|  | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | int BN_lshift(BIGNUM *r, const BIGNUM *a, int n) { | 
|  | int i, nw, lb, rb; | 
|  | BN_ULONG *t, *f; | 
|  | BN_ULONG l; | 
|  |  | 
|  | if (n < 0) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | r->neg = a->neg; | 
|  | nw = n / BN_BITS2; | 
|  | if (!bn_wexpand(r, a->width + nw + 1)) { | 
|  | return 0; | 
|  | } | 
|  | lb = n % BN_BITS2; | 
|  | rb = BN_BITS2 - lb; | 
|  | f = a->d; | 
|  | t = r->d; | 
|  | t[a->width + nw] = 0; | 
|  | if (lb == 0) { | 
|  | for (i = a->width - 1; i >= 0; i--) { | 
|  | t[nw + i] = f[i]; | 
|  | } | 
|  | } else { | 
|  | for (i = a->width - 1; i >= 0; i--) { | 
|  | l = f[i]; | 
|  | t[nw + i + 1] |= l >> rb; | 
|  | t[nw + i] = l << lb; | 
|  | } | 
|  | } | 
|  | OPENSSL_memset(t, 0, nw * sizeof(t[0])); | 
|  | r->width = a->width + nw + 1; | 
|  | bn_set_minimal_width(r); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int BN_lshift1(BIGNUM *r, const BIGNUM *a) { | 
|  | BN_ULONG *ap, *rp, t, c; | 
|  | int i; | 
|  |  | 
|  | if (r != a) { | 
|  | r->neg = a->neg; | 
|  | if (!bn_wexpand(r, a->width + 1)) { | 
|  | return 0; | 
|  | } | 
|  | r->width = a->width; | 
|  | } else { | 
|  | if (!bn_wexpand(r, a->width + 1)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | ap = a->d; | 
|  | rp = r->d; | 
|  | c = 0; | 
|  | for (i = 0; i < a->width; i++) { | 
|  | t = *(ap++); | 
|  | *(rp++) = (t << 1) | c; | 
|  | c = t >> (BN_BITS2 - 1); | 
|  | } | 
|  | if (c) { | 
|  | *rp = 1; | 
|  | r->width++; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift, | 
|  | size_t num) { | 
|  | unsigned shift_bits = shift % BN_BITS2; | 
|  | size_t shift_words = shift / BN_BITS2; | 
|  | if (shift_words >= num) { | 
|  | OPENSSL_memset(r, 0, num * sizeof(BN_ULONG)); | 
|  | return; | 
|  | } | 
|  | if (shift_bits == 0) { | 
|  | OPENSSL_memmove(r, a + shift_words, (num - shift_words) * sizeof(BN_ULONG)); | 
|  | } else { | 
|  | for (size_t i = shift_words; i < num - 1; i++) { | 
|  | r[i - shift_words] = | 
|  | (a[i] >> shift_bits) | (a[i + 1] << (BN_BITS2 - shift_bits)); | 
|  | } | 
|  | r[num - 1 - shift_words] = a[num - 1] >> shift_bits; | 
|  | } | 
|  | OPENSSL_memset(r + num - shift_words, 0, shift_words * sizeof(BN_ULONG)); | 
|  | } | 
|  |  | 
|  | int BN_rshift(BIGNUM *r, const BIGNUM *a, int n) { | 
|  | if (n < 0) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!bn_wexpand(r, a->width)) { | 
|  | return 0; | 
|  | } | 
|  | bn_rshift_words(r->d, a->d, n, a->width); | 
|  | r->neg = a->neg; | 
|  | r->width = a->width; | 
|  | bn_set_minimal_width(r); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a, unsigned n, | 
|  | BN_CTX *ctx) { | 
|  | bssl::BN_CTXScope scope(ctx); | 
|  | BIGNUM *tmp = BN_CTX_get(ctx); | 
|  | unsigned max_bits; | 
|  | if (tmp == NULL || !BN_copy(r, a) || !bn_wexpand(tmp, r->width)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Shift conditionally by powers of two. | 
|  | max_bits = BN_BITS2 * r->width; | 
|  | for (unsigned i = 0; (max_bits >> i) != 0; i++) { | 
|  | BN_ULONG mask = (n >> i) & 1; | 
|  | mask = 0 - mask; | 
|  | bn_rshift_words(tmp->d, r->d, 1u << i, r->width); | 
|  | bn_select_words(r->d, mask, tmp->d /* apply shift */, | 
|  | r->d /* ignore shift */, r->width); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num) { | 
|  | if (num == 0) { | 
|  | return; | 
|  | } | 
|  | for (size_t i = 0; i < num - 1; i++) { | 
|  | r[i] = (a[i] >> 1) | (a[i + 1] << (BN_BITS2 - 1)); | 
|  | } | 
|  | r[num - 1] = a[num - 1] >> 1; | 
|  | } | 
|  |  | 
|  | int BN_rshift1(BIGNUM *r, const BIGNUM *a) { | 
|  | if (!bn_wexpand(r, a->width)) { | 
|  | return 0; | 
|  | } | 
|  | bn_rshift1_words(r->d, a->d, a->width); | 
|  | r->width = a->width; | 
|  | r->neg = a->neg; | 
|  | bn_set_minimal_width(r); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int BN_set_bit(BIGNUM *a, int n) { | 
|  | if (n < 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int i = n / BN_BITS2; | 
|  | int j = n % BN_BITS2; | 
|  | if (a->width <= i) { | 
|  | if (!bn_wexpand(a, i + 1)) { | 
|  | return 0; | 
|  | } | 
|  | for (int k = a->width; k < i + 1; k++) { | 
|  | a->d[k] = 0; | 
|  | } | 
|  | a->width = i + 1; | 
|  | } | 
|  |  | 
|  | a->d[i] |= (((BN_ULONG)1) << j); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int BN_clear_bit(BIGNUM *a, int n) { | 
|  | int i, j; | 
|  |  | 
|  | if (n < 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | i = n / BN_BITS2; | 
|  | j = n % BN_BITS2; | 
|  | if (a->width <= i) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | a->d[i] &= (~(((BN_ULONG)1) << j)); | 
|  | bn_set_minimal_width(a); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int bn_is_bit_set_words(const BN_ULONG *a, size_t num, size_t bit) { | 
|  | size_t i = bit / BN_BITS2; | 
|  | size_t j = bit % BN_BITS2; | 
|  | if (i >= num) { | 
|  | return 0; | 
|  | } | 
|  | return (a[i] >> j) & 1; | 
|  | } | 
|  |  | 
|  | int BN_is_bit_set(const BIGNUM *a, int n) { | 
|  | if (n < 0) { | 
|  | return 0; | 
|  | } | 
|  | return bn_is_bit_set_words(a->d, a->width, n); | 
|  | } | 
|  |  | 
|  | int BN_mask_bits(BIGNUM *a, int n) { | 
|  | if (n < 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int w = n / BN_BITS2; | 
|  | int b = n % BN_BITS2; | 
|  | if (w >= a->width) { | 
|  | return 1; | 
|  | } | 
|  | if (b == 0) { | 
|  | a->width = w; | 
|  | } else { | 
|  | a->width = w + 1; | 
|  | a->d[w] &= ~(BN_MASK2 << b); | 
|  | } | 
|  |  | 
|  | bn_set_minimal_width(a); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int bn_count_low_zero_bits_word(BN_ULONG l) { | 
|  | static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t), | 
|  | "crypto_word_t is too small"); | 
|  | static_assert(sizeof(int) <= sizeof(crypto_word_t), | 
|  | "crypto_word_t is too small"); | 
|  | static_assert(BN_BITS2 == sizeof(BN_ULONG) * 8, "BN_ULONG has padding bits"); | 
|  | // C has very bizarre rules for types smaller than an int. | 
|  | static_assert(sizeof(BN_ULONG) >= sizeof(int), | 
|  | "BN_ULONG gets promoted to int"); | 
|  |  | 
|  | crypto_word_t mask; | 
|  | int bits = 0; | 
|  |  | 
|  | #if BN_BITS2 > 32 | 
|  | // Check if the lower half of |x| are all zero. | 
|  | mask = constant_time_is_zero_w(l << (BN_BITS2 - 32)); | 
|  | // If the lower half is all zeros, it is included in the bit count and we | 
|  | // count the upper half. Otherwise, we count the lower half. | 
|  | bits += 32 & mask; | 
|  | l = constant_time_select_w(mask, l >> 32, l); | 
|  | #endif | 
|  |  | 
|  | // The remaining blocks are analogous iterations at lower powers of two. | 
|  | mask = constant_time_is_zero_w(l << (BN_BITS2 - 16)); | 
|  | bits += 16 & mask; | 
|  | l = constant_time_select_w(mask, l >> 16, l); | 
|  |  | 
|  | mask = constant_time_is_zero_w(l << (BN_BITS2 - 8)); | 
|  | bits += 8 & mask; | 
|  | l = constant_time_select_w(mask, l >> 8, l); | 
|  |  | 
|  | mask = constant_time_is_zero_w(l << (BN_BITS2 - 4)); | 
|  | bits += 4 & mask; | 
|  | l = constant_time_select_w(mask, l >> 4, l); | 
|  |  | 
|  | mask = constant_time_is_zero_w(l << (BN_BITS2 - 2)); | 
|  | bits += 2 & mask; | 
|  | l = constant_time_select_w(mask, l >> 2, l); | 
|  |  | 
|  | mask = constant_time_is_zero_w(l << (BN_BITS2 - 1)); | 
|  | bits += 1 & mask; | 
|  |  | 
|  | return bits; | 
|  | } | 
|  |  | 
|  | int BN_count_low_zero_bits(const BIGNUM *bn) { | 
|  | static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t), | 
|  | "crypto_word_t is too small"); | 
|  | static_assert(sizeof(int) <= sizeof(crypto_word_t), | 
|  | "crypto_word_t is too small"); | 
|  |  | 
|  | int ret = 0; | 
|  | crypto_word_t saw_nonzero = 0; | 
|  | for (int i = 0; i < bn->width; i++) { | 
|  | crypto_word_t nonzero = ~constant_time_is_zero_w(bn->d[i]); | 
|  | crypto_word_t first_nonzero = ~saw_nonzero & nonzero; | 
|  | saw_nonzero |= nonzero; | 
|  |  | 
|  | int bits = bn_count_low_zero_bits_word(bn->d[i]); | 
|  | ret |= first_nonzero & (i * BN_BITS2 + bits); | 
|  | } | 
|  |  | 
|  | // If got to the end of |bn| and saw no non-zero words, |bn| is zero. |ret| | 
|  | // will then remain zero. | 
|  | return ret; | 
|  | } |