blob: d16b16451812ae9a7f49437cb7f4dbb07b51b40c [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <string>
#include <functional>
#include <memory>
#include <vector>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <openssl/aead.h>
#include <openssl/bio.h>
#include <openssl/digest.h>
#include <openssl/obj.h>
#include <openssl/rsa.h>
#if defined(OPENSSL_WINDOWS)
#pragma warning(push, 3)
#include <windows.h>
#pragma warning(pop)
#elif defined(OPENSSL_APPLE)
#include <sys/time.h>
#endif
extern "C" {
// These values are DER encoded, RSA private keys.
extern const uint8_t kDERRSAPrivate2048[];
extern size_t kDERRSAPrivate2048Len;
extern const uint8_t kDERRSAPrivate4096[];
extern size_t kDERRSAPrivate4096Len;
}
// TimeResults represents the results of benchmarking a function.
struct TimeResults {
// num_calls is the number of function calls done in the time period.
unsigned num_calls;
// us is the number of microseconds that elapsed in the time period.
unsigned us;
void Print(const std::string &description) {
printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls,
description.c_str(), us,
(static_cast<double>(num_calls) / us) * 1000000);
}
void PrintWithBytes(const std::string &description, size_t bytes_per_call) {
printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n",
num_calls, description.c_str(), us,
(static_cast<double>(num_calls) / us) * 1000000,
static_cast<double>(bytes_per_call * num_calls) / us);
}
};
#if defined(OPENSSL_WINDOWS)
static uint64_t time_now() { return GetTickCount64() * 1000; }
#elif defined(OPENSSL_APPLE)
static uint64_t time_now() {
struct timeval tv;
uint64_t ret;
gettimeofday(&tv, NULL);
ret = tv.tv_sec;
ret *= 1000000;
ret += tv.tv_usec;
return ret;
}
#else
static uint64_t time_now() {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
uint64_t ret = ts.tv_sec;
ret *= 1000000;
ret += ts.tv_nsec / 1000;
return ret;
}
#endif
static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
// kTotalMS is the total amount of time that we'll aim to measure a function
// for.
static const uint64_t kTotalUS = 3000000;
uint64_t start = time_now(), now, delta;
unsigned done = 0, iterations_between_time_checks;
if (!func()) {
return false;
}
now = time_now();
delta = now - start;
if (delta == 0) {
iterations_between_time_checks = 250;
} else {
// Aim for about 100ms between time checks.
iterations_between_time_checks =
static_cast<double>(100000) / static_cast<double>(delta);
if (iterations_between_time_checks > 1000) {
iterations_between_time_checks = 1000;
} else if (iterations_between_time_checks < 1) {
iterations_between_time_checks = 1;
}
}
for (;;) {
for (unsigned i = 0; i < iterations_between_time_checks; i++) {
if (!func()) {
return false;
}
done++;
}
now = time_now();
if (now - start > kTotalUS) {
break;
}
}
results->us = now - start;
results->num_calls = done;
return true;
}
static bool SpeedRSA(const std::string& key_name, RSA *key) {
TimeResults results;
std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]);
const uint8_t fake_sha256_hash[32] = {0};
unsigned sig_len;
if (!TimeFunction(&results,
[key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
sig.get(), &sig_len, key);
})) {
fprintf(stderr, "RSA_sign failed.\n");
BIO_print_errors_fp(stderr);
return false;
}
results.Print(key_name + " signing");
if (!TimeFunction(&results,
[key, &fake_sha256_hash, &sig, sig_len]() -> bool {
return RSA_verify(NID_sha256, fake_sha256_hash,
sizeof(fake_sha256_hash), sig.get(), sig_len, key);
})) {
fprintf(stderr, "RSA_verify failed.\n");
BIO_print_errors_fp(stderr);
return false;
}
results.Print(key_name + " verify");
return true;
}
static uint8_t *align(uint8_t *in, unsigned alignment) {
return reinterpret_cast<uint8_t *>(
(reinterpret_cast<uintptr_t>(in) + alignment) &
~static_cast<size_t>(alignment - 1));
}
static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name,
size_t chunk_len, size_t ad_len) {
static const unsigned kAlignment = 16;
EVP_AEAD_CTX ctx;
const size_t key_len = EVP_AEAD_key_length(aead);
const size_t nonce_len = EVP_AEAD_nonce_length(aead);
const size_t overhead_len = EVP_AEAD_max_overhead(aead);
std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
memset(key.get(), 0, key_len);
std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
memset(nonce.get(), 0, nonce_len);
std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]);
std::unique_ptr<uint8_t[]> out_storage(new uint8_t[chunk_len + overhead_len + kAlignment]);
std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]);
memset(ad.get(), 0, ad_len);
uint8_t *const in = align(in_storage.get(), kAlignment);
memset(in, 0, chunk_len);
uint8_t *const out = align(out_storage.get(), kAlignment);
memset(out, 0, chunk_len + overhead_len);
if (!EVP_AEAD_CTX_init_with_direction(&ctx, aead, key.get(), key_len,
EVP_AEAD_DEFAULT_TAG_LENGTH,
evp_aead_seal)) {
fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
BIO_print_errors_fp(stderr);
return false;
}
TimeResults results;
if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, in,
out, &ctx, &nonce, &ad]() -> bool {
size_t out_len;
return EVP_AEAD_CTX_seal(
&ctx, out, &out_len, chunk_len + overhead_len, nonce.get(),
nonce_len, in, chunk_len, ad.get(), ad_len);
})) {
fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
BIO_print_errors_fp(stderr);
return false;
}
results.PrintWithBytes(name + " seal", chunk_len);
EVP_AEAD_CTX_cleanup(&ctx);
return true;
}
static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
size_t ad_len) {
return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len) &&
SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len) &&
SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len);
}
static bool SpeedHashChunk(const EVP_MD *md, const std::string &name,
size_t chunk_len) {
EVP_MD_CTX *ctx = EVP_MD_CTX_create();
uint8_t scratch[8192];
if (chunk_len > sizeof(scratch)) {
return false;
}
TimeResults results;
if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool {
uint8_t digest[EVP_MAX_MD_SIZE];
unsigned int md_len;
return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) &&
EVP_DigestUpdate(ctx, scratch, chunk_len) &&
EVP_DigestFinal_ex(ctx, digest, &md_len);
})) {
fprintf(stderr, "EVP_DigestInit_ex failed.\n");
BIO_print_errors_fp(stderr);
return false;
}
results.PrintWithBytes(name, chunk_len);
EVP_MD_CTX_destroy(ctx);
return true;
}
static bool SpeedHash(const EVP_MD *md, const std::string &name) {
return SpeedHashChunk(md, name + " (16 bytes)", 16) &&
SpeedHashChunk(md, name + " (256 bytes)", 256) &&
SpeedHashChunk(md, name + " (8192 bytes)", 8192);
}
bool Speed(const std::vector<std::string> &args) {
const uint8_t *inp;
RSA *key = NULL;
inp = kDERRSAPrivate2048;
if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate2048Len)) {
fprintf(stderr, "Failed to parse RSA key.\n");
BIO_print_errors_fp(stderr);
return false;
}
if (!SpeedRSA("RSA 2048", key)) {
return false;
}
RSA_free(key);
key = NULL;
inp = kDERRSAPrivate4096;
if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate4096Len)) {
fprintf(stderr, "Failed to parse 4096-bit RSA key.\n");
BIO_print_errors_fp(stderr);
return 1;
}
if (!SpeedRSA("RSA 4096", key)) {
return false;
}
RSA_free(key);
// kTLSADLen is the number of bytes of additional data that TLS passes to
// AEADs.
static const size_t kTLSADLen = 13;
// kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
// These are AEADs that weren't originally defined as AEADs, but which we use
// via the AEAD interface. In order for that to work, they have some TLS
// knowledge in them and construct a couple of the AD bytes internally.
static const size_t kLegacyADLen = kTLSADLen - 2;
if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen) ||
!SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen) ||
!SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen) ||
!SpeedAEAD(EVP_aead_rc4_md5_tls(), "RC4-MD5", kLegacyADLen) ||
!SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", kLegacyADLen) ||
!SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", kLegacyADLen) ||
!SpeedHash(EVP_sha1(), "SHA-1") ||
!SpeedHash(EVP_sha256(), "SHA-256") ||
!SpeedHash(EVP_sha512(), "SHA-512")) {
return false;
}
return 0;
}