blob: fc92b8ad554df6e8caa21da0f6c67436ebcd127a [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* ECC cipher suite support in OpenSSL originally written by
* Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <assert.h>
#include <stdio.h>
#include <openssl/buf.h>
#include <openssl/dh.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include "ssl_locl.h"
#define SSL3_NUM_CIPHERS (sizeof(ssl3_ciphers)/sizeof(SSL_CIPHER))
/* FIXED_NONCE_LEN is a macro that results in the correct value to set the
* fixed nonce length in SSL_CIPHER.algorithms2. It's the inverse of
* SSL_CIPHER_AEAD_FIXED_NONCE_LEN. */
#define FIXED_NONCE_LEN(x) ((x/2)<<24)
/* list of available SSLv3 ciphers (sorted by id) */
const SSL_CIPHER ssl3_ciphers[]={
/* The RSA ciphers */
/* Cipher 04 */
{
1,
SSL3_TXT_RSA_RC4_128_MD5,
SSL3_CK_RSA_RC4_128_MD5,
SSL_kRSA,
SSL_aRSA,
SSL_RC4,
SSL_MD5,
SSL_SSLV3,
SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF|SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD,
128,
128,
},
/* Cipher 05 */
{
1,
SSL3_TXT_RSA_RC4_128_SHA,
SSL3_CK_RSA_RC4_128_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_RC4,
SSL_SHA1,
SSL_SSLV3,
SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher 0A */
{
1,
SSL3_TXT_RSA_DES_192_CBC3_SHA,
SSL3_CK_RSA_DES_192_CBC3_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_3DES,
SSL_SHA1,
SSL_SSLV3,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
112,
168,
},
/* The Ephemeral DH ciphers */
/* Cipher 18 */
{
1,
SSL3_TXT_ADH_RC4_128_MD5,
SSL3_CK_ADH_RC4_128_MD5,
SSL_kEDH,
SSL_aNULL,
SSL_RC4,
SSL_MD5,
SSL_SSLV3,
SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* New AES ciphersuites */
/* Cipher 2F */
{
1,
TLS1_TXT_RSA_WITH_AES_128_SHA,
TLS1_CK_RSA_WITH_AES_128_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_AES128,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher 33 */
{
1,
TLS1_TXT_DHE_RSA_WITH_AES_128_SHA,
TLS1_CK_DHE_RSA_WITH_AES_128_SHA,
SSL_kEDH,
SSL_aRSA,
SSL_AES128,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher 34 */
{
1,
TLS1_TXT_ADH_WITH_AES_128_SHA,
TLS1_CK_ADH_WITH_AES_128_SHA,
SSL_kEDH,
SSL_aNULL,
SSL_AES128,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher 35 */
{
1,
TLS1_TXT_RSA_WITH_AES_256_SHA,
TLS1_CK_RSA_WITH_AES_256_SHA,
SSL_kRSA,
SSL_aRSA,
SSL_AES256,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
256,
256,
},
/* Cipher 39 */
{
1,
TLS1_TXT_DHE_RSA_WITH_AES_256_SHA,
TLS1_CK_DHE_RSA_WITH_AES_256_SHA,
SSL_kEDH,
SSL_aRSA,
SSL_AES256,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
256,
256,
},
/* Cipher 3A */
{
1,
TLS1_TXT_ADH_WITH_AES_256_SHA,
TLS1_CK_ADH_WITH_AES_256_SHA,
SSL_kEDH,
SSL_aNULL,
SSL_AES256,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
256,
256,
},
/* TLS v1.2 ciphersuites */
/* Cipher 3C */
{
1,
TLS1_TXT_RSA_WITH_AES_128_SHA256,
TLS1_CK_RSA_WITH_AES_128_SHA256,
SSL_kRSA,
SSL_aRSA,
SSL_AES128,
SSL_SHA256,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher 3D */
{
1,
TLS1_TXT_RSA_WITH_AES_256_SHA256,
TLS1_CK_RSA_WITH_AES_256_SHA256,
SSL_kRSA,
SSL_aRSA,
SSL_AES256,
SSL_SHA256,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
256,
256,
},
/* TLS v1.2 ciphersuites */
/* Cipher 67 */
{
1,
TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_128_SHA256,
SSL_kEDH,
SSL_aRSA,
SSL_AES128,
SSL_SHA256,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher 6B */
{
1,
TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_256_SHA256,
SSL_kEDH,
SSL_aRSA,
SSL_AES256,
SSL_SHA256,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
256,
256,
},
/* Cipher 6C */
{
1,
TLS1_TXT_ADH_WITH_AES_128_SHA256,
TLS1_CK_ADH_WITH_AES_128_SHA256,
SSL_kEDH,
SSL_aNULL,
SSL_AES128,
SSL_SHA256,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher 6D */
{
1,
TLS1_TXT_ADH_WITH_AES_256_SHA256,
TLS1_CK_ADH_WITH_AES_256_SHA256,
SSL_kEDH,
SSL_aNULL,
SSL_AES256,
SSL_SHA256,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
256,
256,
},
/* Cipher 8A */
{
1,
TLS1_TXT_PSK_WITH_RC4_128_SHA,
TLS1_CK_PSK_WITH_RC4_128_SHA,
SSL_kPSK,
SSL_aPSK,
SSL_RC4,
SSL_SHA1,
SSL_TLSV1,
SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher 8C */
{
1,
TLS1_TXT_PSK_WITH_AES_128_CBC_SHA,
TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
SSL_kPSK,
SSL_aPSK,
SSL_AES128,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher 8D */
{
1,
TLS1_TXT_PSK_WITH_AES_256_CBC_SHA,
TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
SSL_kPSK,
SSL_aPSK,
SSL_AES256,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
256,
256,
},
/* GCM ciphersuites from RFC5288 */
/* Cipher 9C */
{
1,
TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_RSA_WITH_AES_128_GCM_SHA256,
SSL_kRSA,
SSL_aRSA,
SSL_AES128GCM,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(4)|SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128,
128,
},
/* Cipher 9D */
{
1,
TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_RSA_WITH_AES_256_GCM_SHA384,
SSL_kRSA,
SSL_aRSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(4)|
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256,
256,
},
/* Cipher 9E */
{
1,
TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256,
SSL_kEDH,
SSL_aRSA,
SSL_AES128GCM,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(4)|SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128,
128,
},
/* Cipher 9F */
{
1,
TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384,
SSL_kEDH,
SSL_aRSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(4)|
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256,
256,
},
/* Cipher A6 */
{
1,
TLS1_TXT_ADH_WITH_AES_128_GCM_SHA256,
TLS1_CK_ADH_WITH_AES_128_GCM_SHA256,
SSL_kEDH,
SSL_aNULL,
SSL_AES128GCM,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(4)|SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128,
128,
},
/* Cipher A7 */
{
1,
TLS1_TXT_ADH_WITH_AES_256_GCM_SHA384,
TLS1_CK_ADH_WITH_AES_256_GCM_SHA384,
SSL_kEDH,
SSL_aNULL,
SSL_AES256GCM,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(4)|
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256,
256,
},
/* Cipher C007 */
{
1,
TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_RC4_128_SHA,
SSL_kEECDH,
SSL_aECDSA,
SSL_RC4,
SSL_SHA1,
SSL_TLSV1,
SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher C009 */
{
1,
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
SSL_kEECDH,
SSL_aECDSA,
SSL_AES128,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher C00A */
{
1,
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
SSL_kEECDH,
SSL_aECDSA,
SSL_AES256,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
256,
256,
},
/* Cipher C011 */
{
1,
TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA,
TLS1_CK_ECDHE_RSA_WITH_RC4_128_SHA,
SSL_kEECDH,
SSL_aRSA,
SSL_RC4,
SSL_SHA1,
SSL_TLSV1,
SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher C013 */
{
1,
TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
SSL_kEECDH,
SSL_aRSA,
SSL_AES128,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher C014 */
{
1,
TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
SSL_kEECDH,
SSL_aRSA,
SSL_AES256,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
256,
256,
},
/* Cipher C016 */
{
1,
TLS1_TXT_ECDH_anon_WITH_RC4_128_SHA,
TLS1_CK_ECDH_anon_WITH_RC4_128_SHA,
SSL_kEECDH,
SSL_aNULL,
SSL_RC4,
SSL_SHA1,
SSL_TLSV1,
SSL_MEDIUM,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher C018 */
{
1,
TLS1_TXT_ECDH_anon_WITH_AES_128_CBC_SHA,
TLS1_CK_ECDH_anon_WITH_AES_128_CBC_SHA,
SSL_kEECDH,
SSL_aNULL,
SSL_AES128,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
128,
128,
},
/* Cipher C019 */
{
1,
TLS1_TXT_ECDH_anon_WITH_AES_256_CBC_SHA,
TLS1_CK_ECDH_anon_WITH_AES_256_CBC_SHA,
SSL_kEECDH,
SSL_aNULL,
SSL_AES256,
SSL_SHA1,
SSL_TLSV1,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
256,
256,
},
/* HMAC based TLS v1.2 ciphersuites from RFC5289 */
/* Cipher C023 */
{
1,
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256,
SSL_kEECDH,
SSL_aECDSA,
SSL_AES128,
SSL_SHA256,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
128,
128,
},
/* Cipher C024 */
{
1,
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384,
SSL_kEECDH,
SSL_aECDSA,
SSL_AES256,
SSL_SHA384,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
256,
256,
},
/* Cipher C027 */
{
1,
TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256,
TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256,
SSL_kEECDH,
SSL_aRSA,
SSL_AES128,
SSL_SHA256,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
128,
128,
},
/* Cipher C028 */
{
1,
TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384,
TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384,
SSL_kEECDH,
SSL_aRSA,
SSL_AES256,
SSL_SHA384,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
256,
256,
},
/* GCM based TLS v1.2 ciphersuites from RFC5289 */
/* Cipher C02B */
{
1,
TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
SSL_kEECDH,
SSL_aECDSA,
SSL_AES128GCM,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(4)|SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128,
128,
},
/* Cipher C02C */
{
1,
TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
SSL_kEECDH,
SSL_aECDSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(4)|
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256,
256,
},
/* Cipher C02F */
{
1,
TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
SSL_kEECDH,
SSL_aRSA,
SSL_AES128GCM,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(4)|SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128,
128,
},
/* Cipher C030 */
{
1,
TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
SSL_kEECDH,
SSL_aRSA,
SSL_AES256GCM,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH|SSL_FIPS,
SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(4)|
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
256,
256,
},
/* ECDH PSK ciphersuites */
/* Cipher CAFE */
{
1,
TLS1_TXT_ECDHE_PSK_WITH_AES_128_GCM_SHA256,
TLS1_CK_ECDHE_PSK_WITH_AES_128_GCM_SHA256,
SSL_kEECDH,
SSL_aPSK,
SSL_AES128GCM,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(4)|
SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
128,
128,
},
{
1,
TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305,
TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305,
SSL_kEECDH,
SSL_aRSA,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(0),
256,
0,
},
{
1,
TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305,
SSL_kEECDH,
SSL_aECDSA,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(0),
256,
0,
},
{
1,
TLS1_TXT_DHE_RSA_WITH_CHACHA20_POLY1305,
TLS1_CK_DHE_RSA_CHACHA20_POLY1305,
SSL_kEDH,
SSL_aRSA,
SSL_CHACHA20POLY1305,
SSL_AEAD,
SSL_TLSV1_2,
SSL_HIGH,
SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256|SSL_CIPHER_ALGORITHM2_AEAD|FIXED_NONCE_LEN(0),
256,
0,
},
/* end of list */
};
SSL3_ENC_METHOD SSLv3_enc_data={
ssl3_enc,
n_ssl3_mac,
ssl3_setup_key_block,
ssl3_generate_master_secret,
ssl3_change_cipher_state,
ssl3_final_finish_mac,
MD5_DIGEST_LENGTH+SHA_DIGEST_LENGTH,
ssl3_cert_verify_mac,
SSL3_MD_CLIENT_FINISHED_CONST,4,
SSL3_MD_SERVER_FINISHED_CONST,4,
ssl3_alert_code,
(int (*)(SSL *, unsigned char *, size_t, const char *,
size_t, const unsigned char *, size_t,
int use_context))ssl_undefined_function,
0,
SSL3_HM_HEADER_LENGTH,
ssl3_set_handshake_header,
ssl3_handshake_write,
ssl3_add_to_finished_hash,
};
int ssl3_num_ciphers(void)
{
return(SSL3_NUM_CIPHERS);
}
const SSL_CIPHER *ssl3_get_cipher(unsigned int u)
{
if (u < SSL3_NUM_CIPHERS)
return(&(ssl3_ciphers[SSL3_NUM_CIPHERS-1-u]));
else
return(NULL);
}
int ssl3_pending(const SSL *s)
{
if (s->rstate == SSL_ST_READ_BODY)
return 0;
return (s->s3->rrec.type == SSL3_RT_APPLICATION_DATA) ? s->s3->rrec.length : 0;
}
void ssl3_set_handshake_header(SSL *s, int htype, unsigned long len)
{
unsigned char *p = (unsigned char *)s->init_buf->data;
*(p++) = htype;
l2n3(len, p);
s->init_num = (int)len + SSL3_HM_HEADER_LENGTH;
s->init_off = 0;
}
int ssl3_handshake_write(SSL *s, enum should_add_to_finished_hash should_add_to_finished_hash)
{
return ssl3_do_write(s, SSL3_RT_HANDSHAKE, should_add_to_finished_hash);
}
void ssl3_add_to_finished_hash(SSL *s)
{
ssl3_finish_mac(s, (uint8_t*) s->init_buf->data, s->init_num);
}
int ssl3_new(SSL *s)
{
SSL3_STATE *s3;
if ((s3=OPENSSL_malloc(sizeof *s3)) == NULL) goto err;
memset(s3,0,sizeof *s3);
memset(s3->rrec.seq_num,0,sizeof(s3->rrec.seq_num));
memset(s3->wrec.seq_num,0,sizeof(s3->wrec.seq_num));
s->s3=s3;
s->tlsext_channel_id_enabled = s->ctx->tlsext_channel_id_enabled;
if (s->ctx->tlsext_channel_id_private)
s->tlsext_channel_id_private = EVP_PKEY_dup(s->ctx->tlsext_channel_id_private);
s->method->ssl_clear(s);
return(1);
err:
return(0);
}
void ssl3_free(SSL *s)
{
if(s == NULL)
return;
ssl3_cleanup_key_block(s);
if (s->s3->rbuf.buf != NULL)
ssl3_release_read_buffer(s);
if (s->s3->wbuf.buf != NULL)
ssl3_release_write_buffer(s);
if (s->s3->tmp.dh != NULL)
DH_free(s->s3->tmp.dh);
if (s->s3->tmp.ecdh != NULL)
EC_KEY_free(s->s3->tmp.ecdh);
if (s->s3->tmp.ca_names != NULL)
sk_X509_NAME_pop_free(s->s3->tmp.ca_names,X509_NAME_free);
if (s->s3->tmp.certificate_types != NULL)
OPENSSL_free(s->s3->tmp.certificate_types);
if (s->s3->tmp.peer_ecpointformatlist)
OPENSSL_free(s->s3->tmp.peer_ecpointformatlist);
if (s->s3->tmp.peer_ellipticcurvelist)
OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist);
if (s->s3->tmp.peer_psk_identity_hint)
OPENSSL_free(s->s3->tmp.peer_psk_identity_hint);
if (s->s3->handshake_buffer) {
BIO_free(s->s3->handshake_buffer);
}
if (s->s3->handshake_dgst) ssl3_free_digest_list(s);
if (s->s3->alpn_selected)
OPENSSL_free(s->s3->alpn_selected);
OPENSSL_cleanse(s->s3,sizeof *s->s3);
OPENSSL_free(s->s3);
s->s3=NULL;
}
void ssl3_clear(SSL *s)
{
unsigned char *rp,*wp;
size_t rlen, wlen;
int init_extra;
/* TODO(davidben): Can this just call ssl3_free +
* ssl3_new. rbuf, wbuf, and init_extra are preserved, but
* this may not serve anything more than saving a malloc. */
ssl3_cleanup_key_block(s);
if (s->s3->tmp.ca_names != NULL)
sk_X509_NAME_pop_free(s->s3->tmp.ca_names,X509_NAME_free);
s->s3->tmp.ca_names = NULL;
if (s->s3->tmp.certificate_types != NULL)
OPENSSL_free(s->s3->tmp.certificate_types);
s->s3->tmp.certificate_types = NULL;
if (s->s3->tmp.peer_ecpointformatlist)
OPENSSL_free(s->s3->tmp.peer_ecpointformatlist);
s->s3->tmp.peer_ecpointformatlist = NULL;
if (s->s3->tmp.peer_ellipticcurvelist)
OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist);
s->s3->tmp.peer_ellipticcurvelist = NULL;
if (s->s3->tmp.peer_psk_identity_hint)
OPENSSL_free(s->s3->tmp.peer_psk_identity_hint);
s->s3->tmp.peer_psk_identity_hint = NULL;
if (s->s3->tmp.dh != NULL)
{
DH_free(s->s3->tmp.dh);
s->s3->tmp.dh = NULL;
}
if (s->s3->tmp.ecdh != NULL)
{
EC_KEY_free(s->s3->tmp.ecdh);
s->s3->tmp.ecdh = NULL;
}
rp = s->s3->rbuf.buf;
wp = s->s3->wbuf.buf;
rlen = s->s3->rbuf.len;
wlen = s->s3->wbuf.len;
init_extra = s->s3->init_extra;
if (s->s3->handshake_buffer) {
BIO_free(s->s3->handshake_buffer);
s->s3->handshake_buffer = NULL;
}
if (s->s3->handshake_dgst) {
ssl3_free_digest_list(s);
}
if (s->s3->alpn_selected)
{
OPENSSL_free(s->s3->alpn_selected);
s->s3->alpn_selected = NULL;
}
memset(s->s3,0,sizeof *s->s3);
s->s3->rbuf.buf = rp;
s->s3->wbuf.buf = wp;
s->s3->rbuf.len = rlen;
s->s3->wbuf.len = wlen;
s->s3->init_extra = init_extra;
ssl_free_wbio_buffer(s);
s->packet_length=0;
s->s3->renegotiate=0;
s->s3->total_renegotiations=0;
s->s3->num_renegotiations=0;
s->s3->in_read_app_data=0;
s->version = s->method->version;
if (s->next_proto_negotiated)
{
OPENSSL_free(s->next_proto_negotiated);
s->next_proto_negotiated = NULL;
s->next_proto_negotiated_len = 0;
}
s->s3->tlsext_channel_id_valid = 0;
}
static int ssl3_set_req_cert_type(CERT *c, const unsigned char *p, size_t len);
long ssl3_ctrl(SSL *s, int cmd, long larg, void *parg)
{
int ret=0;
if (cmd == SSL_CTRL_SET_TMP_RSA ||
cmd == SSL_CTRL_SET_TMP_RSA_CB ||
cmd == SSL_CTRL_SET_TMP_DH ||
cmd == SSL_CTRL_SET_TMP_DH_CB)
{
if (!ssl_cert_inst(&s->cert))
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_MALLOC_FAILURE);
return(0);
}
}
switch (cmd)
{
case SSL_CTRL_GET_SESSION_REUSED:
ret=s->hit;
break;
case SSL_CTRL_GET_CLIENT_CERT_REQUEST:
break;
case SSL_CTRL_GET_NUM_RENEGOTIATIONS:
ret=s->s3->num_renegotiations;
break;
case SSL_CTRL_CLEAR_NUM_RENEGOTIATIONS:
ret=s->s3->num_renegotiations;
s->s3->num_renegotiations=0;
break;
case SSL_CTRL_GET_TOTAL_RENEGOTIATIONS:
ret=s->s3->total_renegotiations;
break;
case SSL_CTRL_GET_FLAGS:
ret=(int)(s->s3->flags);
break;
case SSL_CTRL_NEED_TMP_RSA:
/* Temporary RSA keys are never used. */
ret = 0;
break;
case SSL_CTRL_SET_TMP_RSA:
/* Temporary RSA keys are never used. */
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
break;
case SSL_CTRL_SET_TMP_RSA_CB:
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return(ret);
}
break;
case SSL_CTRL_SET_TMP_DH:
{
DH *dh = (DH *)parg;
if (dh == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_PASSED_NULL_PARAMETER);
return(ret);
}
if ((dh = DHparams_dup(dh)) == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_DH_LIB);
return(ret);
}
if (!(s->options & SSL_OP_SINGLE_DH_USE))
{
if (!DH_generate_key(dh))
{
DH_free(dh);
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_DH_LIB);
return(ret);
}
}
if (s->cert->dh_tmp != NULL)
DH_free(s->cert->dh_tmp);
s->cert->dh_tmp = dh;
ret = 1;
}
break;
case SSL_CTRL_SET_TMP_DH_CB:
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return(ret);
}
break;
case SSL_CTRL_SET_TMP_ECDH:
{
EC_KEY *ecdh = NULL;
if (parg == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_PASSED_NULL_PARAMETER);
return(ret);
}
if (!EC_KEY_up_ref((EC_KEY *)parg))
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_ECDH_LIB);
return(ret);
}
ecdh = (EC_KEY *)parg;
if (!(s->options & SSL_OP_SINGLE_ECDH_USE))
{
if (!EC_KEY_generate_key(ecdh))
{
EC_KEY_free(ecdh);
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_ECDH_LIB);
return(ret);
}
}
if (s->cert->ecdh_tmp != NULL)
EC_KEY_free(s->cert->ecdh_tmp);
s->cert->ecdh_tmp = ecdh;
ret = 1;
}
break;
case SSL_CTRL_SET_TMP_ECDH_CB:
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return(ret);
}
break;
case SSL_CTRL_SET_TLSEXT_HOSTNAME:
if (larg == TLSEXT_NAMETYPE_host_name)
{
if (s->tlsext_hostname != NULL)
OPENSSL_free(s->tlsext_hostname);
s->tlsext_hostname = NULL;
ret = 1;
if (parg == NULL)
break;
if (strlen((char *)parg) > TLSEXT_MAXLEN_host_name)
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, SSL_R_SSL3_EXT_INVALID_SERVERNAME);
return 0;
}
if ((s->tlsext_hostname = BUF_strdup((char *)parg)) == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, ERR_R_INTERNAL_ERROR);
return 0;
}
}
else
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, SSL_R_SSL3_EXT_INVALID_SERVERNAME_TYPE);
return 0;
}
break;
case SSL_CTRL_SET_TLSEXT_DEBUG_ARG:
s->tlsext_debug_arg=parg;
ret = 1;
break;
case SSL_CTRL_CHAIN:
if (larg)
return ssl_cert_set1_chain(s->cert,
(STACK_OF (X509) *)parg);
else
return ssl_cert_set0_chain(s->cert,
(STACK_OF (X509) *)parg);
case SSL_CTRL_CHAIN_CERT:
if (larg)
return ssl_cert_add1_chain_cert(s->cert, (X509 *)parg);
else
return ssl_cert_add0_chain_cert(s->cert, (X509 *)parg);
case SSL_CTRL_GET_CHAIN_CERTS:
*(STACK_OF(X509) **)parg = s->cert->key->chain;
break;
case SSL_CTRL_SELECT_CURRENT_CERT:
return ssl_cert_select_current(s->cert, (X509 *)parg);
case SSL_CTRL_GET_CURVES:
{
const uint16_t *clist = s->s3->tmp.peer_ellipticcurvelist;
size_t clistlen = s->s3->tmp.peer_ellipticcurvelist_length;
if (parg)
{
size_t i;
int *cptr = parg;
int nid;
for (i = 0; i < clistlen; i++)
{
nid = tls1_ec_curve_id2nid(clist[i]);
if (nid != OBJ_undef)
cptr[i] = nid;
else
cptr[i] = TLSEXT_nid_unknown | clist[i];
}
}
return (int)clistlen;
}
case SSL_CTRL_SET_CURVES:
return tls1_set_curves(&s->tlsext_ellipticcurvelist,
&s->tlsext_ellipticcurvelist_length,
parg, larg);
case SSL_CTRL_SET_ECDH_AUTO:
s->cert->ecdh_tmp_auto = larg;
return 1;
case SSL_CTRL_SET_SIGALGS:
return tls1_set_sigalgs(s->cert, parg, larg, 0);
case SSL_CTRL_SET_CLIENT_SIGALGS:
return tls1_set_sigalgs(s->cert, parg, larg, 1);
case SSL_CTRL_GET_CLIENT_CERT_TYPES:
{
const unsigned char **pctype = parg;
if (s->server || !s->s3->tmp.cert_req)
return 0;
if (pctype)
*pctype = s->s3->tmp.certificate_types;
return (int)s->s3->tmp.num_certificate_types;
}
case SSL_CTRL_SET_CLIENT_CERT_TYPES:
if (!s->server)
return 0;
return ssl3_set_req_cert_type(s->cert, parg, larg);
case SSL_CTRL_BUILD_CERT_CHAIN:
return ssl_build_cert_chain(s->cert, s->ctx->cert_store, larg);
case SSL_CTRL_SET_VERIFY_CERT_STORE:
return ssl_cert_set_cert_store(s->cert, parg, 0, larg);
case SSL_CTRL_SET_CHAIN_CERT_STORE:
return ssl_cert_set_cert_store(s->cert, parg, 1, larg);
case SSL_CTRL_GET_PEER_SIGNATURE_NID:
if (SSL_USE_SIGALGS(s))
{
if (s->session && s->session->sess_cert)
{
const EVP_MD *sig;
sig = s->session->sess_cert->peer_key->digest;
if (sig)
{
*(int *)parg = EVP_MD_type(sig);
return 1;
}
}
return 0;
}
/* Might want to do something here for other versions */
else
return 0;
case SSL_CTRL_GET_SERVER_TMP_KEY:
if (s->server || !s->session || !s->session->sess_cert)
return 0;
else
{
SESS_CERT *sc;
EVP_PKEY *ptmp;
int rv = 0;
sc = s->session->sess_cert;
if (!sc->peer_dh_tmp && !sc->peer_ecdh_tmp)
return 0;
ptmp = EVP_PKEY_new();
if (!ptmp)
return 0;
if (sc->peer_dh_tmp)
rv = EVP_PKEY_set1_DH(ptmp, sc->peer_dh_tmp);
else if (sc->peer_ecdh_tmp)
rv = EVP_PKEY_set1_EC_KEY(ptmp, sc->peer_ecdh_tmp);
if (rv)
{
*(EVP_PKEY **)parg = ptmp;
return 1;
}
EVP_PKEY_free(ptmp);
return 0;
}
case SSL_CTRL_GET_EC_POINT_FORMATS:
{
const uint8_t **pformat = parg;
if (!s->s3->tmp.peer_ecpointformatlist)
return 0;
*pformat = s->s3->tmp.peer_ecpointformatlist;
return (int)s->s3->tmp.peer_ecpointformatlist_length;
}
case SSL_CTRL_CHANNEL_ID:
s->tlsext_channel_id_enabled = 1;
ret = 1;
break;
case SSL_CTRL_SET_CHANNEL_ID:
if (s->server)
break;
s->tlsext_channel_id_enabled = 1;
if (EVP_PKEY_bits(parg) != 256)
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctrl, SSL_R_CHANNEL_ID_NOT_P256);
break;
}
if (s->tlsext_channel_id_private)
EVP_PKEY_free(s->tlsext_channel_id_private);
s->tlsext_channel_id_private = EVP_PKEY_dup((EVP_PKEY*) parg);
ret = 1;
break;
case SSL_CTRL_GET_CHANNEL_ID:
if (!s->server)
break;
if (!s->s3->tlsext_channel_id_valid)
break;
memcpy(parg, s->s3->tlsext_channel_id, larg < 64 ? larg : 64);
return 64;
case SSL_CTRL_FALLBACK_SCSV:
if (s->server)
break;
s->fallback_scsv = 1;
ret = 1;
break;
default:
break;
}
return(ret);
}
long ssl3_callback_ctrl(SSL *s, int cmd, void (*fp)(void))
{
int ret=0;
if (cmd == SSL_CTRL_SET_TMP_RSA_CB || cmd == SSL_CTRL_SET_TMP_DH_CB)
{
if (!ssl_cert_inst(&s->cert))
{
OPENSSL_PUT_ERROR(SSL, ssl3_callback_ctrl, ERR_R_MALLOC_FAILURE);
return(0);
}
}
switch (cmd)
{
case SSL_CTRL_SET_TMP_RSA_CB:
/* Ignore the callback; temporary RSA keys are never used. */
break;
case SSL_CTRL_SET_TMP_DH_CB:
{
s->cert->dh_tmp_cb = (DH *(*)(SSL *, int, int))fp;
}
break;
case SSL_CTRL_SET_TMP_ECDH_CB:
{
s->cert->ecdh_tmp_cb = (EC_KEY *(*)(SSL *, int, int))fp;
}
break;
case SSL_CTRL_SET_TLSEXT_DEBUG_CB:
s->tlsext_debug_cb=(void (*)(SSL *,int ,int,
unsigned char *, int, void *))fp;
break;
default:
break;
}
return(ret);
}
long ssl3_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
{
CERT *cert;
cert=ctx->cert;
switch (cmd)
{
case SSL_CTRL_NEED_TMP_RSA:
/* Temporary RSA keys are never used. */
return 0;
case SSL_CTRL_SET_TMP_RSA:
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
case SSL_CTRL_SET_TMP_RSA_CB:
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return(0);
}
break;
case SSL_CTRL_SET_TMP_DH:
{
DH *new=NULL,*dh;
dh=(DH *)parg;
if ((new=DHparams_dup(dh)) == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_DH_LIB);
return 0;
}
if (!(ctx->options & SSL_OP_SINGLE_DH_USE))
{
if (!DH_generate_key(new))
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_DH_LIB);
DH_free(new);
return 0;
}
}
if (cert->dh_tmp != NULL)
DH_free(cert->dh_tmp);
cert->dh_tmp=new;
return 1;
}
/*break; */
case SSL_CTRL_SET_TMP_DH_CB:
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return(0);
}
break;
case SSL_CTRL_SET_TMP_ECDH:
{
EC_KEY *ecdh = NULL;
if (parg == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_ECDH_LIB);
return 0;
}
ecdh = EC_KEY_dup((EC_KEY *)parg);
if (ecdh == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_EC_LIB);
return 0;
}
if (!(ctx->options & SSL_OP_SINGLE_ECDH_USE))
{
if (!EC_KEY_generate_key(ecdh))
{
EC_KEY_free(ecdh);
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_ECDH_LIB);
return 0;
}
}
if (cert->ecdh_tmp != NULL)
{
EC_KEY_free(cert->ecdh_tmp);
}
cert->ecdh_tmp = ecdh;
return 1;
}
/* break; */
case SSL_CTRL_SET_TMP_ECDH_CB:
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return(0);
}
break;
case SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG:
ctx->tlsext_servername_arg=parg;
break;
case SSL_CTRL_SET_TLSEXT_TICKET_KEYS:
case SSL_CTRL_GET_TLSEXT_TICKET_KEYS:
{
unsigned char *keys = parg;
if (!keys)
return 48;
if (larg != 48)
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, SSL_R_INVALID_TICKET_KEYS_LENGTH);
return 0;
}
if (cmd == SSL_CTRL_SET_TLSEXT_TICKET_KEYS)
{
memcpy(ctx->tlsext_tick_key_name, keys, 16);
memcpy(ctx->tlsext_tick_hmac_key, keys + 16, 16);
memcpy(ctx->tlsext_tick_aes_key, keys + 32, 16);
}
else
{
memcpy(keys, ctx->tlsext_tick_key_name, 16);
memcpy(keys + 16, ctx->tlsext_tick_hmac_key, 16);
memcpy(keys + 32, ctx->tlsext_tick_aes_key, 16);
}
return 1;
}
case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB_ARG:
ctx->tlsext_status_arg=parg;
return 1;
break;
case SSL_CTRL_SET_CURVES:
return tls1_set_curves(&ctx->tlsext_ellipticcurvelist,
&ctx->tlsext_ellipticcurvelist_length,
parg, larg);
case SSL_CTRL_SET_ECDH_AUTO:
ctx->cert->ecdh_tmp_auto = larg;
return 1;
case SSL_CTRL_SET_SIGALGS:
return tls1_set_sigalgs(ctx->cert, parg, larg, 0);
case SSL_CTRL_SET_CLIENT_SIGALGS:
return tls1_set_sigalgs(ctx->cert, parg, larg, 1);
case SSL_CTRL_SET_CLIENT_CERT_TYPES:
return ssl3_set_req_cert_type(ctx->cert, parg, larg);
case SSL_CTRL_BUILD_CERT_CHAIN:
return ssl_build_cert_chain(ctx->cert, ctx->cert_store, larg);
case SSL_CTRL_SET_VERIFY_CERT_STORE:
return ssl_cert_set_cert_store(ctx->cert, parg, 0, larg);
case SSL_CTRL_SET_CHAIN_CERT_STORE:
return ssl_cert_set_cert_store(ctx->cert, parg, 1, larg);
/* A Thawte special :-) */
case SSL_CTRL_EXTRA_CHAIN_CERT:
if (ctx->extra_certs == NULL)
{
if ((ctx->extra_certs=sk_X509_new_null()) == NULL)
return(0);
}
sk_X509_push(ctx->extra_certs,(X509 *)parg);
break;
case SSL_CTRL_GET_EXTRA_CHAIN_CERTS:
if (ctx->extra_certs == NULL && larg == 0)
*(STACK_OF(X509) **)parg = ctx->cert->key->chain;
else
*(STACK_OF(X509) **)parg = ctx->extra_certs;
break;
case SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS:
if (ctx->extra_certs)
{
sk_X509_pop_free(ctx->extra_certs, X509_free);
ctx->extra_certs = NULL;
}
break;
case SSL_CTRL_CHAIN:
if (larg)
return ssl_cert_set1_chain(ctx->cert,
(STACK_OF (X509) *)parg);
else
return ssl_cert_set0_chain(ctx->cert,
(STACK_OF (X509) *)parg);
case SSL_CTRL_CHAIN_CERT:
if (larg)
return ssl_cert_add1_chain_cert(ctx->cert, (X509 *)parg);
else
return ssl_cert_add0_chain_cert(ctx->cert, (X509 *)parg);
case SSL_CTRL_GET_CHAIN_CERTS:
*(STACK_OF(X509) **)parg = ctx->cert->key->chain;
break;
case SSL_CTRL_SELECT_CURRENT_CERT:
return ssl_cert_select_current(ctx->cert, (X509 *)parg);
case SSL_CTRL_CHANNEL_ID:
/* must be called on a server */
if (ctx->method->ssl_accept == ssl_undefined_function)
return 0;
ctx->tlsext_channel_id_enabled=1;
return 1;
case SSL_CTRL_SET_CHANNEL_ID:
ctx->tlsext_channel_id_enabled = 1;
if (EVP_PKEY_bits(parg) != 256)
{
OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, SSL_R_CHANNEL_ID_NOT_P256);
break;
}
if (ctx->tlsext_channel_id_private)
EVP_PKEY_free(ctx->tlsext_channel_id_private);
ctx->tlsext_channel_id_private = EVP_PKEY_dup((EVP_PKEY*) parg);
break;
default:
return(0);
}
return(1);
}
long ssl3_ctx_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp)(void))
{
CERT *cert;
cert=ctx->cert;
switch (cmd)
{
case SSL_CTRL_SET_TMP_RSA_CB:
/* Ignore the callback; temporary RSA keys are never used. */
break;
case SSL_CTRL_SET_TMP_DH_CB:
{
cert->dh_tmp_cb = (DH *(*)(SSL *, int, int))fp;
}
break;
case SSL_CTRL_SET_TMP_ECDH_CB:
{
cert->ecdh_tmp_cb = (EC_KEY *(*)(SSL *, int, int))fp;
}
break;
case SSL_CTRL_SET_TLSEXT_SERVERNAME_CB:
ctx->tlsext_servername_callback=(int (*)(SSL *,int *,void *))fp;
break;
case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB:
ctx->tlsext_status_cb=(int (*)(SSL *,void *))fp;
break;
case SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB:
ctx->tlsext_ticket_key_cb=(int (*)(SSL *,unsigned char *,
unsigned char *,
EVP_CIPHER_CTX *,
HMAC_CTX *, int))fp;
break;
default:
return(0);
}
return(1);
}
/* ssl3_get_cipher_by_value returns the SSL_CIPHER with value |value| or NULL if
* none exists.
*
* This function needs to check if the ciphers required are actually
* available. */
const SSL_CIPHER *ssl3_get_cipher_by_value(uint16_t value)
{
SSL_CIPHER c;
c.id = 0x03000000L|value;
return bsearch(&c, ssl3_ciphers, SSL3_NUM_CIPHERS, sizeof(SSL_CIPHER), ssl_cipher_id_cmp);
}
/* ssl3_get_cipher_by_value returns the cipher value of |c|. */
uint16_t ssl3_get_cipher_value(const SSL_CIPHER *c)
{
unsigned long id = c->id;
/* All ciphers are SSLv3 now. */
assert((id & 0xff000000) == 0x03000000);
return id & 0xffff;
}
struct ssl_cipher_preference_list_st* ssl_get_cipher_preferences(SSL *s)
{
if (s->cipher_list != NULL)
return(s->cipher_list);
if (s->version >= TLS1_1_VERSION)
{
if (s->ctx != NULL && s->ctx->cipher_list_tls11 != NULL)
return s->ctx->cipher_list_tls11;
}
if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL))
return(s->ctx->cipher_list);
return NULL;
}
const SSL_CIPHER *ssl3_choose_cipher(SSL *s, STACK_OF(SSL_CIPHER) *clnt,
struct ssl_cipher_preference_list_st *server_pref)
{
const SSL_CIPHER *c,*ret=NULL;
STACK_OF(SSL_CIPHER) *srvr = server_pref->ciphers, *prio, *allow;
size_t i;
int ok;
size_t cipher_index;
CERT *cert;
unsigned long alg_k,alg_a,mask_k,mask_a;
/* in_group_flags will either be NULL, or will point to an array of
* bytes which indicate equal-preference groups in the |prio| stack.
* See the comment about |in_group_flags| in the
* |ssl_cipher_preference_list_st| struct. */
const unsigned char *in_group_flags;
/* group_min contains the minimal index so far found in a group, or -1
* if no such value exists yet. */
int group_min = -1;
/* Let's see which ciphers we can support */
cert=s->cert;
#if 0
/* Do not set the compare functions, because this may lead to a
* reordering by "id". We want to keep the original ordering.
* We may pay a price in performance during sk_SSL_CIPHER_find(),
* but would have to pay with the price of sk_SSL_CIPHER_dup().
*/
sk_SSL_CIPHER_set_cmp_func(srvr, ssl_cipher_ptr_id_cmp);
sk_SSL_CIPHER_set_cmp_func(clnt, ssl_cipher_ptr_id_cmp);
#endif
#ifdef CIPHER_DEBUG
printf("Server has %d from %p:\n", sk_SSL_CIPHER_num(srvr), (void *)srvr);
for(i=0 ; i < sk_SSL_CIPHER_num(srvr) ; ++i)
{
c=sk_SSL_CIPHER_value(srvr,i);
printf("%p:%s\n",(void *)c,c->name);
}
printf("Client sent %d from %p:\n", sk_SSL_CIPHER_num(clnt), (void *)clnt);
for(i=0 ; i < sk_SSL_CIPHER_num(clnt) ; ++i)
{
c=sk_SSL_CIPHER_value(clnt,i);
printf("%p:%s\n",(void *)c,c->name);
}
#endif
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE)
{
prio = srvr;
in_group_flags = server_pref->in_group_flags;
allow = clnt;
}
else
{
prio = clnt;
in_group_flags = NULL;
allow = srvr;
}
tls1_set_cert_validity(s);
for (i=0; i<sk_SSL_CIPHER_num(prio); i++)
{
c=sk_SSL_CIPHER_value(prio,i);
ok = 1;
/* Skip TLS v1.2 only ciphersuites if not supported */
if ((c->algorithm_ssl & SSL_TLSV1_2) &&
!SSL_USE_TLS1_2_CIPHERS(s))
ok = 0;
ssl_set_cert_masks(cert,c);
mask_k = cert->mask_k;
mask_a = cert->mask_a;
alg_k=c->algorithm_mkey;
alg_a=c->algorithm_auth;
/* with PSK there must be server callback set */
if ((alg_a & SSL_aPSK) && s->psk_server_callback == NULL)
ok = 0;
ok = ok && (alg_k & mask_k) && (alg_a & mask_a);
#ifdef CIPHER_DEBUG
printf("%d:[%08lX:%08lX:%08lX:%08lX]%p:%s\n",ok,alg_k,alg_a,mask_k,mask_a,(void *)c,
c->name);
#endif
/* if we are considering an ECC cipher suite that uses
* an ephemeral EC key check it */
if (alg_k & SSL_kEECDH)
ok = ok && tls1_check_ec_tmp_key(s);
if (ok && sk_SSL_CIPHER_find(allow, &cipher_index, c))
{
if (in_group_flags != NULL && in_group_flags[i] == 1)
{
/* This element of |prio| is in a group. Update
* the minimum index found so far and continue
* looking. */
if (group_min == -1 || (size_t)group_min > cipher_index)
group_min = cipher_index;
}
else
{
if (group_min != -1 && (size_t)group_min < cipher_index)
cipher_index = group_min;
ret=sk_SSL_CIPHER_value(allow,cipher_index);
break;
}
}
if (in_group_flags != NULL &&
in_group_flags[i] == 0 &&
group_min != -1)
{
/* We are about to leave a group, but we found a match
* in it, so that's our answer. */
ret=sk_SSL_CIPHER_value(allow,group_min);
break;
}
}
return(ret);
}
int ssl3_get_req_cert_type(SSL *s, unsigned char *p)
{
int ret=0;
const unsigned char *sig;
size_t i, siglen;
int have_rsa_sign = 0;
int have_ecdsa_sign = 0;
/* If we have custom certificate types set, use them */
if (s->cert->client_certificate_types)
{
memcpy(p, s->cert->client_certificate_types,
s->cert->num_client_certificate_types);
return (int)s->cert->num_client_certificate_types;
}
/* get configured sigalgs */
siglen = tls12_get_psigalgs(s, &sig);
for (i = 0; i < siglen; i+=2, sig+=2)
{
switch(sig[1])
{
case TLSEXT_signature_rsa:
have_rsa_sign = 1;
break;
case TLSEXT_signature_ecdsa:
have_ecdsa_sign = 1;
break;
}
}
if (have_rsa_sign)
p[ret++]=SSL3_CT_RSA_SIGN;
/* ECDSA certs can be used with RSA cipher suites as well
* so we don't need to check for SSL_kECDH or SSL_kEECDH
*/
if (s->version >= TLS1_VERSION)
{
if (have_ecdsa_sign)
p[ret++]=TLS_CT_ECDSA_SIGN;
}
return(ret);
}
static int ssl3_set_req_cert_type(CERT *c, const unsigned char *p, size_t len)
{
if (c->client_certificate_types)
{
OPENSSL_free(c->client_certificate_types);
c->client_certificate_types = NULL;
}
c->num_client_certificate_types = 0;
if (!p || !len)
return 1;
if (len > 0xff)
return 0;
c->client_certificate_types = BUF_memdup(p, len);
if (!c->client_certificate_types)
return 0;
c->num_client_certificate_types = len;
return 1;
}
int ssl3_shutdown(SSL *s)
{
int ret;
/* Don't do anything much if we have not done the handshake or
* we don't want to send messages :-) */
if ((s->quiet_shutdown) || (s->state == SSL_ST_BEFORE))
{
s->shutdown=(SSL_SENT_SHUTDOWN|SSL_RECEIVED_SHUTDOWN);
return(1);
}
if (!(s->shutdown & SSL_SENT_SHUTDOWN))
{
s->shutdown|=SSL_SENT_SHUTDOWN;
#if 1
ssl3_send_alert(s,SSL3_AL_WARNING,SSL_AD_CLOSE_NOTIFY);
#endif
/* our shutdown alert has been sent now, and if it still needs
* to be written, s->s3->alert_dispatch will be true */
if (s->s3->alert_dispatch)
return(-1); /* return WANT_WRITE */
}
else if (s->s3->alert_dispatch)
{
/* resend it if not sent */
#if 1
ret=s->method->ssl_dispatch_alert(s);
if(ret == -1)
{
/* we only get to return -1 here the 2nd/Nth
* invocation, we must have already signalled
* return 0 upon a previous invoation,
* return WANT_WRITE */
return(ret);
}
#endif
}
else if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN))
{
/* If we are waiting for a close from our peer, we are closed */
s->method->ssl_read_bytes(s,0,NULL,0,0);
if(!(s->shutdown & SSL_RECEIVED_SHUTDOWN))
{
return(-1); /* return WANT_READ */
}
}
if ((s->shutdown == (SSL_SENT_SHUTDOWN|SSL_RECEIVED_SHUTDOWN)) &&
!s->s3->alert_dispatch)
return(1);
else
return(0);
}
int ssl3_write(SSL *s, const void *buf, int len)
{
#if 0
if (s->shutdown & SSL_SEND_SHUTDOWN)
{
s->rwstate=SSL_NOTHING;
return(0);
}
#endif
ERR_clear_system_error();
if (s->s3->renegotiate) ssl3_renegotiate_check(s);
return s->method->ssl_write_bytes(s, SSL3_RT_APPLICATION_DATA, buf,
len);
}
static int ssl3_read_internal(SSL *s, void *buf, int len, int peek)
{
int ret;
ERR_clear_system_error();
if (s->s3->renegotiate) ssl3_renegotiate_check(s);
s->s3->in_read_app_data=1;
ret=s->method->ssl_read_bytes(s,SSL3_RT_APPLICATION_DATA,buf,len,peek);
if ((ret == -1) && (s->s3->in_read_app_data == 2))
{
/* ssl3_read_bytes decided to call s->handshake_func, which
* called ssl3_read_bytes to read handshake data.
* However, ssl3_read_bytes actually found application data
* and thinks that application data makes sense here; so disable
* handshake processing and try to read application data again. */
s->in_handshake++;
ret=s->method->ssl_read_bytes(s,SSL3_RT_APPLICATION_DATA,buf,len,peek);
s->in_handshake--;
}
else
s->s3->in_read_app_data=0;
return(ret);
}
int ssl3_read(SSL *s, void *buf, int len)
{
return ssl3_read_internal(s, buf, len, 0);
}
int ssl3_peek(SSL *s, void *buf, int len)
{
return ssl3_read_internal(s, buf, len, 1);
}
int ssl3_renegotiate(SSL *s)
{
if (s->handshake_func == NULL)
return(1);
if (s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS)
return(0);
s->s3->renegotiate=1;
return(1);
}
int ssl3_renegotiate_check(SSL *s)
{
int ret=0;
if (s->s3->renegotiate)
{
if ( (s->s3->rbuf.left == 0) &&
(s->s3->wbuf.left == 0) &&
!SSL_in_init(s))
{
/*
if we are the server, and we have sent a 'RENEGOTIATE' message, we
need to go to SSL_ST_ACCEPT.
*/
/* SSL_ST_ACCEPT */
s->state=SSL_ST_RENEGOTIATE;
s->s3->renegotiate=0;
s->s3->num_renegotiations++;
s->s3->total_renegotiations++;
ret=1;
}
}
return(ret);
}
/* If we are using default SHA1+MD5 algorithms switch to new SHA256 PRF
* and handshake macs if required.
*/
long ssl_get_algorithm2(SSL *s)
{
static const unsigned long kMask = SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF;
long alg2 = s->s3->tmp.new_cipher->algorithm2;
if (s->method->ssl3_enc->enc_flags & SSL_ENC_FLAG_SHA256_PRF
&& (alg2 & kMask) == kMask)
return SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256;
return alg2;
}