|  | // Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/ec.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/err.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | size_t ec_point_byte_len(const EC_GROUP *group, point_conversion_form_t form) { | 
|  | if (form != POINT_CONVERSION_COMPRESSED && | 
|  | form != POINT_CONVERSION_UNCOMPRESSED) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FORM); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const size_t field_len = BN_num_bytes(&group->field.N); | 
|  | size_t output_len = 1 /* type byte */ + field_len; | 
|  | if (form == POINT_CONVERSION_UNCOMPRESSED) { | 
|  | // Uncompressed points have a second coordinate. | 
|  | output_len += field_len; | 
|  | } | 
|  | return output_len; | 
|  | } | 
|  |  | 
|  | size_t ec_point_to_bytes(const EC_GROUP *group, const EC_AFFINE *point, | 
|  | point_conversion_form_t form, uint8_t *buf, | 
|  | size_t max_out) { | 
|  | size_t output_len = ec_point_byte_len(group, form); | 
|  | if (max_out < output_len) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t field_len; | 
|  | ec_felem_to_bytes(group, buf + 1, &field_len, &point->X); | 
|  | assert(field_len == BN_num_bytes(&group->field.N)); | 
|  |  | 
|  | if (form == POINT_CONVERSION_UNCOMPRESSED) { | 
|  | ec_felem_to_bytes(group, buf + 1 + field_len, &field_len, &point->Y); | 
|  | assert(field_len == BN_num_bytes(&group->field.N)); | 
|  | buf[0] = form; | 
|  | } else { | 
|  | uint8_t y_buf[EC_MAX_BYTES]; | 
|  | ec_felem_to_bytes(group, y_buf, &field_len, &point->Y); | 
|  | buf[0] = form + (y_buf[field_len - 1] & 1); | 
|  | } | 
|  |  | 
|  | return output_len; | 
|  | } | 
|  |  | 
|  | int ec_point_from_uncompressed(const EC_GROUP *group, EC_AFFINE *out, | 
|  | const uint8_t *in, size_t len) { | 
|  | const size_t field_len = BN_num_bytes(&group->field.N); | 
|  | if (len != 1 + 2 * field_len || in[0] != POINT_CONVERSION_UNCOMPRESSED) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EC_FELEM x, y; | 
|  | if (!ec_felem_from_bytes(group, &x, in + 1, field_len) || | 
|  | !ec_felem_from_bytes(group, &y, in + 1 + field_len, field_len) || | 
|  | !ec_point_set_affine_coordinates(group, out, &x, &y)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ec_GFp_simple_oct2point(const EC_GROUP *group, EC_POINT *point, | 
|  | const uint8_t *buf, size_t len, | 
|  | BN_CTX *ctx) { | 
|  | if (len == 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t form = buf[0]; | 
|  | if (form == static_cast<uint8_t>(POINT_CONVERSION_UNCOMPRESSED)) { | 
|  | EC_AFFINE affine; | 
|  | if (!ec_point_from_uncompressed(group, &affine, buf, len)) { | 
|  | // In the event of an error, defend against the caller not checking the | 
|  | // return value by setting a known safe value. | 
|  | ec_set_to_safe_point(group, &point->raw); | 
|  | return 0; | 
|  | } | 
|  | ec_affine_to_jacobian(group, &point->raw, &affine); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const int y_bit = form & 1; | 
|  | const size_t field_len = BN_num_bytes(&group->field.N); | 
|  | form = form & ~1u; | 
|  | if (form != static_cast<uint8_t>(POINT_CONVERSION_COMPRESSED) || | 
|  | len != 1 /* type byte */ + field_len) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // TODO(davidben): Integrate compressed coordinates with the lower-level EC | 
|  | // abstractions. This requires a way to compute square roots, which is tricky | 
|  | // for primes which are not 3 (mod 4), namely P-224 and custom curves. P-224's | 
|  | // prime is particularly inconvenient for compressed coordinates. See | 
|  | // https://cr.yp.to/papers/sqroot.pdf | 
|  | bssl::UniquePtr<BN_CTX> new_ctx; | 
|  | if (ctx == nullptr) { | 
|  | new_ctx.reset(BN_CTX_new()); | 
|  | if (new_ctx == nullptr) { | 
|  | return 0; | 
|  | } | 
|  | ctx = new_ctx.get(); | 
|  | } | 
|  |  | 
|  | bssl::BN_CTXScope scope(ctx); | 
|  | BIGNUM *x = BN_CTX_get(ctx); | 
|  | if (x == nullptr || !BN_bin2bn(buf + 1, field_len, x)) { | 
|  | return 0; | 
|  | } | 
|  | if (BN_ucmp(x, &group->field.N) >= 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_ENCODING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!EC_POINT_set_compressed_coordinates_GFp(group, point, x, y_bit, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point, | 
|  | const uint8_t *buf, size_t len, BN_CTX *ctx) { | 
|  | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | return ec_GFp_simple_oct2point(group, point, buf, len, ctx); | 
|  | } | 
|  |  | 
|  | size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *point, | 
|  | point_conversion_form_t form, uint8_t *buf, | 
|  | size_t max_out, BN_CTX *ctx) { | 
|  | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | if (buf == NULL) { | 
|  | // When |buf| is NULL, just return the number of bytes that would be | 
|  | // written, without doing an expensive Jacobian-to-affine conversion. | 
|  | if (ec_GFp_simple_is_at_infinity(group, &point->raw)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); | 
|  | return 0; | 
|  | } | 
|  | return ec_point_byte_len(group, form); | 
|  | } | 
|  | EC_AFFINE affine; | 
|  | if (!ec_jacobian_to_affine(group, &affine, &point->raw)) { | 
|  | return 0; | 
|  | } | 
|  | return ec_point_to_bytes(group, &affine, form, buf, max_out); | 
|  | } | 
|  |  | 
|  | size_t EC_POINT_point2buf(const EC_GROUP *group, const EC_POINT *point, | 
|  | point_conversion_form_t form, uint8_t **out_buf, | 
|  | BN_CTX *ctx) { | 
|  | *out_buf = NULL; | 
|  | size_t len = EC_POINT_point2oct(group, point, form, NULL, 0, ctx); | 
|  | if (len == 0) { | 
|  | return 0; | 
|  | } | 
|  | uint8_t *buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(len)); | 
|  | if (buf == NULL) { | 
|  | return 0; | 
|  | } | 
|  | len = EC_POINT_point2oct(group, point, form, buf, len, ctx); | 
|  | if (len == 0) { | 
|  | OPENSSL_free(buf); | 
|  | return 0; | 
|  | } | 
|  | *out_buf = buf; | 
|  | return len; | 
|  | } | 
|  |  | 
|  | int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, | 
|  | EC_POINT *point, const BIGNUM *x, | 
|  | int y_bit, BN_CTX *ctx) { | 
|  | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const BIGNUM *field = &group->field.N; | 
|  | if (BN_is_negative(x) || BN_cmp(x, field) >= 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ERR_clear_error(); | 
|  |  | 
|  | bssl::UniquePtr<BN_CTX> new_ctx; | 
|  | if (ctx == nullptr) { | 
|  | new_ctx.reset(BN_CTX_new()); | 
|  | if (new_ctx == nullptr) { | 
|  | return 0; | 
|  | } | 
|  | ctx = new_ctx.get(); | 
|  | } | 
|  |  | 
|  | y_bit = (y_bit != 0); | 
|  |  | 
|  | bssl::BN_CTXScope scope(ctx); | 
|  | BIGNUM *tmp1 = BN_CTX_get(ctx); | 
|  | BIGNUM *tmp2 = BN_CTX_get(ctx); | 
|  | BIGNUM *a = BN_CTX_get(ctx); | 
|  | BIGNUM *b = BN_CTX_get(ctx); | 
|  | BIGNUM *y = BN_CTX_get(ctx); | 
|  | if (y == NULL || !EC_GROUP_get_curve_GFp(group, NULL, a, b, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Recover y.  We have a Weierstrass equation | 
|  | //     y^2 = x^3 + a*x + b, | 
|  | // so  y  is one of the square roots of  x^3 + a*x + b. | 
|  |  | 
|  | // tmp1 := x^3 | 
|  | if (!BN_mod_sqr(tmp2, x, field, ctx) || | 
|  | !BN_mod_mul(tmp1, tmp2, x, field, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // tmp1 := tmp1 + a*x | 
|  | if (group->a_is_minus3) { | 
|  | if (!bn_mod_lshift1_consttime(tmp2, x, field, ctx) || | 
|  | !bn_mod_add_consttime(tmp2, tmp2, x, field, ctx) || | 
|  | !bn_mod_sub_consttime(tmp1, tmp1, tmp2, field, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (!BN_mod_mul(tmp2, a, x, field, ctx) || | 
|  | !bn_mod_add_consttime(tmp1, tmp1, tmp2, field, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // tmp1 := tmp1 + b | 
|  | if (!bn_mod_add_consttime(tmp1, tmp1, b, field, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!BN_mod_sqrt(y, tmp1, field, ctx)) { | 
|  | if (ERR_equals(ERR_peek_last_error(), ERR_LIB_BN, BN_R_NOT_A_SQUARE)) { | 
|  | ERR_clear_error(); | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSED_POINT); | 
|  | } else { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (y_bit != BN_is_odd(y)) { | 
|  | if (BN_is_zero(y)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COMPRESSION_BIT); | 
|  | return 0; | 
|  | } | 
|  | if (!BN_usub(y, field, y)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (y_bit != BN_is_odd(y)) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } |