| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runner |
| |
| import ( |
| "crypto" |
| "crypto/aes" |
| "crypto/cipher" |
| "crypto/des" |
| "crypto/hmac" |
| "crypto/md5" |
| "crypto/sha1" |
| "crypto/sha256" |
| "crypto/sha512" |
| "crypto/x509" |
| "hash" |
| "slices" |
| |
| "golang.org/x/crypto/chacha20poly1305" |
| ) |
| |
| // a keyAgreement implements the client and server side of a TLS key agreement |
| // protocol by generating and processing key exchange messages. |
| type keyAgreement interface { |
| // On the server side, the first two methods are called in order. |
| |
| // In the case that the key agreement protocol doesn't use a |
| // ServerKeyExchange message, generateServerKeyExchange can return nil, |
| // nil. |
| generateServerKeyExchange(*Config, *Credential, *clientHelloMsg, *serverHelloMsg, uint16) (*serverKeyExchangeMsg, error) |
| processClientKeyExchange(*Config, *Credential, *clientKeyExchangeMsg, uint16) ([]byte, error) |
| |
| // On the client side, the next two methods are called in order. |
| |
| // This method may not be called if the server doesn't send a |
| // ServerKeyExchange message. |
| processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, crypto.PublicKey, *serverKeyExchangeMsg) error |
| generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) |
| |
| // peerSignatureAlgorithm returns the signature algorithm used by the |
| // peer, or zero if not applicable. |
| peerSignatureAlgorithm() signatureAlgorithm |
| } |
| |
| const ( |
| // suiteECDH indicates that the cipher suite involves elliptic curve |
| // Diffie-Hellman. This means that it should only be selected when the |
| // client indicates that it supports ECC with a curve and point format |
| // that we're happy with. |
| suiteECDHE = 1 << iota |
| // suiteECDSA indicates that the cipher suite involves an ECDSA |
| // signature and therefore may only be selected when the server's |
| // certificate is ECDSA. If this is not set then the cipher suite is |
| // RSA based. |
| suiteECDSA |
| // suiteTLS12 indicates that the cipher suite should only be advertised |
| // and accepted when using TLS 1.2 or greater. |
| suiteTLS12 |
| // suiteTLS13 indicates that the cipher suite can be used with TLS 1.3. |
| // Cipher suites lacking this flag may not be used with TLS 1.3. |
| suiteTLS13 |
| // suiteSHA384 indicates that the cipher suite uses SHA384 as the |
| // handshake hash. |
| suiteSHA384 |
| // suitePSK indicates that the cipher suite authenticates with |
| // a pre-shared key rather than a server private key. |
| suitePSK |
| ) |
| |
| type tlsAead struct { |
| cipher.AEAD |
| explicitNonce bool |
| } |
| |
| // A cipherSuite is a specific combination of key agreement, cipher and MAC |
| // function. All cipher suites currently assume RSA key agreement. |
| type cipherSuite struct { |
| id uint16 |
| // the lengths, in bytes, of the key material needed for each component. |
| keyLen int |
| macLen int |
| ivLen func(version uint16) int |
| ka func(version uint16) keyAgreement |
| // flags is a bitmask of the suite* values, above. |
| flags int |
| cipher func(key, iv []byte, isRead bool) any |
| mac func(version uint16, macKey []byte) macFunction |
| aead func(version uint16, key, fixedNonce []byte) *tlsAead |
| } |
| |
| func (cs cipherSuite) hash() crypto.Hash { |
| if cs.flags&suiteSHA384 != 0 { |
| return crypto.SHA384 |
| } |
| return crypto.SHA256 |
| } |
| |
| var cipherSuites = []*cipherSuite{ |
| {TLS_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, nil, suiteTLS13, nil, nil, aeadCHACHA20POLY1305}, |
| {TLS_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, nil, suiteTLS13, nil, nil, aeadAESGCM}, |
| {TLS_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, nil, suiteTLS13 | suiteSHA384, nil, nil, aeadAESGCM}, |
| {TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadCHACHA20POLY1305}, |
| {TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadCHACHA20POLY1305}, |
| {TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM}, |
| {TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM}, |
| {TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, |
| {TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, |
| {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, ecdheRSAKA, suiteECDHE | suiteTLS12, cipherAES, macSHA256, nil}, |
| {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, cipherAES, macSHA256, nil}, |
| {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil}, |
| {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil}, |
| {TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, 32, 48, ivLenAES, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil}, |
| {TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, 32, 48, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil}, |
| {TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil}, |
| {TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil}, |
| {TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, rsaKA, suiteTLS12, nil, nil, aeadAESGCM}, |
| {TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, |
| {TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, rsaKA, suiteTLS12, cipherAES, macSHA256, nil}, |
| {TLS_RSA_WITH_AES_256_CBC_SHA256, 32, 32, ivLenAES, rsaKA, suiteTLS12, cipherAES, macSHA256, nil}, |
| {TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, rsaKA, 0, cipherAES, macSHA1, nil}, |
| {TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, rsaKA, 0, cipherAES, macSHA1, nil}, |
| {TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, ivLen3DES, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil}, |
| {TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, ivLen3DES, rsaKA, 0, cipher3DES, macSHA1, nil}, |
| {TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdhePSKKA, suiteECDHE | suitePSK | suiteTLS12, nil, nil, aeadCHACHA20POLY1305}, |
| {TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil}, |
| {TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil}, |
| {TLS_PSK_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, pskKA, suitePSK, cipherAES, macSHA1, nil}, |
| {TLS_PSK_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, pskKA, suitePSK, cipherAES, macSHA1, nil}, |
| } |
| |
| func ivLenChaCha20Poly1305(vers uint16) int { |
| return 12 |
| } |
| |
| func ivLenAESGCM(vers uint16) int { |
| if vers >= VersionTLS13 { |
| return 12 |
| } |
| return 4 |
| } |
| |
| func ivLenAES(vers uint16) int { |
| return 16 |
| } |
| |
| func ivLen3DES(vers uint16) int { |
| return 8 |
| } |
| |
| type nullCipher struct{} |
| |
| func cipherNull(key, iv []byte, isRead bool) any { |
| return nullCipher{} |
| } |
| |
| type cbcMode struct { |
| cipher.BlockMode |
| new func(iv []byte) cipher.BlockMode |
| } |
| |
| func (c *cbcMode) SetIV(iv []byte) { |
| c.BlockMode = c.new(iv) |
| } |
| |
| func cipher3DES(key, iv []byte, isRead bool) any { |
| c := &cbcMode{} |
| block, _ := des.NewTripleDESCipher(key) |
| if isRead { |
| c.new = func(iv []byte) cipher.BlockMode { return cipher.NewCBCDecrypter(block, iv) } |
| } else { |
| c.new = func(iv []byte) cipher.BlockMode { return cipher.NewCBCEncrypter(block, iv) } |
| } |
| c.SetIV(iv) |
| return c |
| } |
| |
| func cipherAES(key, iv []byte, isRead bool) any { |
| c := &cbcMode{} |
| block, _ := aes.NewCipher(key) |
| if isRead { |
| c.new = func(iv []byte) cipher.BlockMode { return cipher.NewCBCDecrypter(block, iv) } |
| } else { |
| c.new = func(iv []byte) cipher.BlockMode { return cipher.NewCBCEncrypter(block, iv) } |
| } |
| c.SetIV(iv) |
| return c |
| } |
| |
| // macSHA1 returns a macFunction for the given protocol version. |
| func macSHA1(version uint16, key []byte) macFunction { |
| return tls10MAC{hmac.New(sha1.New, key)} |
| } |
| |
| func macMD5(version uint16, key []byte) macFunction { |
| return tls10MAC{hmac.New(md5.New, key)} |
| } |
| |
| func macSHA256(version uint16, key []byte) macFunction { |
| return tls10MAC{hmac.New(sha256.New, key)} |
| } |
| |
| func macSHA384(version uint16, key []byte) macFunction { |
| return tls10MAC{hmac.New(sha512.New384, key)} |
| } |
| |
| type macFunction interface { |
| Size() int |
| MAC(digestBuf, seq, header, length, data []byte) []byte |
| } |
| |
| // fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to |
| // each call. |
| type fixedNonceAEAD struct { |
| // sealNonce and openNonce are buffers where the larger nonce will be |
| // constructed. Since a seal and open operation may be running |
| // concurrently, there is a separate buffer for each. |
| sealNonce, openNonce []byte |
| aead cipher.AEAD |
| } |
| |
| func (f *fixedNonceAEAD) NonceSize() int { return 8 } |
| func (f *fixedNonceAEAD) Overhead() int { return f.aead.Overhead() } |
| |
| func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte { |
| copy(f.sealNonce[len(f.sealNonce)-8:], nonce) |
| return f.aead.Seal(out, f.sealNonce, plaintext, additionalData) |
| } |
| |
| func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) { |
| copy(f.openNonce[len(f.openNonce)-8:], nonce) |
| return f.aead.Open(out, f.openNonce, plaintext, additionalData) |
| } |
| |
| func aeadAESGCM(version uint16, key, fixedNonce []byte) *tlsAead { |
| aes, err := aes.NewCipher(key) |
| if err != nil { |
| panic(err) |
| } |
| aead, err := cipher.NewGCM(aes) |
| if err != nil { |
| panic(err) |
| } |
| |
| nonce1, nonce2 := make([]byte, 12), make([]byte, 12) |
| copy(nonce1, fixedNonce) |
| copy(nonce2, fixedNonce) |
| |
| if version >= VersionTLS13 { |
| return &tlsAead{&xorNonceAEAD{nonce1, nonce2, aead}, false} |
| } |
| |
| return &tlsAead{&fixedNonceAEAD{nonce1, nonce2, aead}, true} |
| } |
| |
| func xorSlice(out, in []byte) { |
| for i := range out { |
| out[i] ^= in[i] |
| } |
| } |
| |
| // xorNonceAEAD wraps an AEAD and XORs a fixed portion of the nonce, left-padded |
| // if necessary, each call. |
| type xorNonceAEAD struct { |
| // sealNonce and openNonce are buffers where the larger nonce will be |
| // constructed. Since a seal and open operation may be running |
| // concurrently, there is a separate buffer for each. |
| sealNonce, openNonce []byte |
| aead cipher.AEAD |
| } |
| |
| func (x *xorNonceAEAD) NonceSize() int { return 8 } |
| func (x *xorNonceAEAD) Overhead() int { return x.aead.Overhead() } |
| |
| func (x *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte { |
| xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce) |
| ret := x.aead.Seal(out, x.sealNonce, plaintext, additionalData) |
| xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce) |
| return ret |
| } |
| |
| func (x *xorNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) { |
| xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce) |
| ret, err := x.aead.Open(out, x.openNonce, plaintext, additionalData) |
| xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce) |
| return ret, err |
| } |
| |
| func aeadCHACHA20POLY1305(version uint16, key, fixedNonce []byte) *tlsAead { |
| aead, err := chacha20poly1305.New(key) |
| if err != nil { |
| panic(err) |
| } |
| |
| nonce1, nonce2 := make([]byte, len(fixedNonce)), make([]byte, len(fixedNonce)) |
| copy(nonce1, fixedNonce) |
| copy(nonce2, fixedNonce) |
| |
| return &tlsAead{&xorNonceAEAD{nonce1, nonce2, aead}, false} |
| } |
| |
| // tls10MAC implements the TLS 1.0 MAC function. RFC 2246, section 6.2.3. |
| type tls10MAC struct { |
| h hash.Hash |
| } |
| |
| func (s tls10MAC) Size() int { |
| return s.h.Size() |
| } |
| |
| func (s tls10MAC) MAC(digestBuf, seq, header, length, data []byte) []byte { |
| s.h.Reset() |
| s.h.Write(seq) |
| s.h.Write(header) |
| s.h.Write(length) |
| s.h.Write(data) |
| return s.h.Sum(digestBuf[:0]) |
| } |
| |
| func rsaKA(version uint16) keyAgreement { |
| return &rsaKeyAgreement{version: version} |
| } |
| |
| func ecdheECDSAKA(version uint16) keyAgreement { |
| return &ecdheKeyAgreement{ |
| auth: &signedKeyAgreement{ |
| keyType: keyTypeECDSA, |
| version: version, |
| }, |
| } |
| } |
| |
| func ecdheRSAKA(version uint16) keyAgreement { |
| return &ecdheKeyAgreement{ |
| auth: &signedKeyAgreement{ |
| keyType: keyTypeRSA, |
| version: version, |
| }, |
| } |
| } |
| |
| func pskKA(version uint16) keyAgreement { |
| return &pskKeyAgreement{ |
| base: &nilKeyAgreement{}, |
| } |
| } |
| |
| func ecdhePSKKA(version uint16) keyAgreement { |
| return &pskKeyAgreement{ |
| base: &ecdheKeyAgreement{ |
| auth: &nilKeyAgreementAuthentication{}, |
| }, |
| } |
| } |
| |
| // mutualCipherSuite returns a cipherSuite given a list of supported |
| // ciphersuites and the id requested by the peer. |
| func mutualCipherSuite(have []uint16, id uint16) *cipherSuite { |
| if slices.Contains(have, id) { |
| return cipherSuiteFromID(id) |
| } |
| return nil |
| } |
| |
| func cipherSuiteFromID(id uint16) *cipherSuite { |
| for _, suite := range cipherSuites { |
| if suite.id == id { |
| return suite |
| } |
| } |
| return nil |
| } |
| |
| // A list of the possible cipher suite ids. Taken from |
| // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml |
| const ( |
| TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a |
| TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f |
| TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035 |
| TLS_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003c |
| TLS_RSA_WITH_AES_256_CBC_SHA256 uint16 = 0x003d |
| TLS_PSK_WITH_AES_128_CBC_SHA uint16 = 0x008c |
| TLS_PSK_WITH_AES_256_CBC_SHA uint16 = 0x008d |
| TLS_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009c |
| TLS_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009d |
| TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xc009 |
| TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xc00a |
| TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012 |
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013 |
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014 |
| TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023 |
| TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 uint16 = 0xc024 |
| TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc027 |
| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 uint16 = 0xc028 |
| TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b |
| TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c |
| TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02f |
| TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc030 |
| TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA uint16 = 0xc035 |
| TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA uint16 = 0xc036 |
| TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca8 |
| TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca9 |
| TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xccac |
| renegotiationSCSV uint16 = 0x00ff |
| fallbackSCSV uint16 = 0x5600 |
| ) |
| |
| // Additional cipher suite IDs, not IANA-assigned. |
| const ( |
| TLS_AES_128_GCM_SHA256 uint16 = 0x1301 |
| TLS_AES_256_GCM_SHA384 uint16 = 0x1302 |
| TLS_CHACHA20_POLY1305_SHA256 uint16 = 0x1303 |
| ) |