, 0x99, 0x9a, 0x68, 0xb4, 0xf1, 0xcb, 0x9e, | 
|  | 0x15, 0x5e, 0xe6, 0x1f, 0x32, 0x52, 0x61, 0x5e, 0x75, 0xc9, 0x14}; | 
|  | TestEmbedType(kTestCert, i2d_X509, EMBED_X509_new, EMBED_X509_free, | 
|  | d2i_EMBED_X509, i2d_EMBED_X509, sk_X509_num, sk_X509_value); | 
|  | } | 
|  |  | 
|  | #endif  // !WINDOWS || !SHARED_LIBRARY |