| // Copyright 2025 The BoringSSL Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "merkle_tree.h" |
| |
| #include <algorithm> |
| #include <optional> |
| |
| #include <openssl/mem.h> |
| #include <openssl/span.h> |
| #include "openssl/sha2.h" |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| // Computes HASH(0x01 || left || right) and saves the result to |out|. |
| void HashNode(TreeHashConstSpan left, TreeHashConstSpan right, |
| TreeHashSpan out) { |
| static const uint8_t header = 0x01; |
| SHA256_CTX ctx; |
| SHA256_Init(&ctx); |
| SHA256_Update(&ctx, &header, 1); |
| SHA256_Update(&ctx, left.data(), left.size()); |
| SHA256_Update(&ctx, right.data(), right.size()); |
| SHA256_Final(out.data(), &ctx); |
| } |
| |
| namespace { |
| |
| std::optional<TreeHashConstSpan> NextProofHash(Span<const uint8_t> *proof) { |
| if (proof->size() < SHA256_DIGEST_LENGTH) { |
| return std::nullopt; |
| } |
| auto ret = proof->first<SHA256_DIGEST_LENGTH>(); |
| *proof = proof->subspan(SHA256_DIGEST_LENGTH); |
| return ret; |
| } |
| |
| } // namespace |
| |
| std::optional<TreeHash> EvaluateMerkleSubtreeConsistencyProof( |
| uint64_t n, const Subtree &subtree, Span<const uint8_t> proof, |
| TreeHashConstSpan node_hash) { |
| // For more detail on how subtree consistency proofs work, see appendix B |
| // of draft-davidben-tls-merkle-tree-certs-08. |
| |
| // Check that inputs are valid. (Step 1) |
| if (!subtree.IsValid() || n < subtree.end) { |
| return std::nullopt; |
| } |
| |
| // Initialize fn (first number), sn (second number), and tn (third number). |
| // Each number is the path from the root of the tree to 1) the leftmost child |
| // of the subtree, 2) the rightmost child of the subtree, and 3) the rightmost |
| // child of the full tree. (Step 2) |
| uint64_t fn = subtree.start; |
| uint64_t sn = subtree.end - 1; |
| uint64_t tn = n - 1; |
| |
| // The bit patterns of these numbers indicates whether the path goes left or |
| // right (or in some cases on the rightmost edge of a (sub)treee, that a level |
| // of the tree is skipped). |
| // |
| // When consuming the proof, we work up the tree from the bottom level (level |
| // 0) up to the root, and moving up one level in the tree corresponds to |
| // consuming the least significant bit from each of fn, sn, and tn. The proof |
| // can start at a higher level than level 0 if the node on the right edge of |
| // the subtree at that level is also a node of the overall tree. |
| // |
| // Remove bits equally from the right of fn, sn, and tn to skip to the level |
| // of the tree where the proof starts. (Steps 3 and 4) |
| if (sn == tn) { |
| // If sn == tn, then the rightmost child of the subtree and the rightmost |
| // child of the full tree are the same node, meaning that the subtree is |
| // directly contained in the full tree. The proof starts at the same level |
| // as the top of the subtree. That level is identified by advancing |
| // bit-by-bit through fn and sn until they are the same, meaning that we've |
| // moved up the levels of the tree to where the left and right edge of the |
| // subtree reach the same point (the root of the subtree). |
| // |
| // (Step 3: right shift until fn is sn) |
| while (fn != sn) { |
| fn >>= 1; |
| sn >>= 1; |
| tn >>= 1; |
| } |
| } else { |
| // Find the largest full (rather than partial) subtree that the rightmost |
| // edge of the input subtree is still the rightmost edge of, without going |
| // beyond the bounds of the input subtree. Any such full subtree is directly |
| // contained in the tree of hash operations for the full tree, meaning that |
| // the proof can start at that level rather than level 0. |
| // |
| // As long as the path to the rightmost edge of the input subtree is |
| // indicating it's on the right side of its parent node (its LSB is 1), it's |
| // still on the rightmost edge of a full (rather than partial) subtree. |
| // Iteration stops when it's no longer on the rightmost edge of a full |
| // subtree (LSB(sn) is not set) or when we reach the top of the input |
| // subtree (fn is sn). |
| // |
| // (Step 4: right-shift until fn is sn or LSB(sn) is not set) |
| while (fn != sn && (sn & 1) == 1) { |
| fn >>= 1; |
| sn >>= 1; |
| tn >>= 1; |
| } |
| } |
| |
| // The proof array starts with the highest node from the subtree's right edge |
| // that is also in the overall tree, and subsequent values from the proof |
| // array are hashed in to compute the values that should be node_hash and |
| // root_hash if the proof is valid. As an optimization, if node_hash is the |
| // hash of the highest node from the subtree's right edge (i.e. the whole |
| // subtree is directly contained in the overall tree), that value is omitted |
| // from the proof. |
| // |
| // In this code, computed_node_hash and computed_root_hash are the values fr |
| // and sr from draft-davidben-tls-merkle-tree-certs-08. |
| // (Steps 5 and 6) |
| TreeHash computed_node_hash, computed_root_hash; |
| if (fn == sn) { |
| // The optimization mentioned above. (Step 5) |
| std::copy(node_hash.begin(), node_hash.end(), computed_node_hash.data()); |
| std::copy(node_hash.begin(), node_hash.end(), computed_root_hash.data()); |
| } else { |
| // The hashes start from the first value of the proof (Step 6) |
| std::optional<TreeHashConstSpan> first_hash = NextProofHash(&proof); |
| if (!first_hash) { |
| return std::nullopt; |
| } |
| std::copy(first_hash->begin(), first_hash->end(), |
| computed_node_hash.data()); |
| std::copy(first_hash->begin(), first_hash->end(), |
| computed_root_hash.data()); |
| } |
| |
| // Iterate over the (remaining) elements of the proof array and traverse up |
| // the fn/sn/tn paths until we reach the root of the tree. Each step should |
| // consume one element from the proof array and move one level up the tree, |
| // and if the proof is valid both iterators end at the same time. (Step 7) |
| while (!proof.empty()) { |
| auto p = NextProofHash(&proof); |
| if (!p) { |
| return std::nullopt; |
| } |
| // (Step 7.1) |
| if (tn == 0) { |
| // We reached the root of the tree before running out of elements in the |
| // proof. |
| return std::nullopt; |
| } |
| // Update the computed root_hash, and if applicable the computed node_hash. |
| // We stop updating computed_node_hash when we've reached the level of the |
| // root of the subtree, which occurs when the paths to the leftmost and |
| // rightmost nodes of the subtree are the same, i.e. fn == sn. |
| // |
| // (Step 7.2) |
| if ((sn & 1) == 1 || sn == tn) { |
| // (Step 7.2.1) |
| if (fn < sn) { |
| HashNode(*p, computed_node_hash, computed_node_hash); |
| } |
| // (Step 7.2.2) |
| HashNode(*p, computed_root_hash, computed_root_hash); |
| // Until LSB(sn) is set, right-shift fn, sn, and tn equally. |
| // (Step 7.2.3) |
| while ((sn & 1) == 0) { |
| fn >>= 1; |
| sn >>= 1; |
| tn >>= 1; |
| } |
| } else { |
| // (Step 7.3.1) |
| HashNode(computed_root_hash, *p, computed_root_hash); |
| } |
| // Advance the iterators: (Step 7.4) |
| fn >>= 1; |
| sn >>= 1; |
| tn >>= 1; |
| } |
| |
| // Check that the iterators ended together: (Step 8) |
| if (tn != 0) { |
| return std::nullopt; |
| } |
| |
| // Check that the computed values match the expected values: (Step 8) |
| if (CRYPTO_memcmp(computed_node_hash.data(), node_hash.data(), |
| computed_node_hash.size()) != 0) { |
| return std::nullopt; |
| } |
| // Return the computed root_hash for the caller to compare: |
| return computed_root_hash; |
| } |
| |
| BSSL_NAMESPACE_END |