| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/rsa.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/thread.h> |
| |
| #include "../../internal.h" |
| #include "../bn/internal.h" |
| #include "../delocate.h" |
| #include "../rand/fork_detect.h" |
| #include "../service_indicator/internal.h" |
| #include "internal.h" |
| |
| |
| int rsa_check_public_key(const RSA *rsa) { |
| if (rsa->n == NULL) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| return 0; |
| } |
| |
| // TODO(davidben): 16384-bit RSA is huge. Can we bring this down to a limit of |
| // 8192-bit? |
| unsigned n_bits = BN_num_bits(rsa->n); |
| if (n_bits > 16 * 1024) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); |
| return 0; |
| } |
| |
| // TODO(crbug.com/boringssl/607): Raise this limit. 512-bit RSA was factored |
| // in 1999. |
| if (n_bits < 512) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| // RSA moduli must be positive and odd. In addition to being necessary for RSA |
| // in general, we cannot setup Montgomery reduction with even moduli. |
| if (!BN_is_odd(rsa->n) || BN_is_negative(rsa->n)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); |
| return 0; |
| } |
| |
| static const unsigned kMaxExponentBits = 33; |
| if (rsa->e != NULL) { |
| // Reject e = 1, negative e, and even e. e must be odd to be relatively |
| // prime with phi(n). |
| unsigned e_bits = BN_num_bits(rsa->e); |
| if (e_bits < 2 || BN_is_negative(rsa->e) || !BN_is_odd(rsa->e)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); |
| return 0; |
| } |
| if (rsa->flags & RSA_FLAG_LARGE_PUBLIC_EXPONENT) { |
| // The caller has requested disabling DoS protections. Still, e must be |
| // less than n. |
| if (BN_ucmp(rsa->n, rsa->e) <= 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); |
| return 0; |
| } |
| } else { |
| // Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen |
| // as the limit based on the recommendations in [1] and [2]. Windows |
| // CryptoAPI doesn't support values larger than 32 bits [3], so it is |
| // unlikely that exponents larger than 32 bits are being used for anything |
| // Windows commonly does. |
| // |
| // [1] https://www.imperialviolet.org/2012/03/16/rsae.html |
| // [2] https://www.imperialviolet.org/2012/03/17/rsados.html |
| // [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx |
| if (e_bits > kMaxExponentBits) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); |
| return 0; |
| } |
| |
| // The upper bound on |e_bits| and lower bound on |n_bits| imply e is |
| // bounded by n. |
| assert(BN_ucmp(rsa->n, rsa->e) > 0); |
| } |
| } else if (!(rsa->flags & RSA_FLAG_NO_PUBLIC_EXPONENT)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int ensure_fixed_copy(BIGNUM **out, const BIGNUM *in, int width) { |
| if (*out != NULL) { |
| return 1; |
| } |
| BIGNUM *copy = BN_dup(in); |
| if (copy == NULL || |
| !bn_resize_words(copy, width)) { |
| BN_free(copy); |
| return 0; |
| } |
| *out = copy; |
| CONSTTIME_SECRET(copy->d, sizeof(BN_ULONG) * width); |
| |
| return 1; |
| } |
| |
| // freeze_private_key finishes initializing |rsa|'s private key components. |
| // After this function has returned, |rsa| may not be changed. This is needed |
| // because |RSA| is a public struct and, additionally, OpenSSL 1.1.0 opaquified |
| // it wrong (see https://github.com/openssl/openssl/issues/5158). |
| static int freeze_private_key(RSA *rsa, BN_CTX *ctx) { |
| CRYPTO_MUTEX_lock_read(&rsa->lock); |
| int frozen = rsa->private_key_frozen; |
| CRYPTO_MUTEX_unlock_read(&rsa->lock); |
| if (frozen) { |
| return 1; |
| } |
| |
| int ret = 0; |
| CRYPTO_MUTEX_lock_write(&rsa->lock); |
| if (rsa->private_key_frozen) { |
| ret = 1; |
| goto err; |
| } |
| |
| // Check the public components are within DoS bounds. |
| if (!rsa_check_public_key(rsa)) { |
| goto err; |
| } |
| |
| // Pre-compute various intermediate values, as well as copies of private |
| // exponents with correct widths. Note that other threads may concurrently |
| // read from |rsa->n|, |rsa->e|, etc., so any fixes must be in separate |
| // copies. We use |mont_n->N|, |mont_p->N|, and |mont_q->N| as copies of |n|, |
| // |p|, and |q| with the correct minimal widths. |
| |
| if (rsa->mont_n == NULL) { |
| rsa->mont_n = BN_MONT_CTX_new_for_modulus(rsa->n, ctx); |
| if (rsa->mont_n == NULL) { |
| goto err; |
| } |
| } |
| const BIGNUM *n_fixed = &rsa->mont_n->N; |
| |
| // The only public upper-bound of |rsa->d| is the bit length of |rsa->n|. The |
| // ASN.1 serialization of RSA private keys unfortunately leaks the byte length |
| // of |rsa->d|, but normalize it so we only leak it once, rather than per |
| // operation. |
| if (rsa->d != NULL && |
| !ensure_fixed_copy(&rsa->d_fixed, rsa->d, n_fixed->width)) { |
| goto err; |
| } |
| |
| if (rsa->e != NULL && rsa->p != NULL && rsa->q != NULL) { |
| // TODO: p and q are also CONSTTIME_SECRET but not yet marked as such |
| // because the Montgomery code does things like test whether or not values |
| // are zero. So the secret marking probably needs to happen inside that |
| // code. |
| |
| if (rsa->mont_p == NULL) { |
| rsa->mont_p = BN_MONT_CTX_new_consttime(rsa->p, ctx); |
| if (rsa->mont_p == NULL) { |
| goto err; |
| } |
| } |
| const BIGNUM *p_fixed = &rsa->mont_p->N; |
| |
| if (rsa->mont_q == NULL) { |
| rsa->mont_q = BN_MONT_CTX_new_consttime(rsa->q, ctx); |
| if (rsa->mont_q == NULL) { |
| goto err; |
| } |
| } |
| const BIGNUM *q_fixed = &rsa->mont_q->N; |
| |
| if (rsa->dmp1 != NULL && rsa->dmq1 != NULL) { |
| // Key generation relies on this function to compute |iqmp|. |
| if (rsa->iqmp == NULL) { |
| BIGNUM *iqmp = BN_new(); |
| if (iqmp == NULL || |
| !bn_mod_inverse_secret_prime(iqmp, rsa->q, rsa->p, ctx, |
| rsa->mont_p)) { |
| BN_free(iqmp); |
| goto err; |
| } |
| rsa->iqmp = iqmp; |
| } |
| |
| // CRT components are only publicly bounded by their corresponding |
| // moduli's bit lengths. |rsa->iqmp| is unused outside of this one-time |
| // setup, so we do not compute a fixed-width version of it. |
| if (!ensure_fixed_copy(&rsa->dmp1_fixed, rsa->dmp1, p_fixed->width) || |
| !ensure_fixed_copy(&rsa->dmq1_fixed, rsa->dmq1, q_fixed->width)) { |
| goto err; |
| } |
| |
| // Compute |inv_small_mod_large_mont|. Note that it is always modulo the |
| // larger prime, independent of what is stored in |rsa->iqmp|. |
| if (rsa->inv_small_mod_large_mont == NULL) { |
| BIGNUM *inv_small_mod_large_mont = BN_new(); |
| int ok; |
| if (BN_cmp(rsa->p, rsa->q) < 0) { |
| ok = inv_small_mod_large_mont != NULL && |
| bn_mod_inverse_secret_prime(inv_small_mod_large_mont, rsa->p, |
| rsa->q, ctx, rsa->mont_q) && |
| BN_to_montgomery(inv_small_mod_large_mont, |
| inv_small_mod_large_mont, rsa->mont_q, ctx); |
| } else { |
| ok = inv_small_mod_large_mont != NULL && |
| BN_to_montgomery(inv_small_mod_large_mont, rsa->iqmp, |
| rsa->mont_p, ctx); |
| } |
| if (!ok) { |
| BN_free(inv_small_mod_large_mont); |
| goto err; |
| } |
| rsa->inv_small_mod_large_mont = inv_small_mod_large_mont; |
| CONSTTIME_SECRET( |
| rsa->inv_small_mod_large_mont->d, |
| sizeof(BN_ULONG) * rsa->inv_small_mod_large_mont->width); |
| } |
| } |
| } |
| |
| rsa->private_key_frozen = 1; |
| ret = 1; |
| |
| err: |
| CRYPTO_MUTEX_unlock_write(&rsa->lock); |
| return ret; |
| } |
| |
| void rsa_invalidate_key(RSA *rsa) { |
| rsa->private_key_frozen = 0; |
| |
| BN_MONT_CTX_free(rsa->mont_n); |
| rsa->mont_n = NULL; |
| BN_MONT_CTX_free(rsa->mont_p); |
| rsa->mont_p = NULL; |
| BN_MONT_CTX_free(rsa->mont_q); |
| rsa->mont_q = NULL; |
| |
| BN_free(rsa->d_fixed); |
| rsa->d_fixed = NULL; |
| BN_free(rsa->dmp1_fixed); |
| rsa->dmp1_fixed = NULL; |
| BN_free(rsa->dmq1_fixed); |
| rsa->dmq1_fixed = NULL; |
| BN_free(rsa->inv_small_mod_large_mont); |
| rsa->inv_small_mod_large_mont = NULL; |
| |
| for (size_t i = 0; i < rsa->num_blindings; i++) { |
| BN_BLINDING_free(rsa->blindings[i]); |
| } |
| OPENSSL_free(rsa->blindings); |
| rsa->blindings = NULL; |
| rsa->num_blindings = 0; |
| OPENSSL_free(rsa->blindings_inuse); |
| rsa->blindings_inuse = NULL; |
| rsa->blinding_fork_generation = 0; |
| } |
| |
| size_t rsa_default_size(const RSA *rsa) { |
| return BN_num_bytes(rsa->n); |
| } |
| |
| // MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per |
| // RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and |
| // destroyed as needed. |
| #if defined(OPENSSL_TSAN) |
| // Smaller under TSAN so that the edge case can be hit with fewer threads. |
| #define MAX_BLINDINGS_PER_RSA 2 |
| #else |
| #define MAX_BLINDINGS_PER_RSA 1024 |
| #endif |
| |
| // rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by |
| // allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If |
| // none are free, the cache will be extended by a extra element and the new |
| // BN_BLINDING is returned. |
| // |
| // On success, the index of the assigned BN_BLINDING is written to |
| // |*index_used| and must be passed to |rsa_blinding_release| when finished. |
| static BN_BLINDING *rsa_blinding_get(RSA *rsa, size_t *index_used, |
| BN_CTX *ctx) { |
| assert(ctx != NULL); |
| assert(rsa->mont_n != NULL); |
| |
| BN_BLINDING *ret = NULL; |
| const uint64_t fork_generation = CRYPTO_get_fork_generation(); |
| CRYPTO_MUTEX_lock_write(&rsa->lock); |
| |
| // Wipe the blinding cache on |fork|. |
| if (rsa->blinding_fork_generation != fork_generation) { |
| for (size_t i = 0; i < rsa->num_blindings; i++) { |
| // The inuse flag must be zero unless we were forked from a |
| // multi-threaded process, in which case calling back into BoringSSL is |
| // forbidden. |
| assert(rsa->blindings_inuse[i] == 0); |
| BN_BLINDING_invalidate(rsa->blindings[i]); |
| } |
| rsa->blinding_fork_generation = fork_generation; |
| } |
| |
| uint8_t *const free_inuse_flag = |
| OPENSSL_memchr(rsa->blindings_inuse, 0, rsa->num_blindings); |
| if (free_inuse_flag != NULL) { |
| *free_inuse_flag = 1; |
| *index_used = free_inuse_flag - rsa->blindings_inuse; |
| ret = rsa->blindings[*index_used]; |
| goto out; |
| } |
| |
| if (rsa->num_blindings >= MAX_BLINDINGS_PER_RSA) { |
| // No |BN_BLINDING| is free and nor can the cache be extended. This index |
| // value is magic and indicates to |rsa_blinding_release| that a |
| // |BN_BLINDING| was not inserted into the array. |
| *index_used = MAX_BLINDINGS_PER_RSA; |
| ret = BN_BLINDING_new(); |
| goto out; |
| } |
| |
| // Double the length of the cache. |
| static_assert(MAX_BLINDINGS_PER_RSA < UINT_MAX / 2, |
| "MAX_BLINDINGS_PER_RSA too large"); |
| size_t new_num_blindings = rsa->num_blindings * 2; |
| if (new_num_blindings == 0) { |
| new_num_blindings = 1; |
| } |
| if (new_num_blindings > MAX_BLINDINGS_PER_RSA) { |
| new_num_blindings = MAX_BLINDINGS_PER_RSA; |
| } |
| assert(new_num_blindings > rsa->num_blindings); |
| |
| BN_BLINDING **new_blindings = |
| OPENSSL_malloc(sizeof(BN_BLINDING *) * new_num_blindings); |
| uint8_t *new_blindings_inuse = OPENSSL_malloc(new_num_blindings); |
| if (new_blindings == NULL || new_blindings_inuse == NULL) { |
| goto err; |
| } |
| |
| OPENSSL_memcpy(new_blindings, rsa->blindings, |
| sizeof(BN_BLINDING *) * rsa->num_blindings); |
| OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings); |
| |
| for (size_t i = rsa->num_blindings; i < new_num_blindings; i++) { |
| new_blindings[i] = BN_BLINDING_new(); |
| if (new_blindings[i] == NULL) { |
| for (size_t j = rsa->num_blindings; j < i; j++) { |
| BN_BLINDING_free(new_blindings[j]); |
| } |
| goto err; |
| } |
| } |
| memset(&new_blindings_inuse[rsa->num_blindings], 0, |
| new_num_blindings - rsa->num_blindings); |
| |
| new_blindings_inuse[rsa->num_blindings] = 1; |
| *index_used = rsa->num_blindings; |
| assert(*index_used != MAX_BLINDINGS_PER_RSA); |
| ret = new_blindings[rsa->num_blindings]; |
| |
| OPENSSL_free(rsa->blindings); |
| rsa->blindings = new_blindings; |
| OPENSSL_free(rsa->blindings_inuse); |
| rsa->blindings_inuse = new_blindings_inuse; |
| rsa->num_blindings = new_num_blindings; |
| |
| goto out; |
| |
| err: |
| OPENSSL_free(new_blindings_inuse); |
| OPENSSL_free(new_blindings); |
| |
| out: |
| CRYPTO_MUTEX_unlock_write(&rsa->lock); |
| return ret; |
| } |
| |
| // rsa_blinding_release marks the cached BN_BLINDING at the given index as free |
| // for other threads to use. |
| static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding, |
| size_t blinding_index) { |
| if (blinding_index == MAX_BLINDINGS_PER_RSA) { |
| // This blinding wasn't cached. |
| BN_BLINDING_free(blinding); |
| return; |
| } |
| |
| CRYPTO_MUTEX_lock_write(&rsa->lock); |
| rsa->blindings_inuse[blinding_index] = 0; |
| CRYPTO_MUTEX_unlock_write(&rsa->lock); |
| } |
| |
| // signing |
| int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, |
| size_t max_out, const uint8_t *in, size_t in_len, |
| int padding) { |
| const unsigned rsa_size = RSA_size(rsa); |
| uint8_t *buf = NULL; |
| int i, ret = 0; |
| |
| if (max_out < rsa_size) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| buf = OPENSSL_malloc(rsa_size); |
| if (buf == NULL) { |
| goto err; |
| } |
| |
| switch (padding) { |
| case RSA_PKCS1_PADDING: |
| i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len); |
| break; |
| case RSA_NO_PADDING: |
| i = RSA_padding_add_none(buf, rsa_size, in, in_len); |
| break; |
| default: |
| OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
| goto err; |
| } |
| |
| if (i <= 0) { |
| goto err; |
| } |
| |
| if (!rsa_private_transform_no_self_test(rsa, out, buf, rsa_size)) { |
| goto err; |
| } |
| |
| CONSTTIME_DECLASSIFY(out, rsa_size); |
| *out_len = rsa_size; |
| ret = 1; |
| |
| err: |
| OPENSSL_free(buf); |
| |
| return ret; |
| } |
| |
| |
| static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx); |
| |
| int rsa_verify_raw_no_self_test(RSA *rsa, size_t *out_len, uint8_t *out, |
| size_t max_out, const uint8_t *in, |
| size_t in_len, int padding) { |
| if (rsa->n == NULL || rsa->e == NULL) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| return 0; |
| } |
| |
| if (!rsa_check_public_key(rsa)) { |
| return 0; |
| } |
| |
| const unsigned rsa_size = RSA_size(rsa); |
| BIGNUM *f, *result; |
| |
| if (max_out < rsa_size) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (in_len != rsa_size) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN); |
| return 0; |
| } |
| |
| BN_CTX *ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| |
| int ret = 0; |
| uint8_t *buf = NULL; |
| |
| BN_CTX_start(ctx); |
| f = BN_CTX_get(ctx); |
| result = BN_CTX_get(ctx); |
| if (f == NULL || result == NULL) { |
| goto err; |
| } |
| |
| if (padding == RSA_NO_PADDING) { |
| buf = out; |
| } else { |
| // Allocate a temporary buffer to hold the padded plaintext. |
| buf = OPENSSL_malloc(rsa_size); |
| if (buf == NULL) { |
| goto err; |
| } |
| } |
| |
| if (BN_bin2bn(in, in_len, f) == NULL) { |
| goto err; |
| } |
| |
| if (BN_ucmp(f, rsa->n) >= 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
| goto err; |
| } |
| |
| if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) || |
| !BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) { |
| goto err; |
| } |
| |
| if (!BN_bn2bin_padded(buf, rsa_size, result)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| switch (padding) { |
| case RSA_PKCS1_PADDING: |
| ret = |
| RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size); |
| break; |
| case RSA_NO_PADDING: |
| ret = 1; |
| *out_len = rsa_size; |
| break; |
| default: |
| OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE); |
| goto err; |
| } |
| |
| if (!ret) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED); |
| goto err; |
| } |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(ctx); |
| if (buf != out) { |
| OPENSSL_free(buf); |
| } |
| return ret; |
| } |
| |
| int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, |
| size_t max_out, const uint8_t *in, |
| size_t in_len, int padding) { |
| boringssl_ensure_rsa_self_test(); |
| return rsa_verify_raw_no_self_test(rsa, out_len, out, max_out, in, in_len, |
| padding); |
| } |
| |
| int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| if (rsa->n == NULL || rsa->d == NULL) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); |
| return 0; |
| } |
| |
| BIGNUM *f, *result; |
| BN_CTX *ctx = NULL; |
| size_t blinding_index = 0; |
| BN_BLINDING *blinding = NULL; |
| int ret = 0; |
| |
| ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| goto err; |
| } |
| BN_CTX_start(ctx); |
| f = BN_CTX_get(ctx); |
| result = BN_CTX_get(ctx); |
| |
| if (f == NULL || result == NULL) { |
| goto err; |
| } |
| |
| // The caller should have ensured this. |
| assert(len == BN_num_bytes(rsa->n)); |
| if (BN_bin2bn(in, len, f) == NULL) { |
| goto err; |
| } |
| |
| if (BN_ucmp(f, rsa->n) >= 0) { |
| // Usually the padding functions would catch this. |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
| goto err; |
| } |
| |
| if (!freeze_private_key(rsa, ctx)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| const int do_blinding = |
| (rsa->flags & (RSA_FLAG_NO_BLINDING | RSA_FLAG_NO_PUBLIC_EXPONENT)) == 0; |
| |
| if (rsa->e == NULL && do_blinding) { |
| // We cannot do blinding or verification without |e|, and continuing without |
| // those countermeasures is dangerous. However, the Java/Android RSA API |
| // requires support for keys where only |d| and |n| (and not |e|) are known. |
| // The callers that require that bad behavior must set |
| // |RSA_FLAG_NO_BLINDING| or use |RSA_new_private_key_no_e|. |
| // |
| // TODO(davidben): Update this comment when Conscrypt is updated to use |
| // |RSA_new_private_key_no_e|. |
| OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT); |
| goto err; |
| } |
| |
| if (do_blinding) { |
| blinding = rsa_blinding_get(rsa, &blinding_index, ctx); |
| if (blinding == NULL) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) { |
| goto err; |
| } |
| } |
| |
| if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL && |
| rsa->dmq1 != NULL && rsa->iqmp != NULL && |
| // Require that we can reduce |f| by |rsa->p| and |rsa->q| in constant |
| // time, which requires primes be the same size, rounded to the Montgomery |
| // coefficient. (See |mod_montgomery|.) This is not required by RFC 8017, |
| // but it is true for keys generated by us and all common implementations. |
| bn_less_than_montgomery_R(rsa->q, rsa->mont_p) && |
| bn_less_than_montgomery_R(rsa->p, rsa->mont_q)) { |
| if (!mod_exp(result, f, rsa, ctx)) { |
| goto err; |
| } |
| } else if (!BN_mod_exp_mont_consttime(result, f, rsa->d_fixed, rsa->n, ctx, |
| rsa->mont_n)) { |
| goto err; |
| } |
| |
| // Verify the result to protect against fault attacks as described in the |
| // 1997 paper "On the Importance of Checking Cryptographic Protocols for |
| // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some |
| // implementations do this only when the CRT is used, but we do it in all |
| // cases. Section 6 of the aforementioned paper describes an attack that |
| // works when the CRT isn't used. That attack is much less likely to succeed |
| // than the CRT attack, but there have likely been improvements since 1997. |
| // |
| // This check is cheap assuming |e| is small, which we require in |
| // |rsa_check_public_key|. |
| if (rsa->e != NULL) { |
| BIGNUM *vrfy = BN_CTX_get(ctx); |
| if (vrfy == NULL || |
| !BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) || |
| !constant_time_declassify_int(BN_equal_consttime(vrfy, f))) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| } |
| |
| if (do_blinding && |
| !BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) { |
| goto err; |
| } |
| |
| // The computation should have left |result| as a maximally-wide number, so |
| // that it and serializing does not leak information about the magnitude of |
| // the result. |
| // |
| // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010. |
| assert(result->width == rsa->mont_n->N.width); |
| bn_assert_fits_in_bytes(result, len); |
| if (!BN_bn2bin_padded(out, len, result)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| if (ctx != NULL) { |
| BN_CTX_end(ctx); |
| BN_CTX_free(ctx); |
| } |
| if (blinding != NULL) { |
| rsa_blinding_release(rsa, blinding, blinding_index); |
| } |
| |
| return ret; |
| } |
| |
| // mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced |
| // modulo |p| times |q|. It returns one on success and zero on error. |
| static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p, |
| const BN_MONT_CTX *mont_p, const BIGNUM *q, |
| BN_CTX *ctx) { |
| // Reducing in constant-time with Montgomery reduction requires I <= p * R. We |
| // have I < p * q, so this follows if q < R. The caller should have checked |
| // this already. |
| if (!bn_less_than_montgomery_R(q, mont_p)) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p. |
| !BN_from_montgomery(r, I, mont_p, ctx) || |
| // Multiply by R^2 and do another Montgomery reduction to compute |
| // I * R^-1 * R^2 * R^-1 = I mod p. |
| !BN_to_montgomery(r, r, mont_p, ctx)) { |
| return 0; |
| } |
| |
| // By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and |
| // adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute |
| // I * R mod p here and save a reduction per prime. But this would require |
| // changing the RSAZ code and may not be worth it. Note that the RSAZ code |
| // uses a different radix, so it uses R' = 2^1044. There we'd actually want |
| // R^2 * R', and would futher benefit from a precomputed R'^2. It currently |
| // converts |mont_p->RR| to R'^2. |
| return 1; |
| } |
| |
| static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) { |
| assert(ctx != NULL); |
| |
| assert(rsa->n != NULL); |
| assert(rsa->e != NULL); |
| assert(rsa->d != NULL); |
| assert(rsa->p != NULL); |
| assert(rsa->q != NULL); |
| assert(rsa->dmp1 != NULL); |
| assert(rsa->dmq1 != NULL); |
| assert(rsa->iqmp != NULL); |
| |
| BIGNUM *r1, *m1; |
| int ret = 0; |
| |
| BN_CTX_start(ctx); |
| r1 = BN_CTX_get(ctx); |
| m1 = BN_CTX_get(ctx); |
| if (r1 == NULL || |
| m1 == NULL) { |
| goto err; |
| } |
| |
| if (!freeze_private_key(rsa, ctx)) { |
| goto err; |
| } |
| |
| // Implementing RSA with CRT in constant-time is sensitive to which prime is |
| // larger. Canonicalize fields so that |p| is the larger prime. |
| const BIGNUM *dmp1 = rsa->dmp1_fixed, *dmq1 = rsa->dmq1_fixed; |
| const BN_MONT_CTX *mont_p = rsa->mont_p, *mont_q = rsa->mont_q; |
| if (BN_cmp(rsa->p, rsa->q) < 0) { |
| mont_p = rsa->mont_q; |
| mont_q = rsa->mont_p; |
| dmp1 = rsa->dmq1_fixed; |
| dmq1 = rsa->dmp1_fixed; |
| } |
| |
| // Use the minimal-width versions of |n|, |p|, and |q|. Either works, but if |
| // someone gives us non-minimal values, these will be slightly more efficient |
| // on the non-Montgomery operations. |
| const BIGNUM *n = &rsa->mont_n->N; |
| const BIGNUM *p = &mont_p->N; |
| const BIGNUM *q = &mont_q->N; |
| |
| // This is a pre-condition for |mod_montgomery|. It was already checked by the |
| // caller. |
| assert(BN_ucmp(I, n) < 0); |
| |
| if (// |m1| is the result modulo |q|. |
| !mod_montgomery(r1, I, q, mont_q, p, ctx) || |
| !BN_mod_exp_mont_consttime(m1, r1, dmq1, q, ctx, mont_q) || |
| // |r0| is the result modulo |p|. |
| !mod_montgomery(r1, I, p, mont_p, q, ctx) || |
| !BN_mod_exp_mont_consttime(r0, r1, dmp1, p, ctx, mont_p) || |
| // Compute r0 = r0 - m1 mod p. |p| is the larger prime, so |m1| is already |
| // fully reduced mod |p|. |
| !bn_mod_sub_consttime(r0, r0, m1, p, ctx) || |
| // r0 = r0 * iqmp mod p. We use Montgomery multiplication to compute this |
| // in constant time. |inv_small_mod_large_mont| is in Montgomery form and |
| // r0 is not, so the result is taken out of Montgomery form. |
| !BN_mod_mul_montgomery(r0, r0, rsa->inv_small_mod_large_mont, mont_p, |
| ctx) || |
| // r0 = r0 * q + m1 gives the final result. Reducing modulo q gives m1, so |
| // it is correct mod p. Reducing modulo p gives (r0-m1)*iqmp*q + m1 = r0, |
| // so it is correct mod q. Finally, the result is bounded by [m1, n + m1), |
| // and the result is at least |m1|, so this must be the unique answer in |
| // [0, n). |
| !bn_mul_consttime(r0, r0, q, ctx) || // |
| !bn_uadd_consttime(r0, r0, m1)) { |
| goto err; |
| } |
| |
| // The result should be bounded by |n|, but fixed-width operations may |
| // bound the width slightly higher, so fix it. This trips constant-time checks |
| // because a naive data flow analysis does not realize the excess words are |
| // publicly zero. |
| assert(BN_cmp(r0, n) < 0); |
| bn_assert_fits_in_bytes(r0, BN_num_bytes(n)); |
| if (!bn_resize_words(r0, n->width)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| static int ensure_bignum(BIGNUM **out) { |
| if (*out == NULL) { |
| *out = BN_new(); |
| } |
| return *out != NULL; |
| } |
| |
| // kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2²⁰⁴⁷×√2⌋. This is |
| // chosen to give enough precision for 4096-bit RSA, the largest key size FIPS |
| // specifies. Key sizes beyond this will round up. |
| // |
| // To calculate, use the following Haskell code: |
| // |
| // import Text.Printf (printf) |
| // import Data.List (intercalate) |
| // |
| // pow2 = 4095 |
| // target = 2^pow2 |
| // |
| // f x = x*x - (toRational target) |
| // |
| // fprime x = 2*x |
| // |
| // newtonIteration x = x - (f x) / (fprime x) |
| // |
| // converge x = |
| // let n = floor x in |
| // if n*n - target < 0 && (n+1)*(n+1) - target > 0 |
| // then n |
| // else converge (newtonIteration x) |
| // |
| // divrem bits x = (x `div` (2^bits), x `rem` (2^bits)) |
| // |
| // bnWords :: Integer -> [Integer] |
| // bnWords x = |
| // if x == 0 |
| // then [] |
| // else let (high, low) = divrem 64 x in low : bnWords high |
| // |
| // showWord x = let (high, low) = divrem 32 x in printf "TOBN(0x%08x, 0x%08x)" high low |
| // |
| // output :: String |
| // output = intercalate ", " $ map showWord $ bnWords $ converge (2 ^ (pow2 `div` 2)) |
| // |
| // To verify this number, check that n² < 2⁴⁰⁹⁵ < (n+1)², where n is value |
| // represented here. Note the components are listed in little-endian order. Here |
| // is some sample Python code to check: |
| // |
| // >>> TOBN = lambda a, b: a << 32 | b |
| // >>> l = [ <paste the contents of kSqrtTwo> ] |
| // >>> n = sum(a * 2**(64*i) for i, a in enumerate(l)) |
| // >>> n**2 < 2**4095 < (n+1)**2 |
| // True |
| const BN_ULONG kBoringSSLRSASqrtTwo[] = { |
| TOBN(0x4d7c60a5, 0xe633e3e1), TOBN(0x5fcf8f7b, 0xca3ea33b), |
| TOBN(0xc246785e, 0x92957023), TOBN(0xf9acce41, 0x797f2805), |
| TOBN(0xfdfe170f, 0xd3b1f780), TOBN(0xd24f4a76, 0x3facb882), |
| TOBN(0x18838a2e, 0xaff5f3b2), TOBN(0xc1fcbdde, 0xa2f7dc33), |
| TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307), |
| TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f), |
| TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651), |
| TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd), |
| TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e), |
| TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc), |
| TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a), |
| TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e), |
| TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a), |
| TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3), |
| TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c), |
| TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484), |
| }; |
| const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo); |
| |
| // generate_prime sets |out| to a prime with length |bits| such that |out|-1 is |
| // relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to |
| // |p|. |sqrt2| must be ⌊2^(bits-1)×√2⌋ (or a slightly overestimate for large |
| // sizes), and |pow2_bits_100| must be 2^(bits-100). |
| // |
| // This function fails with probability around 2^-21. |
| static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e, |
| const BIGNUM *p, const BIGNUM *sqrt2, |
| const BIGNUM *pow2_bits_100, BN_CTX *ctx, |
| BN_GENCB *cb) { |
| if (bits < 128 || (bits % BN_BITS2) != 0) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| assert(BN_is_pow2(pow2_bits_100)); |
| assert(BN_is_bit_set(pow2_bits_100, bits - 100)); |
| |
| // See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2. |
| |
| // Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3, |
| // the 186-4 limit is too low, so we use a higher one. Note this case is not |
| // reachable from |RSA_generate_key_fips|. |
| // |
| // |limit| determines the failure probability. We must find a prime that is |
| // not 1 mod |e|. By the prime number theorem, we'll find one with probability |
| // p = (e-1)/e * 2/(ln(2)*bits). Note the second term is doubled because we |
| // discard even numbers. |
| // |
| // The failure probability is thus (1-p)^limit. To convert that to a power of |
| // two, we take logs. -log_2((1-p)^limit) = -limit * ln(1-p) / ln(2). |
| // |
| // >>> def f(bits, e, limit): |
| // ... p = (e-1.0)/e * 2.0/(math.log(2)*bits) |
| // ... return -limit * math.log(1 - p) / math.log(2) |
| // ... |
| // >>> f(1024, 65537, 5*1024) |
| // 20.842750558272634 |
| // >>> f(1536, 65537, 5*1536) |
| // 20.83294549602474 |
| // >>> f(2048, 65537, 5*2048) |
| // 20.828047576234948 |
| // >>> f(1024, 3, 8*1024) |
| // 22.222147925962307 |
| // >>> f(1536, 3, 8*1536) |
| // 22.21518251065506 |
| // >>> f(2048, 3, 8*2048) |
| // 22.211701985875937 |
| if (bits >= INT_MAX/32) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE); |
| return 0; |
| } |
| int limit = BN_is_word(e, 3) ? bits * 8 : bits * 5; |
| |
| int ret = 0, tries = 0, rand_tries = 0; |
| BN_CTX_start(ctx); |
| BIGNUM *tmp = BN_CTX_get(ctx); |
| if (tmp == NULL) { |
| goto err; |
| } |
| |
| for (;;) { |
| // Generate a random number of length |bits| where the bottom bit is set |
| // (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the |
| // bound checked below in steps 4.4 and 5.5). |
| if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) || |
| !BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) { |
| goto err; |
| } |
| |
| if (p != NULL) { |
| // If |p| and |out| are too close, try again (step 5.4). |
| if (!bn_abs_sub_consttime(tmp, out, p, ctx)) { |
| goto err; |
| } |
| if (BN_cmp(tmp, pow2_bits_100) <= 0) { |
| continue; |
| } |
| } |
| |
| // If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5). This is equivalent |
| // to out <= ⌊2^(bits-1)×√2⌋, or out <= sqrt2 for FIPS key sizes. |
| // |
| // For larger keys, the comparison is approximate, leaning towards |
| // retrying. That is, we reject a negligible fraction of primes that are |
| // within the FIPS bound, but we will never accept a prime outside the |
| // bound, ensuring the resulting RSA key is the right size. |
| if (BN_cmp(out, sqrt2) <= 0) { |
| continue; |
| } |
| |
| // RSA key generation's bottleneck is discarding composites. If it fails |
| // trial division, do not bother computing a GCD or performing Miller-Rabin. |
| if (!bn_odd_number_is_obviously_composite(out)) { |
| // Check gcd(out-1, e) is one (steps 4.5 and 5.6). |
| int relatively_prime; |
| if (!BN_sub(tmp, out, BN_value_one()) || |
| !bn_is_relatively_prime(&relatively_prime, tmp, e, ctx)) { |
| goto err; |
| } |
| if (relatively_prime) { |
| // Test |out| for primality (steps 4.5.1 and 5.6.1). |
| int is_probable_prime; |
| if (!BN_primality_test(&is_probable_prime, out, |
| BN_prime_checks_for_generation, ctx, 0, cb)) { |
| goto err; |
| } |
| if (is_probable_prime) { |
| ret = 1; |
| goto err; |
| } |
| } |
| } |
| |
| // If we've tried too many times to find a prime, abort (steps 4.7 and |
| // 5.8). |
| tries++; |
| if (tries >= limit) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS); |
| goto err; |
| } |
| if (!BN_GENCB_call(cb, 2, tries)) { |
| goto err; |
| } |
| } |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| // rsa_generate_key_impl generates an RSA key using a generalized version of |
| // FIPS 186-4 appendix B.3. |RSA_generate_key_fips| performs additional checks |
| // for FIPS-compliant key generation. |
| // |
| // This function returns one on success and zero on failure. It has a failure |
| // probability of about 2^-20. |
| static int rsa_generate_key_impl(RSA *rsa, int bits, const BIGNUM *e_value, |
| BN_GENCB *cb) { |
| // See FIPS 186-4 appendix B.3. This function implements a generalized version |
| // of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks |
| // for FIPS-compliant key generation. |
| |
| // Always generate RSA keys which are a multiple of 128 bits. Round |bits| |
| // down as needed. |
| bits &= ~127; |
| |
| // Reject excessively small keys. |
| if (bits < 256) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| // Reject excessively large public exponents. Windows CryptoAPI and Go don't |
| // support values larger than 32 bits, so match their limits for generating |
| // keys. (|rsa_check_public_key| uses a slightly more conservative value, but |
| // we don't need to support generating such keys.) |
| // https://github.com/golang/go/issues/3161 |
| // https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx |
| if (BN_num_bits(e_value) > 32) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE); |
| return 0; |
| } |
| |
| int ret = 0; |
| int prime_bits = bits / 2; |
| BN_CTX *ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| goto bn_err; |
| } |
| BN_CTX_start(ctx); |
| BIGNUM *totient = BN_CTX_get(ctx); |
| BIGNUM *pm1 = BN_CTX_get(ctx); |
| BIGNUM *qm1 = BN_CTX_get(ctx); |
| BIGNUM *sqrt2 = BN_CTX_get(ctx); |
| BIGNUM *pow2_prime_bits_100 = BN_CTX_get(ctx); |
| BIGNUM *pow2_prime_bits = BN_CTX_get(ctx); |
| if (totient == NULL || pm1 == NULL || qm1 == NULL || sqrt2 == NULL || |
| pow2_prime_bits_100 == NULL || pow2_prime_bits == NULL || |
| !BN_set_bit(pow2_prime_bits_100, prime_bits - 100) || |
| !BN_set_bit(pow2_prime_bits, prime_bits)) { |
| goto bn_err; |
| } |
| |
| // We need the RSA components non-NULL. |
| if (!ensure_bignum(&rsa->n) || |
| !ensure_bignum(&rsa->d) || |
| !ensure_bignum(&rsa->e) || |
| !ensure_bignum(&rsa->p) || |
| !ensure_bignum(&rsa->q) || |
| !ensure_bignum(&rsa->dmp1) || |
| !ensure_bignum(&rsa->dmq1)) { |
| goto bn_err; |
| } |
| |
| if (!BN_copy(rsa->e, e_value)) { |
| goto bn_err; |
| } |
| |
| // Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋. |
| if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) { |
| goto bn_err; |
| } |
| int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2; |
| assert(sqrt2_bits == (int)BN_num_bits(sqrt2)); |
| if (sqrt2_bits > prime_bits) { |
| // For key sizes up to 4096 (prime_bits = 2048), this is exactly |
| // ⌊2^(prime_bits-1)×√2⌋. |
| if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) { |
| goto bn_err; |
| } |
| } else if (prime_bits > sqrt2_bits) { |
| // For key sizes beyond 4096, this is approximate. We err towards retrying |
| // to ensure our key is the right size and round up. |
| if (!BN_add_word(sqrt2, 1) || |
| !BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) { |
| goto bn_err; |
| } |
| } |
| assert(prime_bits == (int)BN_num_bits(sqrt2)); |
| |
| do { |
| // Generate p and q, each of size |prime_bits|, using the steps outlined in |
| // appendix FIPS 186-4 appendix B.3.3. |
| // |
| // Each call to |generate_prime| fails with probability p = 2^-21. The |
| // probability that either call fails is 1 - (1-p)^2, which is around 2^-20. |
| if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2, |
| pow2_prime_bits_100, ctx, cb) || |
| !BN_GENCB_call(cb, 3, 0) || |
| !generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2, |
| pow2_prime_bits_100, ctx, cb) || |
| !BN_GENCB_call(cb, 3, 1)) { |
| goto bn_err; |
| } |
| |
| if (BN_cmp(rsa->p, rsa->q) < 0) { |
| BIGNUM *tmp = rsa->p; |
| rsa->p = rsa->q; |
| rsa->q = tmp; |
| } |
| |
| // Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs |
| // from typical RSA implementations which use (p-1)*(q-1). |
| // |
| // Note this means the size of d might reveal information about p-1 and |
| // q-1. However, we do operations with Chinese Remainder Theorem, so we only |
| // use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient |
| // does not affect those two values. |
| int no_inverse; |
| if (!bn_usub_consttime(pm1, rsa->p, BN_value_one()) || |
| !bn_usub_consttime(qm1, rsa->q, BN_value_one()) || |
| !bn_lcm_consttime(totient, pm1, qm1, ctx) || |
| !bn_mod_inverse_consttime(rsa->d, &no_inverse, rsa->e, totient, ctx)) { |
| goto bn_err; |
| } |
| |
| // Retry if |rsa->d| <= 2^|prime_bits|. See appendix B.3.1's guidance on |
| // values for d. |
| } while (BN_cmp(rsa->d, pow2_prime_bits) <= 0); |
| |
| assert(BN_num_bits(pm1) == (unsigned)prime_bits); |
| assert(BN_num_bits(qm1) == (unsigned)prime_bits); |
| if (// Calculate n. |
| !bn_mul_consttime(rsa->n, rsa->p, rsa->q, ctx) || |
| // Calculate d mod (p-1). |
| !bn_div_consttime(NULL, rsa->dmp1, rsa->d, pm1, prime_bits, ctx) || |
| // Calculate d mod (q-1) |
| !bn_div_consttime(NULL, rsa->dmq1, rsa->d, qm1, prime_bits, ctx)) { |
| goto bn_err; |
| } |
| bn_set_minimal_width(rsa->n); |
| |
| // Sanity-check that |rsa->n| has the specified size. This is implied by |
| // |generate_prime|'s bounds. |
| if (BN_num_bits(rsa->n) != (unsigned)bits) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| // Call |freeze_private_key| to compute the inverse of q mod p, by way of |
| // |rsa->mont_p|. |
| if (!freeze_private_key(rsa, ctx)) { |
| goto bn_err; |
| } |
| |
| // The key generation process is complex and thus error-prone. It could be |
| // disastrous to generate and then use a bad key so double-check that the key |
| // makes sense. |
| if (!RSA_check_key(rsa)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| ret = 1; |
| |
| bn_err: |
| if (!ret) { |
| OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); |
| } |
| err: |
| if (ctx != NULL) { |
| BN_CTX_end(ctx); |
| BN_CTX_free(ctx); |
| } |
| return ret; |
| } |
| |
| static void replace_bignum(BIGNUM **out, BIGNUM **in) { |
| BN_free(*out); |
| *out = *in; |
| *in = NULL; |
| } |
| |
| static void replace_bn_mont_ctx(BN_MONT_CTX **out, BN_MONT_CTX **in) { |
| BN_MONT_CTX_free(*out); |
| *out = *in; |
| *in = NULL; |
| } |
| |
| static int RSA_generate_key_ex_maybe_fips(RSA *rsa, int bits, |
| const BIGNUM *e_value, BN_GENCB *cb, |
| int check_fips) { |
| boringssl_ensure_rsa_self_test(); |
| |
| RSA *tmp = NULL; |
| uint32_t err; |
| int ret = 0; |
| |
| // |rsa_generate_key_impl|'s 2^-20 failure probability is too high at scale, |
| // so we run the FIPS algorithm four times, bringing it down to 2^-80. We |
| // should just adjust the retry limit, but FIPS 186-4 prescribes that value |
| // and thus results in unnecessary complexity. |
| int failures = 0; |
| do { |
| ERR_clear_error(); |
| // Generate into scratch space, to avoid leaving partial work on failure. |
| tmp = RSA_new(); |
| if (tmp == NULL) { |
| goto out; |
| } |
| |
| if (rsa_generate_key_impl(tmp, bits, e_value, cb)) { |
| break; |
| } |
| |
| err = ERR_peek_error(); |
| RSA_free(tmp); |
| tmp = NULL; |
| failures++; |
| |
| // Only retry on |RSA_R_TOO_MANY_ITERATIONS|. This is so a caller-induced |
| // failure in |BN_GENCB_call| is still fatal. |
| } while (failures < 4 && ERR_GET_LIB(err) == ERR_LIB_RSA && |
| ERR_GET_REASON(err) == RSA_R_TOO_MANY_ITERATIONS); |
| |
| if (tmp == NULL || (check_fips && !RSA_check_fips(tmp))) { |
| goto out; |
| } |
| |
| rsa_invalidate_key(rsa); |
| replace_bignum(&rsa->n, &tmp->n); |
| replace_bignum(&rsa->e, &tmp->e); |
| replace_bignum(&rsa->d, &tmp->d); |
| replace_bignum(&rsa->p, &tmp->p); |
| replace_bignum(&rsa->q, &tmp->q); |
| replace_bignum(&rsa->dmp1, &tmp->dmp1); |
| replace_bignum(&rsa->dmq1, &tmp->dmq1); |
| replace_bignum(&rsa->iqmp, &tmp->iqmp); |
| replace_bn_mont_ctx(&rsa->mont_n, &tmp->mont_n); |
| replace_bn_mont_ctx(&rsa->mont_p, &tmp->mont_p); |
| replace_bn_mont_ctx(&rsa->mont_q, &tmp->mont_q); |
| replace_bignum(&rsa->d_fixed, &tmp->d_fixed); |
| replace_bignum(&rsa->dmp1_fixed, &tmp->dmp1_fixed); |
| replace_bignum(&rsa->dmq1_fixed, &tmp->dmq1_fixed); |
| replace_bignum(&rsa->inv_small_mod_large_mont, |
| &tmp->inv_small_mod_large_mont); |
| rsa->private_key_frozen = tmp->private_key_frozen; |
| ret = 1; |
| |
| out: |
| RSA_free(tmp); |
| return ret; |
| } |
| |
| int RSA_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e_value, |
| BN_GENCB *cb) { |
| return RSA_generate_key_ex_maybe_fips(rsa, bits, e_value, cb, |
| /*check_fips=*/0); |
| } |
| |
| int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) { |
| // FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit |
| // primes, respectively) with the prime generation method we use. |
| // Subsequently, IG A.14 stated that larger modulus sizes can be used and ACVP |
| // testing supports 4096 bits. |
| if (bits != 2048 && bits != 3072 && bits != 4096) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS); |
| return 0; |
| } |
| |
| BIGNUM *e = BN_new(); |
| int ret = e != NULL && |
| BN_set_word(e, RSA_F4) && |
| RSA_generate_key_ex_maybe_fips(rsa, bits, e, cb, /*check_fips=*/1); |
| BN_free(e); |
| |
| if (ret) { |
| FIPS_service_indicator_update_state(); |
| } |
| return ret; |
| } |
| |
| DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) { |
| // All of the methods are NULL to make it easier for the compiler/linker to |
| // drop unused functions. The wrapper functions will select the appropriate |
| // |rsa_default_*| implementation. |
| OPENSSL_memset(out, 0, sizeof(RSA_METHOD)); |
| out->common.is_static = 1; |
| } |