| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H |
| #define OPENSSL_HEADER_CRYPTO_INTERNAL_H |
| |
| #include <openssl/ex_data.h> |
| |
| #if defined(__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| /* st_CRYPTO_EX_DATA_IMPL contains an ex_data implementation. See the comments |
| * in ex_data.h for details of the behaviour of each of the functions. */ |
| struct st_CRYPTO_EX_DATA_IMPL { |
| int (*new_class)(void); |
| void (*cleanup)(void); |
| |
| int (*get_new_index)(int class_value, long argl, void *argp, |
| CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func, |
| CRYPTO_EX_free *free_func); |
| int (*new_ex_data)(int class_value, void *obj, CRYPTO_EX_DATA *ad); |
| int (*dup_ex_data)(int class_value, CRYPTO_EX_DATA *to, |
| const CRYPTO_EX_DATA *from); |
| void (*free_ex_data)(int class_value, void *obj, CRYPTO_EX_DATA *ad); |
| }; |
| |
| |
| #if defined(_MSC_VER) |
| #define OPENSSL_U64(x) x##UI64 |
| #else |
| |
| #if defined(OPENSSL_64_BIT) |
| #define OPENSSL_U64(x) x##UL |
| #else |
| #define OPENSSL_U64(x) x##ULL |
| #endif |
| |
| #endif /* defined(_MSC_VER) */ |
| |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| /* OPENSSL_cpuid_setup initializes OPENSSL_ia32cap_P. */ |
| void OPENSSL_cpuid_setup(void); |
| #endif |
| |
| #if !defined(inline) |
| #define inline __inline |
| #endif |
| |
| |
| /* Constant-time utility functions. |
| * |
| * The following methods return a bitmask of all ones (0xff...f) for true and 0 |
| * for false. This is useful for choosing a value based on the result of a |
| * conditional in constant time. For example, |
| * |
| * if (a < b) { |
| * c = a; |
| * } else { |
| * c = b; |
| * } |
| * |
| * can be written as |
| * |
| * unsigned int lt = constant_time_lt(a, b); |
| * c = constant_time_select(lt, a, b); */ |
| |
| /* constant_time_msb returns the given value with the MSB copied to all the |
| * other bits. */ |
| static inline unsigned int constant_time_msb(unsigned int a) { |
| return (unsigned int)((int)(a) >> (sizeof(int) * 8 - 1)); |
| } |
| |
| /* constant_time_lt returns 0xff..f if a < b and 0 otherwise. */ |
| static inline unsigned int constant_time_lt(unsigned int a, unsigned int b) { |
| /* Consider the two cases of the problem: |
| * msb(a) == msb(b): a < b iff the MSB of a - b is set. |
| * msb(a) != msb(b): a < b iff the MSB of b is set. |
| * |
| * If msb(a) == msb(b) then the following evaluates as: |
| * msb(a^((a^b)|((a-b)^a))) == |
| * msb(a^((a-b) ^ a)) == (because msb(a^b) == 0) |
| * msb(a^a^(a-b)) == (rearranging) |
| * msb(a-b) (because ∀x. x^x == 0) |
| * |
| * Else, if msb(a) != msb(b) then the following evaluates as: |
| * msb(a^((a^b)|((a-b)^a))) == |
| * msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙 |
| * represents a value s.t. msb(𝟙) = 1) |
| * msb(a^𝟙) == (because ORing with 1 results in 1) |
| * msb(b) |
| * |
| * |
| * Here is an SMT-LIB verification of this formula: |
| * |
| * (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32) |
| * (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a))) |
| * ) |
| * |
| * (declare-fun a () (_ BitVec 32)) |
| * (declare-fun b () (_ BitVec 32)) |
| * |
| * (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b)))) |
| * (check-sat) |
| * (get-model) |
| */ |
| return constant_time_msb(a^((a^b)|((a-b)^a))); |
| } |
| |
| /* constant_time_lt_8 acts like |constant_time_lt| but returns an 8-bit mask. */ |
| static inline uint8_t constant_time_lt_8(unsigned int a, unsigned int b) { |
| return (uint8_t)(constant_time_lt(a, b)); |
| } |
| |
| /* constant_time_gt returns 0xff..f if a >= b and 0 otherwise. */ |
| static inline unsigned int constant_time_ge(unsigned int a, unsigned int b) { |
| return ~constant_time_lt(a, b); |
| } |
| |
| /* constant_time_ge_8 acts like |constant_time_ge| but returns an 8-bit mask. */ |
| static inline uint8_t constant_time_ge_8(unsigned int a, unsigned int b) { |
| return (uint8_t)(constant_time_ge(a, b)); |
| } |
| |
| /* constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise. */ |
| static inline unsigned int constant_time_is_zero(unsigned int a) { |
| /* Here is an SMT-LIB verification of this formula: |
| * |
| * (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32) |
| * (bvand (bvnot a) (bvsub a #x00000001)) |
| * ) |
| * |
| * (declare-fun a () (_ BitVec 32)) |
| * |
| * (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000)))) |
| * (check-sat) |
| * (get-model) |
| */ |
| return constant_time_msb(~a & (a - 1)); |
| } |
| |
| /* constant_time_is_zero_8 acts like constant_time_is_zero but returns an 8-bit |
| * mask. */ |
| static inline uint8_t constant_time_is_zero_8(unsigned int a) { |
| return (uint8_t)(constant_time_is_zero(a)); |
| } |
| |
| /* constant_time_eq returns 0xff..f if a == b and 0 otherwise. */ |
| static inline unsigned int constant_time_eq(unsigned int a, unsigned int b) { |
| return constant_time_is_zero(a ^ b); |
| } |
| |
| /* constant_time_eq_8 acts like |constant_time_eq| but returns an 8-bit mask. */ |
| static inline uint8_t constant_time_eq_8(unsigned int a, unsigned int b) { |
| return (uint8_t)(constant_time_eq(a, b)); |
| } |
| |
| /* constant_time_eq_int acts like |constant_time_eq| but works on int values. */ |
| static inline unsigned int constant_time_eq_int(int a, int b) { |
| return constant_time_eq((unsigned)(a), (unsigned)(b)); |
| } |
| |
| /* constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit |
| * mask. */ |
| static inline uint8_t constant_time_eq_int_8(int a, int b) { |
| return constant_time_eq_8((unsigned)(a), (unsigned)(b)); |
| } |
| |
| /* constant_time_select returns (mask & a) | (~mask & b). When |mask| is all 1s |
| * or all 0s (as returned by the methods above), the select methods return |
| * either |a| (if |mask| is nonzero) or |b| (if |mask| is zero). */ |
| static inline unsigned int constant_time_select(unsigned int mask, |
| unsigned int a, unsigned int b) { |
| return (mask & a) | (~mask & b); |
| } |
| |
| /* constant_time_select_8 acts like |constant_time_select| but operates on |
| * 8-bit values. */ |
| static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a, |
| uint8_t b) { |
| return (uint8_t)(constant_time_select(mask, a, b)); |
| } |
| |
| /* constant_time_select_int acts like |constant_time_select| but operates on |
| * ints. */ |
| static inline int constant_time_select_int(unsigned int mask, int a, int b) { |
| return (int)(constant_time_select(mask, (unsigned)(a), (unsigned)(b))); |
| } |
| |
| |
| #if defined(__cplusplus) |
| } /* extern C */ |
| #endif |
| |
| #endif /* OPENSSL_HEADER_CRYPTO_INTERNAL_H */ |