| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * ECC cipher suite support in OpenSSL originally written by |
| * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories. |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2005 Nokia. All rights reserved. |
| * |
| * The portions of the attached software ("Contribution") is developed by |
| * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
| * license. |
| * |
| * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
| * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
| * support (see RFC 4279) to OpenSSL. |
| * |
| * No patent licenses or other rights except those expressly stated in |
| * the OpenSSL open source license shall be deemed granted or received |
| * expressly, by implication, estoppel, or otherwise. |
| * |
| * No assurances are provided by Nokia that the Contribution does not |
| * infringe the patent or other intellectual property rights of any third |
| * party or that the license provides you with all the necessary rights |
| * to make use of the Contribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
| * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
| * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
| * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
| * OTHERWISE. */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/cipher.h> |
| #include <openssl/curve25519.h> |
| #include <openssl/digest.h> |
| #include <openssl/ec.h> |
| #include <openssl/ecdsa.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/hmac.h> |
| #include <openssl/md5.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| #include <openssl/x509.h> |
| |
| #include "internal.h" |
| #include "../crypto/internal.h" |
| |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| bool ssl_client_cipher_list_contains_cipher( |
| const SSL_CLIENT_HELLO *client_hello, uint16_t id) { |
| CBS cipher_suites; |
| CBS_init(&cipher_suites, client_hello->cipher_suites, |
| client_hello->cipher_suites_len); |
| |
| while (CBS_len(&cipher_suites) > 0) { |
| uint16_t got_id; |
| if (!CBS_get_u16(&cipher_suites, &got_id)) { |
| return false; |
| } |
| |
| if (got_id == id) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello) { |
| SSL *const ssl = hs->ssl; |
| assert(!ssl->s3->have_version); |
| CBS supported_versions, versions; |
| if (ssl_client_hello_get_extension(client_hello, &supported_versions, |
| TLSEXT_TYPE_supported_versions)) { |
| if (!CBS_get_u8_length_prefixed(&supported_versions, &versions) || |
| CBS_len(&supported_versions) != 0 || |
| CBS_len(&versions) == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| } else { |
| // Convert the ClientHello version to an equivalent supported_versions |
| // extension. |
| static const uint8_t kTLSVersions[] = { |
| 0x03, 0x03, // TLS 1.2 |
| 0x03, 0x02, // TLS 1.1 |
| 0x03, 0x01, // TLS 1 |
| }; |
| |
| static const uint8_t kDTLSVersions[] = { |
| 0xfe, 0xfd, // DTLS 1.2 |
| 0xfe, 0xff, // DTLS 1.0 |
| }; |
| |
| size_t versions_len = 0; |
| if (SSL_is_dtls(ssl)) { |
| if (client_hello->version <= DTLS1_2_VERSION) { |
| versions_len = 4; |
| } else if (client_hello->version <= DTLS1_VERSION) { |
| versions_len = 2; |
| } |
| CBS_init(&versions, kDTLSVersions + sizeof(kDTLSVersions) - versions_len, |
| versions_len); |
| } else { |
| if (client_hello->version >= TLS1_2_VERSION) { |
| versions_len = 6; |
| } else if (client_hello->version >= TLS1_1_VERSION) { |
| versions_len = 4; |
| } else if (client_hello->version >= TLS1_VERSION) { |
| versions_len = 2; |
| } |
| CBS_init(&versions, kTLSVersions + sizeof(kTLSVersions) - versions_len, |
| versions_len); |
| } |
| } |
| |
| if (!ssl_negotiate_version(hs, out_alert, &ssl->version, &versions)) { |
| return false; |
| } |
| |
| // At this point, the connection's version is known and |ssl->version| is |
| // fixed. Begin enforcing the record-layer version. |
| ssl->s3->have_version = true; |
| ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version); |
| |
| // Handle FALLBACK_SCSV. |
| if (ssl_client_cipher_list_contains_cipher(client_hello, |
| SSL3_CK_FALLBACK_SCSV & 0xffff) && |
| ssl_protocol_version(ssl) < hs->max_version) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INAPPROPRIATE_FALLBACK); |
| *out_alert = SSL3_AD_INAPPROPRIATE_FALLBACK; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static UniquePtr<STACK_OF(SSL_CIPHER)> ssl_parse_client_cipher_list( |
| const SSL_CLIENT_HELLO *client_hello) { |
| CBS cipher_suites; |
| CBS_init(&cipher_suites, client_hello->cipher_suites, |
| client_hello->cipher_suites_len); |
| |
| UniquePtr<STACK_OF(SSL_CIPHER)> sk(sk_SSL_CIPHER_new_null()); |
| if (!sk) { |
| return nullptr; |
| } |
| |
| while (CBS_len(&cipher_suites) > 0) { |
| uint16_t cipher_suite; |
| |
| if (!CBS_get_u16(&cipher_suites, &cipher_suite)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); |
| return nullptr; |
| } |
| |
| const SSL_CIPHER *c = SSL_get_cipher_by_value(cipher_suite); |
| if (c != NULL && !sk_SSL_CIPHER_push(sk.get(), c)) { |
| return nullptr; |
| } |
| } |
| |
| return sk; |
| } |
| |
| static const SSL_CIPHER *choose_cipher(SSL_HANDSHAKE *hs, |
| const STACK_OF(SSL_CIPHER) *client_pref, |
| uint32_t mask_k, uint32_t mask_a) { |
| SSL *const ssl = hs->ssl; |
| const STACK_OF(SSL_CIPHER) *prio, *allow; |
| // in_group_flags will either be NULL, or will point to an array of bytes |
| // which indicate equal-preference groups in the |prio| stack. See the |
| // comment about |in_group_flags| in the |SSLCipherPreferenceList| |
| // struct. |
| const bool *in_group_flags; |
| // group_min contains the minimal index so far found in a group, or -1 if no |
| // such value exists yet. |
| int group_min = -1; |
| |
| const SSLCipherPreferenceList *server_pref = |
| hs->config->cipher_list ? hs->config->cipher_list.get() |
| : ssl->ctx->cipher_list.get(); |
| if (ssl->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { |
| prio = server_pref->ciphers.get(); |
| in_group_flags = server_pref->in_group_flags; |
| allow = client_pref; |
| } else { |
| prio = client_pref; |
| in_group_flags = NULL; |
| allow = server_pref->ciphers.get(); |
| } |
| |
| for (size_t i = 0; i < sk_SSL_CIPHER_num(prio); i++) { |
| const SSL_CIPHER *c = sk_SSL_CIPHER_value(prio, i); |
| |
| size_t cipher_index; |
| if (// Check if the cipher is supported for the current version. |
| SSL_CIPHER_get_min_version(c) <= ssl_protocol_version(ssl) && |
| ssl_protocol_version(ssl) <= SSL_CIPHER_get_max_version(c) && |
| // Check the cipher is supported for the server configuration. |
| (c->algorithm_mkey & mask_k) && |
| (c->algorithm_auth & mask_a) && |
| // Check the cipher is in the |allow| list. |
| sk_SSL_CIPHER_find(allow, &cipher_index, c)) { |
| if (in_group_flags != NULL && in_group_flags[i]) { |
| // This element of |prio| is in a group. Update the minimum index found |
| // so far and continue looking. |
| if (group_min == -1 || (size_t)group_min > cipher_index) { |
| group_min = cipher_index; |
| } |
| } else { |
| if (group_min != -1 && (size_t)group_min < cipher_index) { |
| cipher_index = group_min; |
| } |
| return sk_SSL_CIPHER_value(allow, cipher_index); |
| } |
| } |
| |
| if (in_group_flags != NULL && !in_group_flags[i] && group_min != -1) { |
| // We are about to leave a group, but we found a match in it, so that's |
| // our answer. |
| return sk_SSL_CIPHER_value(allow, group_min); |
| } |
| } |
| |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_SHARED_CIPHER); |
| return nullptr; |
| } |
| |
| struct TLS12ServerParams { |
| bool ok() const { return cipher != nullptr; } |
| |
| const SSL_CIPHER *cipher = nullptr; |
| uint16_t signature_algorithm = 0; |
| }; |
| |
| static TLS12ServerParams choose_params(SSL_HANDSHAKE *hs, |
| const SSL_CREDENTIAL *cred, |
| const STACK_OF(SSL_CIPHER) *client_pref, |
| bool has_ecdhe_group) { |
| // Determine the usable cipher suites. |
| uint32_t mask_k = 0, mask_a = 0; |
| if (has_ecdhe_group) { |
| mask_k |= SSL_kECDHE; |
| } |
| if (hs->config->psk_server_callback != nullptr) { |
| mask_k |= SSL_kPSK; |
| mask_a |= SSL_aPSK; |
| } |
| uint16_t sigalg = 0; |
| if (cred != nullptr && cred->type == SSLCredentialType::kX509) { |
| bool sign_ok = tls1_choose_signature_algorithm(hs, cred, &sigalg); |
| ERR_clear_error(); |
| |
| // ECDSA keys must additionally be checked against the peer's supported |
| // curve list. |
| int key_type = EVP_PKEY_id(cred->pubkey.get()); |
| if (hs->config->check_ecdsa_curve && key_type == EVP_PKEY_EC) { |
| EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(cred->pubkey.get()); |
| uint16_t group_id; |
| if (!ssl_nid_to_group_id( |
| &group_id, EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key))) || |
| std::find(hs->peer_supported_group_list.begin(), |
| hs->peer_supported_group_list.end(), |
| group_id) == hs->peer_supported_group_list.end()) { |
| sign_ok = false; |
| |
| // If this would make us unable to pick any cipher, return an error. |
| // This is not strictly necessary, but it gives us a more specific |
| // error to help the caller diagnose issues. |
| if (mask_a == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE); |
| return TLS12ServerParams(); |
| } |
| } |
| } |
| |
| mask_a |= ssl_cipher_auth_mask_for_key(cred->pubkey.get(), sign_ok); |
| if (key_type == EVP_PKEY_RSA) { |
| mask_k |= SSL_kRSA; |
| } |
| } |
| |
| TLS12ServerParams params; |
| params.cipher = choose_cipher(hs, client_pref, mask_k, mask_a); |
| if (params.cipher == nullptr) { |
| return TLS12ServerParams(); |
| } |
| if (ssl_cipher_requires_server_key_exchange(params.cipher) && |
| ssl_cipher_uses_certificate_auth(params.cipher)) { |
| params.signature_algorithm = sigalg; |
| } |
| return params; |
| } |
| |
| static enum ssl_hs_wait_t do_start_accept(SSL_HANDSHAKE *hs) { |
| ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_START, 1); |
| hs->state = state12_read_client_hello; |
| return ssl_hs_ok; |
| } |
| |
| // is_probably_jdk11_with_tls13 returns whether |client_hello| was probably sent |
| // from a JDK 11 client with both TLS 1.3 and a prior version enabled. |
| static bool is_probably_jdk11_with_tls13(const SSL_CLIENT_HELLO *client_hello) { |
| // JDK 11 ClientHellos contain a number of unusual properties which should |
| // limit false positives. |
| |
| // JDK 11 does not support ChaCha20-Poly1305. This is unusual: many modern |
| // clients implement ChaCha20-Poly1305. |
| if (ssl_client_cipher_list_contains_cipher( |
| client_hello, TLS1_3_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) { |
| return false; |
| } |
| |
| // JDK 11 always sends extensions in a particular order. |
| constexpr uint16_t kMaxFragmentLength = 0x0001; |
| constexpr uint16_t kStatusRequestV2 = 0x0011; |
| static constexpr struct { |
| uint16_t id; |
| bool required; |
| } kJavaExtensions[] = { |
| {TLSEXT_TYPE_server_name, false}, |
| {kMaxFragmentLength, false}, |
| {TLSEXT_TYPE_status_request, false}, |
| {TLSEXT_TYPE_supported_groups, true}, |
| {TLSEXT_TYPE_ec_point_formats, false}, |
| {TLSEXT_TYPE_signature_algorithms, true}, |
| // Java always sends signature_algorithms_cert. |
| {TLSEXT_TYPE_signature_algorithms_cert, true}, |
| {TLSEXT_TYPE_application_layer_protocol_negotiation, false}, |
| {kStatusRequestV2, false}, |
| {TLSEXT_TYPE_extended_master_secret, false}, |
| {TLSEXT_TYPE_supported_versions, true}, |
| {TLSEXT_TYPE_cookie, false}, |
| {TLSEXT_TYPE_psk_key_exchange_modes, true}, |
| {TLSEXT_TYPE_key_share, true}, |
| {TLSEXT_TYPE_renegotiate, false}, |
| {TLSEXT_TYPE_pre_shared_key, false}, |
| }; |
| Span<const uint8_t> sigalgs, sigalgs_cert; |
| bool has_status_request = false, has_status_request_v2 = false; |
| CBS extensions, supported_groups; |
| CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len); |
| for (const auto &java_extension : kJavaExtensions) { |
| CBS copy = extensions; |
| uint16_t id; |
| if (CBS_get_u16(©, &id) && id == java_extension.id) { |
| // The next extension is the one we expected. |
| extensions = copy; |
| CBS body; |
| if (!CBS_get_u16_length_prefixed(&extensions, &body)) { |
| return false; |
| } |
| switch (id) { |
| case TLSEXT_TYPE_status_request: |
| has_status_request = true; |
| break; |
| case kStatusRequestV2: |
| has_status_request_v2 = true; |
| break; |
| case TLSEXT_TYPE_signature_algorithms: |
| sigalgs = body; |
| break; |
| case TLSEXT_TYPE_signature_algorithms_cert: |
| sigalgs_cert = body; |
| break; |
| case TLSEXT_TYPE_supported_groups: |
| supported_groups = body; |
| break; |
| } |
| } else if (java_extension.required) { |
| return false; |
| } |
| } |
| if (CBS_len(&extensions) != 0) { |
| return false; |
| } |
| |
| // JDK 11 never advertises X25519. It is not offered by default, and |
| // -Djdk.tls.namedGroups=x25519 does not work. This is unusual: many modern |
| // clients implement X25519. |
| while (CBS_len(&supported_groups) > 0) { |
| uint16_t group; |
| if (!CBS_get_u16(&supported_groups, &group) || |
| group == SSL_GROUP_X25519) { |
| return false; |
| } |
| } |
| |
| if (// JDK 11 always sends the same contents in signature_algorithms and |
| // signature_algorithms_cert. This is unusual: signature_algorithms_cert, |
| // if omitted, is treated as if it were signature_algorithms. |
| sigalgs != sigalgs_cert || |
| // When TLS 1.2 or below is enabled, JDK 11 sends status_request_v2 iff it |
| // sends status_request. This is unusual: status_request_v2 is not widely |
| // implemented. |
| has_status_request != has_status_request_v2) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool decrypt_ech(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello) { |
| SSL *const ssl = hs->ssl; |
| CBS body; |
| if (!ssl_client_hello_get_extension(client_hello, &body, |
| TLSEXT_TYPE_encrypted_client_hello)) { |
| return true; |
| } |
| uint8_t type; |
| if (!CBS_get_u8(&body, &type)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| if (type != ECH_CLIENT_OUTER) { |
| return true; |
| } |
| // This is a ClientHelloOuter ECH extension. Attempt to decrypt it. |
| uint8_t config_id; |
| uint16_t kdf_id, aead_id; |
| CBS enc, payload; |
| if (!CBS_get_u16(&body, &kdf_id) || // |
| !CBS_get_u16(&body, &aead_id) || // |
| !CBS_get_u8(&body, &config_id) || |
| !CBS_get_u16_length_prefixed(&body, &enc) || |
| !CBS_get_u16_length_prefixed(&body, &payload) || // |
| CBS_len(&body) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| { |
| MutexReadLock lock(&ssl->ctx->lock); |
| hs->ech_keys = UpRef(ssl->ctx->ech_keys); |
| } |
| |
| if (!hs->ech_keys) { |
| ssl->s3->ech_status = ssl_ech_rejected; |
| return true; |
| } |
| |
| for (const auto &config : hs->ech_keys->configs) { |
| hs->ech_hpke_ctx.Reset(); |
| if (config_id != config->ech_config().config_id || |
| !config->SetupContext(hs->ech_hpke_ctx.get(), kdf_id, aead_id, enc)) { |
| // Ignore the error and try another ECHConfig. |
| ERR_clear_error(); |
| continue; |
| } |
| bool is_decrypt_error; |
| if (!ssl_client_hello_decrypt(hs, out_alert, &is_decrypt_error, |
| &hs->ech_client_hello_buf, client_hello, |
| payload)) { |
| if (is_decrypt_error) { |
| // Ignore the error and try another ECHConfig. |
| ERR_clear_error(); |
| // The |out_alert| calling convention currently relies on a default of |
| // |SSL_AD_DECODE_ERROR|. https://crbug.com/boringssl/373 tracks |
| // switching to sum types, which avoids this. |
| *out_alert = SSL_AD_DECODE_ERROR; |
| continue; |
| } |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED); |
| return false; |
| } |
| hs->ech_config_id = config_id; |
| ssl->s3->ech_status = ssl_ech_accepted; |
| return true; |
| } |
| |
| // If we did not accept ECH, proceed with the ClientHelloOuter. Note this |
| // could be key mismatch or ECH GREASE, so we must complete the handshake |
| // as usual, except EncryptedExtensions will contain retry configs. |
| ssl->s3->ech_status = ssl_ech_rejected; |
| return true; |
| } |
| |
| static bool extract_sni(SSL_HANDSHAKE *hs, uint8_t *out_alert, |
| const SSL_CLIENT_HELLO *client_hello) { |
| SSL *const ssl = hs->ssl; |
| CBS sni; |
| if (!ssl_client_hello_get_extension(client_hello, &sni, |
| TLSEXT_TYPE_server_name)) { |
| // No SNI extension to parse. |
| return true; |
| } |
| |
| CBS server_name_list, host_name; |
| uint8_t name_type; |
| if (!CBS_get_u16_length_prefixed(&sni, &server_name_list) || |
| !CBS_get_u8(&server_name_list, &name_type) || |
| // Although the server_name extension was intended to be extensible to |
| // new name types and multiple names, OpenSSL 1.0.x had a bug which meant |
| // different name types will cause an error. Further, RFC 4366 originally |
| // defined syntax inextensibly. RFC 6066 corrected this mistake, but |
| // adding new name types is no longer feasible. |
| // |
| // Act as if the extensibility does not exist to simplify parsing. |
| !CBS_get_u16_length_prefixed(&server_name_list, &host_name) || |
| CBS_len(&server_name_list) != 0 || |
| CBS_len(&sni) != 0) { |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return false; |
| } |
| |
| if (name_type != TLSEXT_NAMETYPE_host_name || |
| CBS_len(&host_name) == 0 || |
| CBS_len(&host_name) > TLSEXT_MAXLEN_host_name || |
| CBS_contains_zero_byte(&host_name)) { |
| *out_alert = SSL_AD_UNRECOGNIZED_NAME; |
| return false; |
| } |
| |
| // Copy the hostname as a string. |
| char *raw = nullptr; |
| if (!CBS_strdup(&host_name, &raw)) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return false; |
| } |
| ssl->s3->hostname.reset(raw); |
| |
| hs->should_ack_sni = true; |
| return true; |
| } |
| |
| static enum ssl_hs_wait_t do_read_client_hello(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_HELLO)) { |
| return ssl_hs_error; |
| } |
| |
| SSL_CLIENT_HELLO client_hello; |
| if (!ssl_client_hello_init(ssl, &client_hello, msg.body)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| |
| // ClientHello should be the end of the flight. We check this early to cover |
| // all protocol versions. |
| if (ssl->method->has_unprocessed_handshake_data(ssl)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA); |
| return ssl_hs_error; |
| } |
| |
| if (hs->config->handoff) { |
| return ssl_hs_handoff; |
| } |
| |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!decrypt_ech(hs, &alert, &client_hello)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return ssl_hs_error; |
| } |
| |
| // ECH may have changed which ClientHello we process. Update |msg| and |
| // |client_hello| in case. |
| if (!hs->GetClientHello(&msg, &client_hello)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (!extract_sni(hs, &alert, &client_hello)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return ssl_hs_error; |
| } |
| |
| hs->state = state12_read_client_hello_after_ech; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_client_hello_after_ech(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| SSLMessage msg_unused; |
| SSL_CLIENT_HELLO client_hello; |
| if (!hs->GetClientHello(&msg_unused, &client_hello)) { |
| return ssl_hs_error; |
| } |
| |
| // Run the early callback. |
| if (ssl->ctx->select_certificate_cb != NULL) { |
| switch (ssl->ctx->select_certificate_cb(&client_hello)) { |
| case ssl_select_cert_retry: |
| return ssl_hs_certificate_selection_pending; |
| |
| case ssl_select_cert_error: |
| // Connection rejected. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| |
| default: |
| /* fallthrough */; |
| } |
| } |
| |
| // Freeze the version range after the early callback. |
| if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) { |
| return ssl_hs_error; |
| } |
| |
| if (hs->config->jdk11_workaround && |
| is_probably_jdk11_with_tls13(&client_hello)) { |
| hs->apply_jdk11_workaround = true; |
| } |
| |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!negotiate_version(hs, &alert, &client_hello)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return ssl_hs_error; |
| } |
| |
| hs->client_version = client_hello.version; |
| if (client_hello.random_len != SSL3_RANDOM_SIZE) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| OPENSSL_memcpy(ssl->s3->client_random, client_hello.random, |
| client_hello.random_len); |
| |
| // Only null compression is supported. TLS 1.3 further requires the peer |
| // advertise no other compression. |
| if (OPENSSL_memchr(client_hello.compression_methods, 0, |
| client_hello.compression_methods_len) == NULL || |
| (ssl_protocol_version(ssl) >= TLS1_3_VERSION && |
| client_hello.compression_methods_len != 1)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMPRESSION_LIST); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| return ssl_hs_error; |
| } |
| |
| // TLS extensions. |
| if (!ssl_parse_clienthello_tlsext(hs, &client_hello)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); |
| return ssl_hs_error; |
| } |
| |
| hs->state = state12_cert_callback; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_cert_callback(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| // Call |cert_cb| to update server certificates if required. |
| if (hs->config->cert->cert_cb != NULL) { |
| int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg); |
| if (rv == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| if (rv < 0) { |
| return ssl_hs_x509_lookup; |
| } |
| } |
| |
| if (hs->ocsp_stapling_requested && |
| ssl->ctx->legacy_ocsp_callback != nullptr) { |
| switch (ssl->ctx->legacy_ocsp_callback( |
| ssl, ssl->ctx->legacy_ocsp_callback_arg)) { |
| case SSL_TLSEXT_ERR_OK: |
| break; |
| case SSL_TLSEXT_ERR_NOACK: |
| hs->ocsp_stapling_requested = false; |
| break; |
| default: |
| OPENSSL_PUT_ERROR(SSL, SSL_R_OCSP_CB_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| } |
| |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| // Jump to the TLS 1.3 state machine. |
| hs->state = state12_tls13; |
| return ssl_hs_ok; |
| } |
| |
| // It should not be possible to negotiate TLS 1.2 with ECH. The |
| // ClientHelloInner decoding function rejects ClientHellos which offer TLS 1.2 |
| // or below. |
| assert(ssl->s3->ech_status != ssl_ech_accepted); |
| |
| ssl->s3->early_data_reason = ssl_early_data_protocol_version; |
| |
| hs->state = state12_select_parameters; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) { |
| enum ssl_hs_wait_t wait = tls13_server_handshake(hs); |
| if (wait == ssl_hs_ok) { |
| hs->state = state12_finish_server_handshake; |
| return ssl_hs_ok; |
| } |
| |
| return wait; |
| } |
| |
| static enum ssl_hs_wait_t do_select_parameters(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| SSLMessage msg; |
| SSL_CLIENT_HELLO client_hello; |
| if (!hs->GetClientHello(&msg, &client_hello)) { |
| return ssl_hs_error; |
| } |
| |
| // Determine the ECDHE group to use, if we are to use ECDHE. |
| uint16_t group_id = 0; |
| bool has_ecdhe_group = tls1_get_shared_group(hs, &group_id); |
| |
| // Select the credential and cipher suite. This must be done after |cert_cb| |
| // runs, so the final credential list is known. |
| // |
| // TODO(davidben): In the course of picking these, we also pick the ECDHE |
| // group and signature algorithm. It would be tidier if we saved that decision |
| // and avoided redoing it later. |
| UniquePtr<STACK_OF(SSL_CIPHER)> client_pref = |
| ssl_parse_client_cipher_list(&client_hello); |
| if (client_pref == nullptr) { |
| return ssl_hs_error; |
| } |
| Array<SSL_CREDENTIAL *> creds; |
| if (!ssl_get_credential_list(hs, &creds)) { |
| return ssl_hs_error; |
| } |
| TLS12ServerParams params; |
| if (creds.empty()) { |
| // The caller may have configured no credentials, but set a PSK callback. |
| params = |
| choose_params(hs, /*cred=*/nullptr, client_pref.get(), has_ecdhe_group); |
| } else { |
| // Select the first credential which works. |
| for (SSL_CREDENTIAL *cred : creds) { |
| ERR_clear_error(); |
| params = choose_params(hs, cred, client_pref.get(), has_ecdhe_group); |
| if (params.ok()) { |
| hs->credential = UpRef(cred); |
| break; |
| } |
| } |
| } |
| if (!params.ok()) { |
| // The error from the last attempt is in the error queue. |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| } |
| hs->new_cipher = params.cipher; |
| hs->signature_algorithm = params.signature_algorithm; |
| |
| hs->session_id_len = client_hello.session_id_len; |
| // This is checked in |ssl_client_hello_init|. |
| assert(hs->session_id_len <= sizeof(hs->session_id)); |
| OPENSSL_memcpy(hs->session_id, client_hello.session_id, hs->session_id_len); |
| |
| // Determine whether we are doing session resumption. |
| UniquePtr<SSL_SESSION> session; |
| bool tickets_supported = false, renew_ticket = false; |
| enum ssl_hs_wait_t wait = ssl_get_prev_session( |
| hs, &session, &tickets_supported, &renew_ticket, &client_hello); |
| if (wait != ssl_hs_ok) { |
| return wait; |
| } |
| |
| if (session) { |
| if (session->extended_master_secret && !hs->extended_master_secret) { |
| // A ClientHello without EMS that attempts to resume a session with EMS |
| // is fatal to the connection. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| } |
| |
| if (!ssl_session_is_resumable(hs, session.get()) || |
| // If the client offers the EMS extension, but the previous session |
| // didn't use it, then negotiate a new session. |
| hs->extended_master_secret != session->extended_master_secret) { |
| session.reset(); |
| } |
| } |
| |
| if (session) { |
| // Use the old session. |
| hs->ticket_expected = renew_ticket; |
| ssl->session = std::move(session); |
| ssl->s3->session_reused = true; |
| hs->can_release_private_key = true; |
| } else { |
| hs->ticket_expected = tickets_supported; |
| ssl_set_session(ssl, nullptr); |
| if (!ssl_get_new_session(hs)) { |
| return ssl_hs_error; |
| } |
| |
| // Assign a session ID if not using session tickets. |
| if (!hs->ticket_expected && |
| (ssl->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER)) { |
| hs->new_session->session_id_length = SSL3_SSL_SESSION_ID_LENGTH; |
| RAND_bytes(hs->new_session->session_id, |
| hs->new_session->session_id_length); |
| } |
| } |
| |
| if (ssl->ctx->dos_protection_cb != NULL && |
| ssl->ctx->dos_protection_cb(&client_hello) == 0) { |
| // Connection rejected for DOS reasons. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (ssl->session == NULL) { |
| hs->new_session->cipher = hs->new_cipher; |
| if (hs->new_session->cipher->algorithm_mkey & SSL_kECDHE) { |
| assert(has_ecdhe_group); |
| hs->new_session->group_id = group_id; |
| } |
| |
| // Determine whether to request a client certificate. |
| hs->cert_request = !!(hs->config->verify_mode & SSL_VERIFY_PEER); |
| // Only request a certificate if Channel ID isn't negotiated. |
| if ((hs->config->verify_mode & SSL_VERIFY_PEER_IF_NO_OBC) && |
| hs->channel_id_negotiated) { |
| hs->cert_request = false; |
| } |
| // CertificateRequest may only be sent in certificate-based ciphers. |
| if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| hs->cert_request = false; |
| } |
| |
| if (!hs->cert_request) { |
| // OpenSSL returns X509_V_OK when no certificates are requested. This is |
| // classed by them as a bug, but it's assumed by at least NGINX. |
| hs->new_session->verify_result = X509_V_OK; |
| } |
| } |
| |
| // HTTP/2 negotiation depends on the cipher suite, so ALPN negotiation was |
| // deferred. Complete it now. |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!ssl_negotiate_alpn(hs, &alert, &client_hello)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return ssl_hs_error; |
| } |
| |
| // Now that all parameters are known, initialize the handshake hash and hash |
| // the ClientHello. |
| if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) || |
| !ssl_hash_message(hs, msg)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| // Handback includes the whole handshake transcript, so we cannot free the |
| // transcript buffer in the handback case. |
| if (!hs->cert_request && !hs->handback) { |
| hs->transcript.FreeBuffer(); |
| } |
| |
| ssl->method->next_message(ssl); |
| |
| hs->state = state12_send_server_hello; |
| return ssl_hs_ok; |
| } |
| |
| static void copy_suffix(Span<uint8_t> out, Span<const uint8_t> in) { |
| out = out.last(in.size()); |
| OPENSSL_memcpy(out.data(), in.data(), in.size()); |
| } |
| |
| static enum ssl_hs_wait_t do_send_server_hello(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| // We only accept ChannelIDs on connections with ECDHE in order to avoid a |
| // known attack while we fix ChannelID itself. |
| if (hs->channel_id_negotiated && |
| (hs->new_cipher->algorithm_mkey & SSL_kECDHE) == 0) { |
| hs->channel_id_negotiated = false; |
| } |
| |
| // If this is a resumption and the original handshake didn't support |
| // ChannelID then we didn't record the original handshake hashes in the |
| // session and so cannot resume with ChannelIDs. |
| if (ssl->session != NULL && |
| ssl->session->original_handshake_hash_len == 0) { |
| hs->channel_id_negotiated = false; |
| } |
| |
| SSL_HANDSHAKE_HINTS *const hints = hs->hints.get(); |
| if (hints && !hs->hints_requested && |
| hints->server_random_tls12.size() == SSL3_RANDOM_SIZE) { |
| OPENSSL_memcpy(ssl->s3->server_random, hints->server_random_tls12.data(), |
| SSL3_RANDOM_SIZE); |
| } else { |
| struct OPENSSL_timeval now; |
| ssl_get_current_time(ssl, &now); |
| CRYPTO_store_u32_be(ssl->s3->server_random, |
| static_cast<uint32_t>(now.tv_sec)); |
| if (!RAND_bytes(ssl->s3->server_random + 4, SSL3_RANDOM_SIZE - 4)) { |
| return ssl_hs_error; |
| } |
| if (hints && hs->hints_requested && |
| !hints->server_random_tls12.CopyFrom(ssl->s3->server_random)) { |
| return ssl_hs_error; |
| } |
| } |
| |
| // Implement the TLS 1.3 anti-downgrade feature. |
| if (ssl_supports_version(hs, TLS1_3_VERSION)) { |
| if (ssl_protocol_version(ssl) == TLS1_2_VERSION) { |
| if (hs->apply_jdk11_workaround) { |
| // JDK 11 implements the TLS 1.3 downgrade signal, so we cannot send it |
| // here. However, the signal is only effective if all TLS 1.2 |
| // ServerHellos produced by the server are marked. Thus we send a |
| // different non-standard signal for the time being, until JDK 11.0.2 is |
| // released and clients have updated. |
| copy_suffix(ssl->s3->server_random, kJDK11DowngradeRandom); |
| } else { |
| copy_suffix(ssl->s3->server_random, kTLS13DowngradeRandom); |
| } |
| } else { |
| copy_suffix(ssl->s3->server_random, kTLS12DowngradeRandom); |
| } |
| } |
| |
| Span<const uint8_t> session_id; |
| if (ssl->session != nullptr) { |
| // Echo the session ID from the ClientHello to indicate resumption. |
| session_id = MakeConstSpan(hs->session_id, hs->session_id_len); |
| } else { |
| session_id = MakeConstSpan(hs->new_session->session_id, |
| hs->new_session->session_id_length); |
| } |
| |
| ScopedCBB cbb; |
| CBB body, session_id_bytes; |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_SERVER_HELLO) || |
| !CBB_add_u16(&body, ssl->version) || |
| !CBB_add_bytes(&body, ssl->s3->server_random, SSL3_RANDOM_SIZE) || |
| !CBB_add_u8_length_prefixed(&body, &session_id_bytes) || |
| !CBB_add_bytes(&session_id_bytes, session_id.data(), session_id.size()) || |
| !CBB_add_u16(&body, SSL_CIPHER_get_protocol_id(hs->new_cipher)) || |
| !CBB_add_u8(&body, 0 /* no compression */) || |
| !ssl_add_serverhello_tlsext(hs, &body) || |
| !ssl_add_message_cbb(ssl, cbb.get())) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (ssl->session != nullptr) { |
| // No additional hints to generate in resumption. |
| if (hs->hints_requested) { |
| return ssl_hs_hints_ready; |
| } |
| hs->state = state12_send_server_finished; |
| } else { |
| hs->state = state12_send_server_certificate; |
| } |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_send_server_certificate(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| ScopedCBB cbb; |
| |
| if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| assert(hs->credential != nullptr); |
| if (!ssl_send_tls12_certificate(hs)) { |
| return ssl_hs_error; |
| } |
| |
| if (hs->certificate_status_expected) { |
| CBB body, ocsp_response; |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| SSL3_MT_CERTIFICATE_STATUS) || |
| !CBB_add_u8(&body, TLSEXT_STATUSTYPE_ocsp) || |
| !CBB_add_u24_length_prefixed(&body, &ocsp_response) || |
| !CBB_add_bytes( |
| &ocsp_response, |
| CRYPTO_BUFFER_data(hs->credential->ocsp_response.get()), |
| CRYPTO_BUFFER_len(hs->credential->ocsp_response.get())) || |
| !ssl_add_message_cbb(ssl, cbb.get())) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| } |
| } |
| |
| // Assemble ServerKeyExchange parameters if needed. |
| uint32_t alg_k = hs->new_cipher->algorithm_mkey; |
| uint32_t alg_a = hs->new_cipher->algorithm_auth; |
| if (ssl_cipher_requires_server_key_exchange(hs->new_cipher) || |
| ((alg_a & SSL_aPSK) && hs->config->psk_identity_hint)) { |
| // Pre-allocate enough room to comfortably fit an ECDHE public key. Prepend |
| // the client and server randoms for the signing transcript. |
| CBB child; |
| if (!CBB_init(cbb.get(), SSL3_RANDOM_SIZE * 2 + 128) || |
| !CBB_add_bytes(cbb.get(), ssl->s3->client_random, SSL3_RANDOM_SIZE) || |
| !CBB_add_bytes(cbb.get(), ssl->s3->server_random, SSL3_RANDOM_SIZE)) { |
| return ssl_hs_error; |
| } |
| |
| // PSK ciphers begin with an identity hint. |
| if (alg_a & SSL_aPSK) { |
| size_t len = hs->config->psk_identity_hint == nullptr |
| ? 0 |
| : strlen(hs->config->psk_identity_hint.get()); |
| if (!CBB_add_u16_length_prefixed(cbb.get(), &child) || |
| !CBB_add_bytes(&child, |
| (const uint8_t *)hs->config->psk_identity_hint.get(), |
| len)) { |
| return ssl_hs_error; |
| } |
| } |
| |
| if (alg_k & SSL_kECDHE) { |
| assert(hs->new_session->group_id != 0); |
| hs->key_shares[0] = SSLKeyShare::Create(hs->new_session->group_id); |
| if (!hs->key_shares[0] || |
| !CBB_add_u8(cbb.get(), NAMED_CURVE_TYPE) || |
| !CBB_add_u16(cbb.get(), hs->new_session->group_id) || |
| !CBB_add_u8_length_prefixed(cbb.get(), &child)) { |
| return ssl_hs_error; |
| } |
| |
| SSL_HANDSHAKE_HINTS *const hints = hs->hints.get(); |
| bool hint_ok = false; |
| if (hints && !hs->hints_requested && |
| hints->ecdhe_group_id == hs->new_session->group_id && |
| !hints->ecdhe_public_key.empty() && |
| !hints->ecdhe_private_key.empty()) { |
| CBS cbs = MakeConstSpan(hints->ecdhe_private_key); |
| hint_ok = hs->key_shares[0]->DeserializePrivateKey(&cbs); |
| } |
| if (hint_ok) { |
| // Reuse the ECDH key from handshake hints. |
| if (!CBB_add_bytes(&child, hints->ecdhe_public_key.data(), |
| hints->ecdhe_public_key.size())) { |
| return ssl_hs_error; |
| } |
| } else { |
| // Generate a key, and emit the public half. |
| if (!hs->key_shares[0]->Generate(&child)) { |
| return ssl_hs_error; |
| } |
| // If generating hints, save the ECDHE key. |
| if (hints && hs->hints_requested) { |
| bssl::ScopedCBB private_key_cbb; |
| if (!hints->ecdhe_public_key.CopyFrom( |
| MakeConstSpan(CBB_data(&child), CBB_len(&child))) || |
| !CBB_init(private_key_cbb.get(), 32) || |
| !hs->key_shares[0]->SerializePrivateKey(private_key_cbb.get()) || |
| !CBBFinishArray(private_key_cbb.get(), |
| &hints->ecdhe_private_key)) { |
| return ssl_hs_error; |
| } |
| hints->ecdhe_group_id = hs->new_session->group_id; |
| } |
| } |
| } else { |
| assert(alg_k & SSL_kPSK); |
| } |
| |
| if (!CBBFinishArray(cbb.get(), &hs->server_params)) { |
| return ssl_hs_error; |
| } |
| } |
| |
| hs->state = state12_send_server_key_exchange; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_send_server_key_exchange(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| if (hs->server_params.size() == 0) { |
| hs->state = state12_send_server_hello_done; |
| return ssl_hs_ok; |
| } |
| |
| ScopedCBB cbb; |
| CBB body, child; |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| SSL3_MT_SERVER_KEY_EXCHANGE) || |
| // |hs->server_params| contains a prefix for signing. |
| hs->server_params.size() < 2 * SSL3_RANDOM_SIZE || |
| !CBB_add_bytes(&body, hs->server_params.data() + 2 * SSL3_RANDOM_SIZE, |
| hs->server_params.size() - 2 * SSL3_RANDOM_SIZE)) { |
| return ssl_hs_error; |
| } |
| |
| // Add a signature. |
| if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { |
| // Determine the signature algorithm. |
| uint16_t signature_algorithm; |
| if (!tls1_choose_signature_algorithm(hs, hs->credential.get(), |
| &signature_algorithm)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| } |
| if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { |
| if (!CBB_add_u16(&body, signature_algorithm)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| } |
| |
| // Add space for the signature. |
| const size_t max_sig_len = EVP_PKEY_size(hs->credential->pubkey.get()); |
| uint8_t *ptr; |
| if (!CBB_add_u16_length_prefixed(&body, &child) || |
| !CBB_reserve(&child, &ptr, max_sig_len)) { |
| return ssl_hs_error; |
| } |
| |
| size_t sig_len; |
| switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len, |
| signature_algorithm, hs->server_params)) { |
| case ssl_private_key_success: |
| if (!CBB_did_write(&child, sig_len)) { |
| return ssl_hs_error; |
| } |
| break; |
| case ssl_private_key_failure: |
| return ssl_hs_error; |
| case ssl_private_key_retry: |
| return ssl_hs_private_key_operation; |
| } |
| } |
| |
| hs->can_release_private_key = true; |
| if (!ssl_add_message_cbb(ssl, cbb.get())) { |
| return ssl_hs_error; |
| } |
| |
| hs->server_params.Reset(); |
| |
| hs->state = state12_send_server_hello_done; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_send_server_hello_done(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| if (hs->hints_requested) { |
| return ssl_hs_hints_ready; |
| } |
| |
| ScopedCBB cbb; |
| CBB body; |
| |
| if (hs->cert_request) { |
| CBB cert_types, sigalgs_cbb; |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| SSL3_MT_CERTIFICATE_REQUEST) || |
| !CBB_add_u8_length_prefixed(&body, &cert_types) || |
| !CBB_add_u8(&cert_types, SSL3_CT_RSA_SIGN) || |
| !CBB_add_u8(&cert_types, TLS_CT_ECDSA_SIGN) || |
| (ssl_protocol_version(ssl) >= TLS1_2_VERSION && |
| (!CBB_add_u16_length_prefixed(&body, &sigalgs_cbb) || |
| !tls12_add_verify_sigalgs(hs, &sigalgs_cbb))) || |
| !ssl_add_client_CA_list(hs, &body) || |
| !ssl_add_message_cbb(ssl, cbb.get())) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| } |
| |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| SSL3_MT_SERVER_HELLO_DONE) || |
| !ssl_add_message_cbb(ssl, cbb.get())) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| hs->state = state12_read_client_certificate; |
| return ssl_hs_flush; |
| } |
| |
| static enum ssl_hs_wait_t do_read_client_certificate(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| if (hs->handback && hs->new_cipher->algorithm_mkey == SSL_kECDHE) { |
| return ssl_hs_handback; |
| } |
| if (!hs->cert_request) { |
| hs->state = state12_verify_client_certificate; |
| return ssl_hs_ok; |
| } |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE)) { |
| return ssl_hs_error; |
| } |
| |
| if (!ssl_hash_message(hs, msg)) { |
| return ssl_hs_error; |
| } |
| |
| CBS certificate_msg = msg.body; |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey, |
| hs->config->retain_only_sha256_of_client_certs |
| ? hs->new_session->peer_sha256 |
| : nullptr, |
| &certificate_msg, ssl->ctx->pool)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return ssl_hs_error; |
| } |
| |
| if (CBS_len(&certificate_msg) != 0 || |
| !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0) { |
| // No client certificate so the handshake buffer may be discarded. |
| hs->transcript.FreeBuffer(); |
| |
| if (hs->config->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) { |
| // Fail for TLS only if we required a certificate |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| } |
| |
| // OpenSSL returns X509_V_OK when no certificates are received. This is |
| // classed by them as a bug, but it's assumed by at least NGINX. |
| hs->new_session->verify_result = X509_V_OK; |
| } else if (hs->config->retain_only_sha256_of_client_certs) { |
| // The hash will have been filled in. |
| hs->new_session->peer_sha256_valid = true; |
| } |
| |
| ssl->method->next_message(ssl); |
| hs->state = state12_verify_client_certificate; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_verify_client_certificate(SSL_HANDSHAKE *hs) { |
| if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) > 0) { |
| switch (ssl_verify_peer_cert(hs)) { |
| case ssl_verify_ok: |
| break; |
| case ssl_verify_invalid: |
| return ssl_hs_error; |
| case ssl_verify_retry: |
| return ssl_hs_certificate_verify; |
| } |
| } |
| |
| hs->state = state12_read_client_key_exchange; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_client_key_exchange(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_KEY_EXCHANGE)) { |
| return ssl_hs_error; |
| } |
| |
| CBS client_key_exchange = msg.body; |
| uint32_t alg_k = hs->new_cipher->algorithm_mkey; |
| uint32_t alg_a = hs->new_cipher->algorithm_auth; |
| |
| // If using a PSK key exchange, parse the PSK identity. |
| if (alg_a & SSL_aPSK) { |
| CBS psk_identity; |
| |
| // If using PSK, the ClientKeyExchange contains a psk_identity. If PSK, |
| // then this is the only field in the message. |
| if (!CBS_get_u16_length_prefixed(&client_key_exchange, &psk_identity) || |
| ((alg_k & SSL_kPSK) && CBS_len(&client_key_exchange) != 0)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (CBS_len(&psk_identity) > PSK_MAX_IDENTITY_LEN || |
| CBS_contains_zero_byte(&psk_identity)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| return ssl_hs_error; |
| } |
| char *raw = nullptr; |
| if (!CBS_strdup(&psk_identity, &raw)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| hs->new_session->psk_identity.reset(raw); |
| } |
| |
| // Depending on the key exchange method, compute |premaster_secret|. |
| Array<uint8_t> premaster_secret; |
| if (alg_k & SSL_kRSA) { |
| CBS encrypted_premaster_secret; |
| if (!CBS_get_u16_length_prefixed(&client_key_exchange, |
| &encrypted_premaster_secret) || |
| CBS_len(&client_key_exchange) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| |
| // Allocate a buffer large enough for an RSA decryption. |
| Array<uint8_t> decrypt_buf; |
| if (!decrypt_buf.Init(EVP_PKEY_size(hs->credential->pubkey.get()))) { |
| return ssl_hs_error; |
| } |
| |
| // Decrypt with no padding. PKCS#1 padding will be removed as part of the |
| // timing-sensitive code below. |
| size_t decrypt_len; |
| switch (ssl_private_key_decrypt(hs, decrypt_buf.data(), &decrypt_len, |
| decrypt_buf.size(), |
| encrypted_premaster_secret)) { |
| case ssl_private_key_success: |
| break; |
| case ssl_private_key_failure: |
| return ssl_hs_error; |
| case ssl_private_key_retry: |
| return ssl_hs_private_key_operation; |
| } |
| |
| if (decrypt_len != decrypt_buf.size()) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
| return ssl_hs_error; |
| } |
| |
| CONSTTIME_SECRET(decrypt_buf.data(), decrypt_len); |
| |
| // Prepare a random premaster, to be used on invalid padding. See RFC 5246, |
| // section 7.4.7.1. |
| if (!premaster_secret.Init(SSL_MAX_MASTER_KEY_LENGTH) || |
| !RAND_bytes(premaster_secret.data(), premaster_secret.size())) { |
| return ssl_hs_error; |
| } |
| |
| // The smallest padded premaster is 11 bytes of overhead. Small keys are |
| // publicly invalid. |
| if (decrypt_len < 11 + premaster_secret.size()) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
| return ssl_hs_error; |
| } |
| |
| // Check the padding. See RFC 3447, section 7.2.2. |
| size_t padding_len = decrypt_len - premaster_secret.size(); |
| uint8_t good = constant_time_eq_int_8(decrypt_buf[0], 0) & |
| constant_time_eq_int_8(decrypt_buf[1], 2); |
| for (size_t i = 2; i < padding_len - 1; i++) { |
| good &= ~constant_time_is_zero_8(decrypt_buf[i]); |
| } |
| good &= constant_time_is_zero_8(decrypt_buf[padding_len - 1]); |
| |
| // The premaster secret must begin with |client_version|. This too must be |
| // checked in constant time (http://eprint.iacr.org/2003/052/). |
| good &= constant_time_eq_8(decrypt_buf[padding_len], |
| (unsigned)(hs->client_version >> 8)); |
| good &= constant_time_eq_8(decrypt_buf[padding_len + 1], |
| (unsigned)(hs->client_version & 0xff)); |
| |
| // Select, in constant time, either the decrypted premaster or the random |
| // premaster based on |good|. |
| for (size_t i = 0; i < premaster_secret.size(); i++) { |
| premaster_secret[i] = constant_time_select_8( |
| good, decrypt_buf[padding_len + i], premaster_secret[i]); |
| } |
| } else if (alg_k & SSL_kECDHE) { |
| // Parse the ClientKeyExchange. |
| CBS ciphertext; |
| if (!CBS_get_u8_length_prefixed(&client_key_exchange, &ciphertext) || |
| CBS_len(&client_key_exchange) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| |
| // Decapsulate the premaster secret. |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!hs->key_shares[0]->Decap(&premaster_secret, &alert, ciphertext)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return ssl_hs_error; |
| } |
| |
| // The key exchange state may now be discarded. |
| hs->key_shares[0].reset(); |
| hs->key_shares[1].reset(); |
| } else if (!(alg_k & SSL_kPSK)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); |
| return ssl_hs_error; |
| } |
| |
| // For a PSK cipher suite, the actual pre-master secret is combined with the |
| // pre-shared key. |
| if (alg_a & SSL_aPSK) { |
| if (hs->config->psk_server_callback == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } |
| |
| // Look up the key for the identity. |
| uint8_t psk[PSK_MAX_PSK_LEN]; |
| unsigned psk_len = hs->config->psk_server_callback( |
| ssl, hs->new_session->psk_identity.get(), psk, sizeof(psk)); |
| if (psk_len > PSK_MAX_PSK_LEN) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); |
| return ssl_hs_error; |
| } else if (psk_len == 0) { |
| // PSK related to the given identity not found. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNKNOWN_PSK_IDENTITY); |
| return ssl_hs_error; |
| } |
| |
| if (alg_k & SSL_kPSK) { |
| // In plain PSK, other_secret is a block of 0s with the same length as the |
| // pre-shared key. |
| if (!premaster_secret.Init(psk_len)) { |
| return ssl_hs_error; |
| } |
| OPENSSL_memset(premaster_secret.data(), 0, premaster_secret.size()); |
| } |
| |
| ScopedCBB new_premaster; |
| CBB child; |
| if (!CBB_init(new_premaster.get(), |
| 2 + psk_len + 2 + premaster_secret.size()) || |
| !CBB_add_u16_length_prefixed(new_premaster.get(), &child) || |
| !CBB_add_bytes(&child, premaster_secret.data(), |
| premaster_secret.size()) || |
| !CBB_add_u16_length_prefixed(new_premaster.get(), &child) || |
| !CBB_add_bytes(&child, psk, psk_len) || |
| !CBBFinishArray(new_premaster.get(), &premaster_secret)) { |
| return ssl_hs_error; |
| } |
| } |
| |
| if (!ssl_hash_message(hs, msg)) { |
| return ssl_hs_error; |
| } |
| |
| // Compute the master secret. |
| hs->new_session->secret_length = tls1_generate_master_secret( |
| hs, hs->new_session->secret, premaster_secret); |
| if (hs->new_session->secret_length == 0) { |
| return ssl_hs_error; |
| } |
| hs->new_session->extended_master_secret = hs->extended_master_secret; |
| CONSTTIME_DECLASSIFY(hs->new_session->secret, hs->new_session->secret_length); |
| hs->can_release_private_key = true; |
| |
| ssl->method->next_message(ssl); |
| hs->state = state12_read_client_certificate_verify; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_client_certificate_verify(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| // Only RSA and ECDSA client certificates are supported, so a |
| // CertificateVerify is required if and only if there's a client certificate. |
| if (!hs->peer_pubkey) { |
| hs->transcript.FreeBuffer(); |
| hs->state = state12_read_change_cipher_spec; |
| return ssl_hs_ok; |
| } |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_VERIFY)) { |
| return ssl_hs_error; |
| } |
| |
| // The peer certificate must be valid for signing. |
| const CRYPTO_BUFFER *leaf = |
| sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), 0); |
| CBS leaf_cbs; |
| CRYPTO_BUFFER_init_CBS(leaf, &leaf_cbs); |
| if (!ssl_cert_check_key_usage(&leaf_cbs, key_usage_digital_signature)) { |
| return ssl_hs_error; |
| } |
| |
| CBS certificate_verify = msg.body, signature; |
| |
| // Determine the signature algorithm. |
| uint16_t signature_algorithm = 0; |
| if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { |
| if (!CBS_get_u16(&certificate_verify, &signature_algorithm)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| if (!tls12_check_peer_sigalg(hs, &alert, signature_algorithm)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, alert); |
| return ssl_hs_error; |
| } |
| hs->new_session->peer_signature_algorithm = signature_algorithm; |
| } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm, |
| hs->peer_pubkey.get())) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE); |
| return ssl_hs_error; |
| } |
| |
| // Parse and verify the signature. |
| if (!CBS_get_u16_length_prefixed(&certificate_verify, &signature) || |
| CBS_len(&certificate_verify) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (!ssl_public_key_verify(ssl, signature, signature_algorithm, |
| hs->peer_pubkey.get(), hs->transcript.buffer())) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); |
| return ssl_hs_error; |
| } |
| |
| // The handshake buffer is no longer necessary, and we may hash the current |
| // message. |
| hs->transcript.FreeBuffer(); |
| if (!ssl_hash_message(hs, msg)) { |
| return ssl_hs_error; |
| } |
| |
| ssl->method->next_message(ssl); |
| hs->state = state12_read_change_cipher_spec; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_change_cipher_spec(SSL_HANDSHAKE *hs) { |
| if (hs->handback && hs->ssl->session != NULL) { |
| return ssl_hs_handback; |
| } |
| hs->state = state12_process_change_cipher_spec; |
| return ssl_hs_read_change_cipher_spec; |
| } |
| |
| static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) { |
| if (!tls1_change_cipher_state(hs, evp_aead_open)) { |
| return ssl_hs_error; |
| } |
| |
| hs->state = state12_read_next_proto; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_next_proto(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| if (!hs->next_proto_neg_seen) { |
| hs->state = state12_read_channel_id; |
| return ssl_hs_ok; |
| } |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEXT_PROTO) || |
| !ssl_hash_message(hs, msg)) { |
| return ssl_hs_error; |
| } |
| |
| CBS next_protocol = msg.body, selected_protocol, padding; |
| if (!CBS_get_u8_length_prefixed(&next_protocol, &selected_protocol) || |
| !CBS_get_u8_length_prefixed(&next_protocol, &padding) || |
| CBS_len(&next_protocol) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return ssl_hs_error; |
| } |
| |
| if (!ssl->s3->next_proto_negotiated.CopyFrom(selected_protocol)) { |
| return ssl_hs_error; |
| } |
| |
| ssl->method->next_message(ssl); |
| hs->state = state12_read_channel_id; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_channel_id(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| if (!hs->channel_id_negotiated) { |
| hs->state = state12_read_client_finished; |
| return ssl_hs_ok; |
| } |
| |
| SSLMessage msg; |
| if (!ssl->method->get_message(ssl, &msg)) { |
| return ssl_hs_read_message; |
| } |
| |
| if (!ssl_check_message_type(ssl, msg, SSL3_MT_CHANNEL_ID) || |
| !tls1_verify_channel_id(hs, msg) || |
| !ssl_hash_message(hs, msg)) { |
| return ssl_hs_error; |
| } |
| |
| ssl->method->next_message(ssl); |
| hs->state = state12_read_client_finished; |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_read_client_finished(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| enum ssl_hs_wait_t wait = ssl_get_finished(hs); |
| if (wait != ssl_hs_ok) { |
| return wait; |
| } |
| |
| if (ssl->session != NULL) { |
| hs->state = state12_finish_server_handshake; |
| } else { |
| hs->state = state12_send_server_finished; |
| } |
| |
| // If this is a full handshake with ChannelID then record the handshake |
| // hashes in |hs->new_session| in case we need them to verify a |
| // ChannelID signature on a resumption of this session in the future. |
| if (ssl->session == NULL && ssl->s3->channel_id_valid && |
| !tls1_record_handshake_hashes_for_channel_id(hs)) { |
| return ssl_hs_error; |
| } |
| |
| return ssl_hs_ok; |
| } |
| |
| static enum ssl_hs_wait_t do_send_server_finished(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| if (hs->ticket_expected) { |
| const SSL_SESSION *session; |
| UniquePtr<SSL_SESSION> session_copy; |
| if (ssl->session == NULL) { |
| // Fix the timeout to measure from the ticket issuance time. |
| ssl_session_rebase_time(ssl, hs->new_session.get()); |
| session = hs->new_session.get(); |
| } else { |
| // We are renewing an existing session. Duplicate the session to adjust |
| // the timeout. |
| session_copy = |
| SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH); |
| if (!session_copy) { |
| return ssl_hs_error; |
| } |
| |
| ssl_session_rebase_time(ssl, session_copy.get()); |
| session = session_copy.get(); |
| } |
| |
| ScopedCBB cbb; |
| CBB body, ticket; |
| if (!ssl->method->init_message(ssl, cbb.get(), &body, |
| SSL3_MT_NEW_SESSION_TICKET) || |
| !CBB_add_u32(&body, session->timeout) || |
| !CBB_add_u16_length_prefixed(&body, &ticket) || |
| !ssl_encrypt_ticket(hs, &ticket, session) || |
| !ssl_add_message_cbb(ssl, cbb.get())) { |
| return ssl_hs_error; |
| } |
| } |
| |
| if (!ssl->method->add_change_cipher_spec(ssl) || |
| !tls1_change_cipher_state(hs, evp_aead_seal) || |
| !ssl_send_finished(hs)) { |
| return ssl_hs_error; |
| } |
| |
| if (ssl->session != NULL) { |
| hs->state = state12_read_change_cipher_spec; |
| } else { |
| hs->state = state12_finish_server_handshake; |
| } |
| return ssl_hs_flush; |
| } |
| |
| static enum ssl_hs_wait_t do_finish_server_handshake(SSL_HANDSHAKE *hs) { |
| SSL *const ssl = hs->ssl; |
| |
| if (hs->handback) { |
| return ssl_hs_handback; |
| } |
| |
| ssl->method->on_handshake_complete(ssl); |
| |
| // If we aren't retaining peer certificates then we can discard it now. |
| if (hs->new_session != NULL && |
| hs->config->retain_only_sha256_of_client_certs) { |
| hs->new_session->certs.reset(); |
| ssl->ctx->x509_method->session_clear(hs->new_session.get()); |
| } |
| |
| bool has_new_session = hs->new_session != nullptr; |
| if (has_new_session) { |
| assert(ssl->session == nullptr); |
| ssl->s3->established_session = std::move(hs->new_session); |
| ssl->s3->established_session->not_resumable = false; |
| } else { |
| assert(ssl->session != nullptr); |
| ssl->s3->established_session = UpRef(ssl->session); |
| } |
| |
| hs->handshake_finalized = true; |
| ssl->s3->initial_handshake_complete = true; |
| if (has_new_session) { |
| ssl_update_cache(ssl); |
| } |
| |
| hs->state = state12_done; |
| return ssl_hs_ok; |
| } |
| |
| enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs) { |
| while (hs->state != state12_done) { |
| enum ssl_hs_wait_t ret = ssl_hs_error; |
| enum tls12_server_hs_state_t state = |
| static_cast<enum tls12_server_hs_state_t>(hs->state); |
| switch (state) { |
| case state12_start_accept: |
| ret = do_start_accept(hs); |
| break; |
| case state12_read_client_hello: |
| ret = do_read_client_hello(hs); |
| break; |
| case state12_read_client_hello_after_ech: |
| ret = do_read_client_hello_after_ech(hs); |
| break; |
| case state12_cert_callback: |
| ret = do_cert_callback(hs); |
| break; |
| case state12_tls13: |
| ret = do_tls13(hs); |
| break; |
| case state12_select_parameters: |
| ret = do_select_parameters(hs); |
| break; |
| case state12_send_server_hello: |
| ret = do_send_server_hello(hs); |
| break; |
| case state12_send_server_certificate: |
| ret = do_send_server_certificate(hs); |
| break; |
| case state12_send_server_key_exchange: |
| ret = do_send_server_key_exchange(hs); |
| break; |
| case state12_send_server_hello_done: |
| ret = do_send_server_hello_done(hs); |
| break; |
| case state12_read_client_certificate: |
| ret = do_read_client_certificate(hs); |
| break; |
| case state12_verify_client_certificate: |
| ret = do_verify_client_certificate(hs); |
| break; |
| case state12_read_client_key_exchange: |
| ret = do_read_client_key_exchange(hs); |
| break; |
| case state12_read_client_certificate_verify: |
| ret = do_read_client_certificate_verify(hs); |
| break; |
| case state12_read_change_cipher_spec: |
| ret = do_read_change_cipher_spec(hs); |
| break; |
| case state12_process_change_cipher_spec: |
| ret = do_process_change_cipher_spec(hs); |
| break; |
| case state12_read_next_proto: |
| ret = do_read_next_proto(hs); |
| break; |
| case state12_read_channel_id: |
| ret = do_read_channel_id(hs); |
| break; |
| case state12_read_client_finished: |
| ret = do_read_client_finished(hs); |
| break; |
| case state12_send_server_finished: |
| ret = do_send_server_finished(hs); |
| break; |
| case state12_finish_server_handshake: |
| ret = do_finish_server_handshake(hs); |
| break; |
| case state12_done: |
| ret = ssl_hs_ok; |
| break; |
| } |
| |
| if (hs->state != state) { |
| ssl_do_info_callback(hs->ssl, SSL_CB_ACCEPT_LOOP, 1); |
| } |
| |
| if (ret != ssl_hs_ok) { |
| return ret; |
| } |
| } |
| |
| ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1); |
| return ssl_hs_ok; |
| } |
| |
| const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs) { |
| enum tls12_server_hs_state_t state = |
| static_cast<enum tls12_server_hs_state_t>(hs->state); |
| switch (state) { |
| case state12_start_accept: |
| return "TLS server start_accept"; |
| case state12_read_client_hello: |
| return "TLS server read_client_hello"; |
| case state12_read_client_hello_after_ech: |
| return "TLS server read_client_hello_after_ech"; |
| case state12_cert_callback: |
| return "TLS server cert_callback"; |
| case state12_tls13: |
| return tls13_server_handshake_state(hs); |
| case state12_select_parameters: |
| return "TLS server select_parameters"; |
| case state12_send_server_hello: |
| return "TLS server send_server_hello"; |
| case state12_send_server_certificate: |
| return "TLS server send_server_certificate"; |
| case state12_send_server_key_exchange: |
| return "TLS server send_server_key_exchange"; |
| case state12_send_server_hello_done: |
| return "TLS server send_server_hello_done"; |
| case state12_read_client_certificate: |
| return "TLS server read_client_certificate"; |
| case state12_verify_client_certificate: |
| return "TLS server verify_client_certificate"; |
| case state12_read_client_key_exchange: |
| return "TLS server read_client_key_exchange"; |
| case state12_read_client_certificate_verify: |
| return "TLS server read_client_certificate_verify"; |
| case state12_read_change_cipher_spec: |
| return "TLS server read_change_cipher_spec"; |
| case state12_process_change_cipher_spec: |
| return "TLS server process_change_cipher_spec"; |
| case state12_read_next_proto: |
| return "TLS server read_next_proto"; |
| case state12_read_channel_id: |
| return "TLS server read_channel_id"; |
| case state12_read_client_finished: |
| return "TLS server read_client_finished"; |
| case state12_send_server_finished: |
| return "TLS server send_server_finished"; |
| case state12_finish_server_handshake: |
| return "TLS server finish_server_handshake"; |
| case state12_done: |
| return "TLS server done"; |
| } |
| |
| return "TLS server unknown"; |
| } |
| |
| BSSL_NAMESPACE_END |