| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project 2000. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/rsa.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/asn1.h> |
| #include <openssl/asn1t.h> |
| #include <openssl/bn.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "internal.h" |
| |
| |
| static int parse_integer(CBS *cbs, BIGNUM **out) { |
| assert(*out == NULL); |
| *out = BN_new(); |
| if (*out == NULL) { |
| return 0; |
| } |
| return BN_cbs2unsigned(cbs, *out); |
| } |
| |
| static int marshal_integer(CBB *cbb, BIGNUM *bn) { |
| if (bn == NULL) { |
| /* An RSA object may be missing some components. */ |
| OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| return 0; |
| } |
| return BN_bn2cbb(cbb, bn); |
| } |
| |
| RSA *RSA_parse_public_key(CBS *cbs) { |
| RSA *ret = RSA_new(); |
| if (ret == NULL) { |
| return NULL; |
| } |
| CBS child; |
| if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || |
| !parse_integer(&child, &ret->n) || |
| !parse_integer(&child, &ret->e) || |
| CBS_len(&child) != 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); |
| RSA_free(ret); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| RSA *RSA_public_key_from_bytes(const uint8_t *in, size_t in_len) { |
| CBS cbs; |
| CBS_init(&cbs, in, in_len); |
| RSA *ret = RSA_parse_public_key(&cbs); |
| if (ret == NULL || CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); |
| RSA_free(ret); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| int RSA_marshal_public_key(CBB *cbb, const RSA *rsa) { |
| CBB child; |
| if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || |
| !marshal_integer(&child, rsa->n) || |
| !marshal_integer(&child, rsa->e) || |
| !CBB_flush(cbb)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); |
| return 0; |
| } |
| return 1; |
| } |
| |
| int RSA_public_key_to_bytes(uint8_t **out_bytes, size_t *out_len, |
| const RSA *rsa) { |
| CBB cbb; |
| CBB_zero(&cbb); |
| if (!CBB_init(&cbb, 0) || |
| !RSA_marshal_public_key(&cbb, rsa) || |
| !CBB_finish(&cbb, out_bytes, out_len)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); |
| CBB_cleanup(&cbb); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* kVersionTwoPrime and kVersionMulti are the supported values of the version |
| * field of an RSAPrivateKey structure (RFC 3447). */ |
| static const uint64_t kVersionTwoPrime = 0; |
| static const uint64_t kVersionMulti = 1; |
| |
| /* rsa_parse_additional_prime parses a DER-encoded OtherPrimeInfo from |cbs| and |
| * advances |cbs|. It returns a newly-allocated |RSA_additional_prime| on |
| * success or NULL on error. The |r| and |method_mod| fields of the result are |
| * set to NULL. */ |
| static RSA_additional_prime *rsa_parse_additional_prime(CBS *cbs) { |
| RSA_additional_prime *ret = OPENSSL_malloc(sizeof(RSA_additional_prime)); |
| if (ret == NULL) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| memset(ret, 0, sizeof(RSA_additional_prime)); |
| |
| CBS child; |
| if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || |
| !parse_integer(&child, &ret->prime) || |
| !parse_integer(&child, &ret->exp) || |
| !parse_integer(&child, &ret->coeff) || |
| CBS_len(&child) != 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); |
| RSA_additional_prime_free(ret); |
| return NULL; |
| } |
| |
| return ret; |
| } |
| |
| RSA *RSA_parse_private_key(CBS *cbs) { |
| BN_CTX *ctx = NULL; |
| BIGNUM *product_of_primes_so_far = NULL; |
| RSA *ret = RSA_new(); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| CBS child; |
| uint64_t version; |
| if (!CBS_get_asn1(cbs, &child, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1_uint64(&child, &version) || |
| (version != kVersionTwoPrime && version != kVersionMulti) || |
| !parse_integer(&child, &ret->n) || |
| !parse_integer(&child, &ret->e) || |
| !parse_integer(&child, &ret->d) || |
| !parse_integer(&child, &ret->p) || |
| !parse_integer(&child, &ret->q) || |
| !parse_integer(&child, &ret->dmp1) || |
| !parse_integer(&child, &ret->dmq1) || |
| !parse_integer(&child, &ret->iqmp)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_VERSION); |
| goto err; |
| } |
| |
| /* Multi-prime RSA requires a newer version. */ |
| if (version == kVersionMulti && |
| CBS_peek_asn1_tag(&child, CBS_ASN1_SEQUENCE)) { |
| CBS other_prime_infos; |
| if (!CBS_get_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE) || |
| CBS_len(&other_prime_infos) == 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); |
| goto err; |
| } |
| ret->additional_primes = sk_RSA_additional_prime_new_null(); |
| if (ret->additional_primes == NULL) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| ctx = BN_CTX_new(); |
| product_of_primes_so_far = BN_new(); |
| if (ctx == NULL || |
| product_of_primes_so_far == NULL || |
| !BN_mul(product_of_primes_so_far, ret->p, ret->q, ctx)) { |
| goto err; |
| } |
| |
| while (CBS_len(&other_prime_infos) > 0) { |
| RSA_additional_prime *ap = rsa_parse_additional_prime(&other_prime_infos); |
| if (ap == NULL) { |
| goto err; |
| } |
| if (!sk_RSA_additional_prime_push(ret->additional_primes, ap)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| RSA_additional_prime_free(ap); |
| goto err; |
| } |
| ap->r = BN_dup(product_of_primes_so_far); |
| if (ap->r == NULL || |
| !BN_mul(product_of_primes_so_far, product_of_primes_so_far, |
| ap->prime, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| if (CBS_len(&child) != 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); |
| goto err; |
| } |
| |
| BN_CTX_free(ctx); |
| BN_free(product_of_primes_so_far); |
| return ret; |
| |
| err: |
| BN_CTX_free(ctx); |
| BN_free(product_of_primes_so_far); |
| RSA_free(ret); |
| return NULL; |
| } |
| |
| RSA *RSA_private_key_from_bytes(const uint8_t *in, size_t in_len) { |
| CBS cbs; |
| CBS_init(&cbs, in, in_len); |
| RSA *ret = RSA_parse_private_key(&cbs); |
| if (ret == NULL || CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_ENCODING); |
| RSA_free(ret); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| int RSA_marshal_private_key(CBB *cbb, const RSA *rsa) { |
| const int is_multiprime = |
| sk_RSA_additional_prime_num(rsa->additional_primes) > 0; |
| |
| CBB child; |
| if (!CBB_add_asn1(cbb, &child, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1_uint64(&child, |
| is_multiprime ? kVersionMulti : kVersionTwoPrime) || |
| !marshal_integer(&child, rsa->n) || |
| !marshal_integer(&child, rsa->e) || |
| !marshal_integer(&child, rsa->d) || |
| !marshal_integer(&child, rsa->p) || |
| !marshal_integer(&child, rsa->q) || |
| !marshal_integer(&child, rsa->dmp1) || |
| !marshal_integer(&child, rsa->dmq1) || |
| !marshal_integer(&child, rsa->iqmp)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); |
| return 0; |
| } |
| |
| if (is_multiprime) { |
| CBB other_prime_infos; |
| if (!CBB_add_asn1(&child, &other_prime_infos, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); |
| return 0; |
| } |
| size_t i; |
| for (i = 0; i < sk_RSA_additional_prime_num(rsa->additional_primes); i++) { |
| RSA_additional_prime *ap = |
| sk_RSA_additional_prime_value(rsa->additional_primes, i); |
| CBB other_prime_info; |
| if (!CBB_add_asn1(&other_prime_infos, &other_prime_info, |
| CBS_ASN1_SEQUENCE) || |
| !marshal_integer(&other_prime_info, ap->prime) || |
| !marshal_integer(&other_prime_info, ap->exp) || |
| !marshal_integer(&other_prime_info, ap->coeff)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); |
| return 0; |
| } |
| } |
| } |
| |
| if (!CBB_flush(cbb)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); |
| return 0; |
| } |
| return 1; |
| } |
| |
| int RSA_private_key_to_bytes(uint8_t **out_bytes, size_t *out_len, |
| const RSA *rsa) { |
| CBB cbb; |
| CBB_zero(&cbb); |
| if (!CBB_init(&cbb, 0) || |
| !RSA_marshal_private_key(&cbb, rsa) || |
| !CBB_finish(&cbb, out_bytes, out_len)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_ENCODE_ERROR); |
| CBB_cleanup(&cbb); |
| return 0; |
| } |
| return 1; |
| } |
| |
| RSA *d2i_RSAPublicKey(RSA **out, const uint8_t **inp, long len) { |
| if (len < 0) { |
| return NULL; |
| } |
| CBS cbs; |
| CBS_init(&cbs, *inp, (size_t)len); |
| RSA *ret = RSA_parse_public_key(&cbs); |
| if (ret == NULL) { |
| return NULL; |
| } |
| if (out != NULL) { |
| RSA_free(*out); |
| *out = ret; |
| } |
| *inp += (size_t)len - CBS_len(&cbs); |
| return ret; |
| } |
| |
| int i2d_RSAPublicKey(const RSA *in, uint8_t **outp) { |
| uint8_t *der; |
| size_t der_len; |
| if (!RSA_public_key_to_bytes(&der, &der_len, in)) { |
| return -1; |
| } |
| if (der_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| OPENSSL_free(der); |
| return -1; |
| } |
| if (outp != NULL) { |
| if (*outp == NULL) { |
| *outp = der; |
| der = NULL; |
| } else { |
| memcpy(*outp, der, der_len); |
| *outp += der_len; |
| } |
| } |
| OPENSSL_free(der); |
| return (int)der_len; |
| } |
| |
| RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len) { |
| if (len < 0) { |
| return NULL; |
| } |
| CBS cbs; |
| CBS_init(&cbs, *inp, (size_t)len); |
| RSA *ret = RSA_parse_private_key(&cbs); |
| if (ret == NULL) { |
| return NULL; |
| } |
| if (out != NULL) { |
| RSA_free(*out); |
| *out = ret; |
| } |
| *inp += (size_t)len - CBS_len(&cbs); |
| return ret; |
| } |
| |
| int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp) { |
| uint8_t *der; |
| size_t der_len; |
| if (!RSA_private_key_to_bytes(&der, &der_len, in)) { |
| return -1; |
| } |
| if (der_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); |
| OPENSSL_free(der); |
| return -1; |
| } |
| if (outp != NULL) { |
| if (*outp == NULL) { |
| *outp = der; |
| der = NULL; |
| } else { |
| memcpy(*outp, der, der_len); |
| *outp += der_len; |
| } |
| } |
| OPENSSL_free(der); |
| return (int)der_len; |
| } |
| |
| ASN1_SEQUENCE(RSA_PSS_PARAMS) = { |
| ASN1_EXP_OPT(RSA_PSS_PARAMS, hashAlgorithm, X509_ALGOR,0), |
| ASN1_EXP_OPT(RSA_PSS_PARAMS, maskGenAlgorithm, X509_ALGOR,1), |
| ASN1_EXP_OPT(RSA_PSS_PARAMS, saltLength, ASN1_INTEGER,2), |
| ASN1_EXP_OPT(RSA_PSS_PARAMS, trailerField, ASN1_INTEGER,3), |
| } ASN1_SEQUENCE_END(RSA_PSS_PARAMS); |
| |
| IMPLEMENT_ASN1_FUNCTIONS(RSA_PSS_PARAMS); |
| |
| RSA *RSAPublicKey_dup(const RSA *rsa) { |
| uint8_t *der; |
| size_t der_len; |
| if (!RSA_public_key_to_bytes(&der, &der_len, rsa)) { |
| return NULL; |
| } |
| RSA *ret = RSA_public_key_from_bytes(der, der_len); |
| OPENSSL_free(der); |
| return ret; |
| } |
| |
| RSA *RSAPrivateKey_dup(const RSA *rsa) { |
| uint8_t *der; |
| size_t der_len; |
| if (!RSA_private_key_to_bytes(&der, &der_len, rsa)) { |
| return NULL; |
| } |
| RSA *ret = RSA_private_key_from_bytes(der, der_len); |
| OPENSSL_free(der); |
| return ret; |
| } |