|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/rsa.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/engine.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/ex_data.h> | 
|  | #include <openssl/md5.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/nid.h> | 
|  | #include <openssl/thread.h> | 
|  |  | 
|  | #include "../bn/internal.h" | 
|  | #include "../delocate.h" | 
|  | #include "../../internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | // RSA_R_BLOCK_TYPE_IS_NOT_02 is part of the legacy SSLv23 padding scheme. | 
|  | // Cryptography.io depends on this error code. | 
|  | OPENSSL_DECLARE_ERROR_REASON(RSA, BLOCK_TYPE_IS_NOT_02) | 
|  |  | 
|  | DEFINE_STATIC_EX_DATA_CLASS(g_rsa_ex_data_class) | 
|  |  | 
|  | static int bn_dup_into(BIGNUM **dst, const BIGNUM *src) { | 
|  | if (src == NULL) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_free(*dst); | 
|  | *dst = BN_dup(src); | 
|  | return *dst != NULL; | 
|  | } | 
|  |  | 
|  | RSA *RSA_new_public_key(const BIGNUM *n, const BIGNUM *e) { | 
|  | RSA *rsa = RSA_new(); | 
|  | if (rsa == NULL ||               // | 
|  | !bn_dup_into(&rsa->n, n) ||  // | 
|  | !bn_dup_into(&rsa->e, e) ||  // | 
|  | !RSA_check_key(rsa)) { | 
|  | RSA_free(rsa); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rsa; | 
|  | } | 
|  |  | 
|  | RSA *RSA_new_private_key(const BIGNUM *n, const BIGNUM *e, const BIGNUM *d, | 
|  | const BIGNUM *p, const BIGNUM *q, const BIGNUM *dmp1, | 
|  | const BIGNUM *dmq1, const BIGNUM *iqmp) { | 
|  | RSA *rsa = RSA_new(); | 
|  | if (rsa == NULL ||                     // | 
|  | !bn_dup_into(&rsa->n, n) ||        // | 
|  | !bn_dup_into(&rsa->e, e) ||        // | 
|  | !bn_dup_into(&rsa->d, d) ||        // | 
|  | !bn_dup_into(&rsa->p, p) ||        // | 
|  | !bn_dup_into(&rsa->q, q) ||        // | 
|  | !bn_dup_into(&rsa->dmp1, dmp1) ||  // | 
|  | !bn_dup_into(&rsa->dmq1, dmq1) ||  // | 
|  | !bn_dup_into(&rsa->iqmp, iqmp) ||  // | 
|  | !RSA_check_key(rsa)) { | 
|  | RSA_free(rsa); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rsa; | 
|  | } | 
|  |  | 
|  | RSA *RSA_new_private_key_no_crt(const BIGNUM *n, const BIGNUM *e, | 
|  | const BIGNUM *d) { | 
|  | RSA *rsa = RSA_new(); | 
|  | if (rsa == NULL ||               // | 
|  | !bn_dup_into(&rsa->n, n) ||  // | 
|  | !bn_dup_into(&rsa->e, e) ||  // | 
|  | !bn_dup_into(&rsa->d, d) ||  // | 
|  | !RSA_check_key(rsa)) { | 
|  | RSA_free(rsa); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rsa; | 
|  | } | 
|  |  | 
|  | RSA *RSA_new_private_key_no_e(const BIGNUM *n, const BIGNUM *d) { | 
|  | RSA *rsa = RSA_new(); | 
|  | if (rsa == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | rsa->flags |= RSA_FLAG_NO_PUBLIC_EXPONENT; | 
|  | if (!bn_dup_into(&rsa->n, n) ||  // | 
|  | !bn_dup_into(&rsa->d, d) ||  // | 
|  | !RSA_check_key(rsa)) { | 
|  | RSA_free(rsa); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rsa; | 
|  | } | 
|  |  | 
|  | RSA *RSA_new_public_key_large_e(const BIGNUM *n, const BIGNUM *e) { | 
|  | RSA *rsa = RSA_new(); | 
|  | if (rsa == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | rsa->flags |= RSA_FLAG_LARGE_PUBLIC_EXPONENT; | 
|  | if (!bn_dup_into(&rsa->n, n) ||  // | 
|  | !bn_dup_into(&rsa->e, e) ||  // | 
|  | !RSA_check_key(rsa)) { | 
|  | RSA_free(rsa); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rsa; | 
|  | } | 
|  |  | 
|  | RSA *RSA_new_private_key_large_e(const BIGNUM *n, const BIGNUM *e, | 
|  | const BIGNUM *d, const BIGNUM *p, | 
|  | const BIGNUM *q, const BIGNUM *dmp1, | 
|  | const BIGNUM *dmq1, const BIGNUM *iqmp) { | 
|  | RSA *rsa = RSA_new(); | 
|  | if (rsa == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | rsa->flags |= RSA_FLAG_LARGE_PUBLIC_EXPONENT; | 
|  | if (!bn_dup_into(&rsa->n, n) ||        // | 
|  | !bn_dup_into(&rsa->e, e) ||        // | 
|  | !bn_dup_into(&rsa->d, d) ||        // | 
|  | !bn_dup_into(&rsa->p, p) ||        // | 
|  | !bn_dup_into(&rsa->q, q) ||        // | 
|  | !bn_dup_into(&rsa->dmp1, dmp1) ||  // | 
|  | !bn_dup_into(&rsa->dmq1, dmq1) ||  // | 
|  | !bn_dup_into(&rsa->iqmp, iqmp) ||  // | 
|  | !RSA_check_key(rsa)) { | 
|  | RSA_free(rsa); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rsa; | 
|  | } | 
|  |  | 
|  | RSA *RSA_new(void) { return RSA_new_method(NULL); } | 
|  |  | 
|  | RSA *RSA_new_method(const ENGINE *engine) { | 
|  | RSA *rsa = OPENSSL_zalloc(sizeof(RSA)); | 
|  | if (rsa == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (engine) { | 
|  | rsa->meth = ENGINE_get_RSA_method(engine); | 
|  | } | 
|  |  | 
|  | if (rsa->meth == NULL) { | 
|  | rsa->meth = (RSA_METHOD *) RSA_default_method(); | 
|  | } | 
|  | METHOD_ref(rsa->meth); | 
|  |  | 
|  | rsa->references = 1; | 
|  | rsa->flags = rsa->meth->flags; | 
|  | CRYPTO_MUTEX_init(&rsa->lock); | 
|  | CRYPTO_new_ex_data(&rsa->ex_data); | 
|  |  | 
|  | if (rsa->meth->init && !rsa->meth->init(rsa)) { | 
|  | CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); | 
|  | CRYPTO_MUTEX_cleanup(&rsa->lock); | 
|  | METHOD_unref(rsa->meth); | 
|  | OPENSSL_free(rsa); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return rsa; | 
|  | } | 
|  |  | 
|  | RSA *RSA_new_method_no_e(const ENGINE *engine, const BIGNUM *n) { | 
|  | RSA *rsa = RSA_new_method(engine); | 
|  | if (rsa == NULL || | 
|  | !bn_dup_into(&rsa->n, n)) { | 
|  | RSA_free(rsa); | 
|  | return NULL; | 
|  | } | 
|  | rsa->flags |= RSA_FLAG_NO_PUBLIC_EXPONENT; | 
|  | return rsa; | 
|  | } | 
|  |  | 
|  | void RSA_free(RSA *rsa) { | 
|  | if (rsa == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (rsa->meth->finish) { | 
|  | rsa->meth->finish(rsa); | 
|  | } | 
|  | METHOD_unref(rsa->meth); | 
|  |  | 
|  | CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data); | 
|  |  | 
|  | BN_free(rsa->n); | 
|  | BN_free(rsa->e); | 
|  | BN_free(rsa->d); | 
|  | BN_free(rsa->p); | 
|  | BN_free(rsa->q); | 
|  | BN_free(rsa->dmp1); | 
|  | BN_free(rsa->dmq1); | 
|  | BN_free(rsa->iqmp); | 
|  | rsa_invalidate_key(rsa); | 
|  | CRYPTO_MUTEX_cleanup(&rsa->lock); | 
|  | OPENSSL_free(rsa); | 
|  | } | 
|  |  | 
|  | int RSA_up_ref(RSA *rsa) { | 
|  | CRYPTO_refcount_inc(&rsa->references); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unsigned RSA_bits(const RSA *rsa) { return BN_num_bits(rsa->n); } | 
|  |  | 
|  | const BIGNUM *RSA_get0_n(const RSA *rsa) { return rsa->n; } | 
|  |  | 
|  | const BIGNUM *RSA_get0_e(const RSA *rsa) { return rsa->e; } | 
|  |  | 
|  | const BIGNUM *RSA_get0_d(const RSA *rsa) { return rsa->d; } | 
|  |  | 
|  | const BIGNUM *RSA_get0_p(const RSA *rsa) { return rsa->p; } | 
|  |  | 
|  | const BIGNUM *RSA_get0_q(const RSA *rsa) { return rsa->q; } | 
|  |  | 
|  | const BIGNUM *RSA_get0_dmp1(const RSA *rsa) { return rsa->dmp1; } | 
|  |  | 
|  | const BIGNUM *RSA_get0_dmq1(const RSA *rsa) { return rsa->dmq1; } | 
|  |  | 
|  | const BIGNUM *RSA_get0_iqmp(const RSA *rsa) { return rsa->iqmp; } | 
|  |  | 
|  | void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e, | 
|  | const BIGNUM **out_d) { | 
|  | if (out_n != NULL) { | 
|  | *out_n = rsa->n; | 
|  | } | 
|  | if (out_e != NULL) { | 
|  | *out_e = rsa->e; | 
|  | } | 
|  | if (out_d != NULL) { | 
|  | *out_d = rsa->d; | 
|  | } | 
|  | } | 
|  |  | 
|  | void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p, | 
|  | const BIGNUM **out_q) { | 
|  | if (out_p != NULL) { | 
|  | *out_p = rsa->p; | 
|  | } | 
|  | if (out_q != NULL) { | 
|  | *out_q = rsa->q; | 
|  | } | 
|  | } | 
|  |  | 
|  | const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *rsa) { | 
|  | // We do not support the id-RSASSA-PSS key encoding. If we add support later, | 
|  | // the |maskHash| field should be filled in for OpenSSL compatibility. | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1, | 
|  | const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) { | 
|  | if (out_dmp1 != NULL) { | 
|  | *out_dmp1 = rsa->dmp1; | 
|  | } | 
|  | if (out_dmq1 != NULL) { | 
|  | *out_dmq1 = rsa->dmq1; | 
|  | } | 
|  | if (out_iqmp != NULL) { | 
|  | *out_iqmp = rsa->iqmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | int RSA_set0_key(RSA *rsa, BIGNUM *n, BIGNUM *e, BIGNUM *d) { | 
|  | if ((rsa->n == NULL && n == NULL) || | 
|  | (rsa->e == NULL && e == NULL)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (n != NULL) { | 
|  | BN_free(rsa->n); | 
|  | rsa->n = n; | 
|  | } | 
|  | if (e != NULL) { | 
|  | BN_free(rsa->e); | 
|  | rsa->e = e; | 
|  | } | 
|  | if (d != NULL) { | 
|  | BN_free(rsa->d); | 
|  | rsa->d = d; | 
|  | } | 
|  |  | 
|  | rsa_invalidate_key(rsa); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int RSA_set0_factors(RSA *rsa, BIGNUM *p, BIGNUM *q) { | 
|  | if ((rsa->p == NULL && p == NULL) || | 
|  | (rsa->q == NULL && q == NULL)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (p != NULL) { | 
|  | BN_free(rsa->p); | 
|  | rsa->p = p; | 
|  | } | 
|  | if (q != NULL) { | 
|  | BN_free(rsa->q); | 
|  | rsa->q = q; | 
|  | } | 
|  |  | 
|  | rsa_invalidate_key(rsa); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int RSA_set0_crt_params(RSA *rsa, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) { | 
|  | if ((rsa->dmp1 == NULL && dmp1 == NULL) || | 
|  | (rsa->dmq1 == NULL && dmq1 == NULL) || | 
|  | (rsa->iqmp == NULL && iqmp == NULL)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (dmp1 != NULL) { | 
|  | BN_free(rsa->dmp1); | 
|  | rsa->dmp1 = dmp1; | 
|  | } | 
|  | if (dmq1 != NULL) { | 
|  | BN_free(rsa->dmq1); | 
|  | rsa->dmq1 = dmq1; | 
|  | } | 
|  | if (iqmp != NULL) { | 
|  | BN_free(rsa->iqmp); | 
|  | rsa->iqmp = iqmp; | 
|  | } | 
|  |  | 
|  | rsa_invalidate_key(rsa); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int rsa_sign_raw_no_self_test(RSA *rsa, size_t *out_len, uint8_t *out, | 
|  | size_t max_out, const uint8_t *in, | 
|  | size_t in_len, int padding) { | 
|  | if (rsa->meth->sign_raw) { | 
|  | return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding); | 
|  | } | 
|  |  | 
|  | return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding); | 
|  | } | 
|  |  | 
|  | int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, | 
|  | const uint8_t *in, size_t in_len, int padding) { | 
|  | boringssl_ensure_rsa_self_test(); | 
|  | return rsa_sign_raw_no_self_test(rsa, out_len, out, max_out, in, in_len, | 
|  | padding); | 
|  | } | 
|  |  | 
|  | unsigned RSA_size(const RSA *rsa) { | 
|  | size_t ret = rsa->meth->size ? rsa->meth->size(rsa) : rsa_default_size(rsa); | 
|  | // RSA modulus sizes are bounded by |BIGNUM|, which must fit in |unsigned|. | 
|  | // | 
|  | // TODO(https://crbug.com/boringssl/516): Should we make this return |size_t|? | 
|  | assert(ret < UINT_MAX); | 
|  | return (unsigned)ret; | 
|  | } | 
|  |  | 
|  | int RSA_is_opaque(const RSA *rsa) { | 
|  | return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE); | 
|  | } | 
|  |  | 
|  | int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, | 
|  | CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { | 
|  | return CRYPTO_get_ex_new_index_ex(g_rsa_ex_data_class_bss_get(), argl, argp, | 
|  | free_func); | 
|  | } | 
|  |  | 
|  | int RSA_set_ex_data(RSA *rsa, int idx, void *arg) { | 
|  | return CRYPTO_set_ex_data(&rsa->ex_data, idx, arg); | 
|  | } | 
|  |  | 
|  | void *RSA_get_ex_data(const RSA *rsa, int idx) { | 
|  | return CRYPTO_get_ex_data(&rsa->ex_data, idx); | 
|  | } | 
|  |  | 
|  | // SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's | 
|  | // the length of an MD5 and SHA1 hash. | 
|  | static const unsigned SSL_SIG_LENGTH = 36; | 
|  |  | 
|  | // pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is | 
|  | // to be signed with PKCS#1. | 
|  | struct pkcs1_sig_prefix { | 
|  | // nid identifies the hash function. | 
|  | int nid; | 
|  | // hash_len is the expected length of the hash function. | 
|  | uint8_t hash_len; | 
|  | // len is the number of bytes of |bytes| which are valid. | 
|  | uint8_t len; | 
|  | // bytes contains the DER bytes. | 
|  | uint8_t bytes[19]; | 
|  | }; | 
|  |  | 
|  | // kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with | 
|  | // different hash functions. | 
|  | static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = { | 
|  | { | 
|  | NID_md5, | 
|  | MD5_DIGEST_LENGTH, | 
|  | 18, | 
|  | {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, | 
|  | 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, | 
|  | }, | 
|  | { | 
|  | NID_sha1, | 
|  | BCM_SHA_DIGEST_LENGTH, | 
|  | 15, | 
|  | {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, | 
|  | 0x00, 0x04, 0x14}, | 
|  | }, | 
|  | { | 
|  | NID_sha224, | 
|  | BCM_SHA224_DIGEST_LENGTH, | 
|  | 19, | 
|  | {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, | 
|  | 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, | 
|  | }, | 
|  | { | 
|  | NID_sha256, | 
|  | BCM_SHA256_DIGEST_LENGTH, | 
|  | 19, | 
|  | {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, | 
|  | 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, | 
|  | }, | 
|  | { | 
|  | NID_sha384, | 
|  | BCM_SHA384_DIGEST_LENGTH, | 
|  | 19, | 
|  | {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, | 
|  | 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, | 
|  | }, | 
|  | { | 
|  | NID_sha512, | 
|  | BCM_SHA512_DIGEST_LENGTH, | 
|  | 19, | 
|  | {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, | 
|  | 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, | 
|  | }, | 
|  | { | 
|  | NID_undef, 0, 0, {0}, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int rsa_check_digest_size(int hash_nid, size_t digest_len) { | 
|  | if (hash_nid == NID_md5_sha1) { | 
|  | if (digest_len != SSL_SIG_LENGTH) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) { | 
|  | const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i]; | 
|  | if (sig_prefix->nid == hash_nid) { | 
|  | if (digest_len != sig_prefix->hash_len) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len, | 
|  | int *is_alloced, int hash_nid, const uint8_t *digest, | 
|  | size_t digest_len) { | 
|  | if (!rsa_check_digest_size(hash_nid, digest_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (hash_nid == NID_md5_sha1) { | 
|  | // The length should already have been checked. | 
|  | assert(digest_len == SSL_SIG_LENGTH); | 
|  | *out_msg = (uint8_t *)digest; | 
|  | *out_msg_len = digest_len; | 
|  | *is_alloced = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) { | 
|  | const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i]; | 
|  | if (sig_prefix->nid != hash_nid) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The length should already have been checked. | 
|  | assert(digest_len == sig_prefix->hash_len); | 
|  | const uint8_t* prefix = sig_prefix->bytes; | 
|  | size_t prefix_len = sig_prefix->len; | 
|  | size_t signed_msg_len = prefix_len + digest_len; | 
|  | if (signed_msg_len < prefix_len) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t *signed_msg = OPENSSL_malloc(signed_msg_len); | 
|  | if (!signed_msg) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | OPENSSL_memcpy(signed_msg, prefix, prefix_len); | 
|  | OPENSSL_memcpy(signed_msg + prefix_len, digest, digest_len); | 
|  |  | 
|  | *out_msg = signed_msg; | 
|  | *out_msg_len = signed_msg_len; | 
|  | *is_alloced = 1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int rsa_sign_no_self_test(int hash_nid, const uint8_t *digest, | 
|  | size_t digest_len, uint8_t *out, unsigned *out_len, | 
|  | RSA *rsa) { | 
|  | if (rsa->meth->sign) { | 
|  | if (!rsa_check_digest_size(hash_nid, digest_len)) { | 
|  | return 0; | 
|  | } | 
|  | // All supported digest lengths fit in |unsigned|. | 
|  | assert(digest_len <= EVP_MAX_MD_SIZE); | 
|  | static_assert(EVP_MAX_MD_SIZE <= UINT_MAX, "digest too long"); | 
|  | return rsa->meth->sign(hash_nid, digest, (unsigned)digest_len, out, out_len, | 
|  | rsa); | 
|  | } | 
|  |  | 
|  | const unsigned rsa_size = RSA_size(rsa); | 
|  | int ret = 0; | 
|  | uint8_t *signed_msg = NULL; | 
|  | size_t signed_msg_len = 0; | 
|  | int signed_msg_is_alloced = 0; | 
|  | size_t size_t_out_len; | 
|  | if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, | 
|  | &signed_msg_is_alloced, hash_nid, digest, | 
|  | digest_len) || | 
|  | !rsa_sign_raw_no_self_test(rsa, &size_t_out_len, out, rsa_size, | 
|  | signed_msg, signed_msg_len, | 
|  | RSA_PKCS1_PADDING)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (size_t_out_len > UINT_MAX) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | *out_len = (unsigned)size_t_out_len; | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | if (signed_msg_is_alloced) { | 
|  | OPENSSL_free(signed_msg); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int RSA_sign(int hash_nid, const uint8_t *digest, size_t digest_len, | 
|  | uint8_t *out, unsigned *out_len, RSA *rsa) { | 
|  | boringssl_ensure_rsa_self_test(); | 
|  |  | 
|  | return rsa_sign_no_self_test(hash_nid, digest, digest_len, out, out_len, rsa); | 
|  | } | 
|  |  | 
|  | int RSA_sign_pss_mgf1(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out, | 
|  | const uint8_t *digest, size_t digest_len, | 
|  | const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len) { | 
|  | if (digest_len != EVP_MD_size(md)) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t padded_len = RSA_size(rsa); | 
|  | uint8_t *padded = OPENSSL_malloc(padded_len); | 
|  | if (padded == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ret = RSA_padding_add_PKCS1_PSS_mgf1(rsa, padded, digest, md, mgf1_md, | 
|  | salt_len) && | 
|  | RSA_sign_raw(rsa, out_len, out, max_out, padded, padded_len, | 
|  | RSA_NO_PADDING); | 
|  | OPENSSL_free(padded); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int rsa_verify_no_self_test(int hash_nid, const uint8_t *digest, | 
|  | size_t digest_len, const uint8_t *sig, | 
|  | size_t sig_len, RSA *rsa) { | 
|  | if (rsa->n == NULL || rsa->e == NULL) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const size_t rsa_size = RSA_size(rsa); | 
|  | uint8_t *buf = NULL; | 
|  | int ret = 0; | 
|  | uint8_t *signed_msg = NULL; | 
|  | size_t signed_msg_len = 0, len; | 
|  | int signed_msg_is_alloced = 0; | 
|  |  | 
|  | if (hash_nid == NID_md5_sha1 && digest_len != SSL_SIG_LENGTH) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | buf = OPENSSL_malloc(rsa_size); | 
|  | if (!buf) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!rsa_verify_raw_no_self_test(rsa, &len, buf, rsa_size, sig, sig_len, | 
|  | RSA_PKCS1_PADDING) || | 
|  | !RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len, | 
|  | &signed_msg_is_alloced, hash_nid, digest, | 
|  | digest_len)) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | // Check that no other information follows the hash value (FIPS 186-4 Section | 
|  | // 5.5) and it matches the expected hash. | 
|  | if (len != signed_msg_len || OPENSSL_memcmp(buf, signed_msg, len) != 0) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | out: | 
|  | OPENSSL_free(buf); | 
|  | if (signed_msg_is_alloced) { | 
|  | OPENSSL_free(signed_msg); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int RSA_verify(int hash_nid, const uint8_t *digest, size_t digest_len, | 
|  | const uint8_t *sig, size_t sig_len, RSA *rsa) { | 
|  | boringssl_ensure_rsa_self_test(); | 
|  | return rsa_verify_no_self_test(hash_nid, digest, digest_len, sig, sig_len, | 
|  | rsa); | 
|  | } | 
|  |  | 
|  | int RSA_verify_pss_mgf1(RSA *rsa, const uint8_t *digest, size_t digest_len, | 
|  | const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len, | 
|  | const uint8_t *sig, size_t sig_len) { | 
|  | if (digest_len != EVP_MD_size(md)) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t em_len = RSA_size(rsa); | 
|  | uint8_t *em = OPENSSL_malloc(em_len); | 
|  | if (em == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ret = 0; | 
|  | if (!RSA_verify_raw(rsa, &em_len, em, em_len, sig, sig_len, RSA_NO_PADDING)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (em_len != RSA_size(rsa)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = RSA_verify_PKCS1_PSS_mgf1(rsa, digest, md, mgf1_md, em, salt_len); | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int check_mod_inverse(int *out_ok, const BIGNUM *a, const BIGNUM *ainv, | 
|  | const BIGNUM *m, unsigned m_min_bits, | 
|  | BN_CTX *ctx) { | 
|  | if (BN_is_negative(ainv) || | 
|  | constant_time_declassify_int(BN_cmp(ainv, m) >= 0)) { | 
|  | *out_ok = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Note |bn_mul_consttime| and |bn_div_consttime| do not scale linearly, but | 
|  | // checking |ainv| is in range bounds the running time, assuming |m|'s bounds | 
|  | // were checked by the caller. | 
|  | BN_CTX_start(ctx); | 
|  | BIGNUM *tmp = BN_CTX_get(ctx); | 
|  | int ret = tmp != NULL && | 
|  | bn_mul_consttime(tmp, a, ainv, ctx) && | 
|  | bn_div_consttime(NULL, tmp, tmp, m, m_min_bits, ctx); | 
|  | if (ret) { | 
|  | *out_ok = constant_time_declassify_int(BN_is_one(tmp)); | 
|  | } | 
|  | BN_CTX_end(ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int RSA_check_key(const RSA *key) { | 
|  | // TODO(davidben): RSA key initialization is spread across | 
|  | // |rsa_check_public_key|, |RSA_check_key|, |freeze_private_key|, and | 
|  | // |BN_MONT_CTX_set_locked| as a result of API issues. See | 
|  | // https://crbug.com/boringssl/316. As a result, we inconsistently check RSA | 
|  | // invariants. We should fix this and integrate that logic. | 
|  |  | 
|  | if (RSA_is_opaque(key)) { | 
|  | // Opaque keys can't be checked. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!rsa_check_public_key(key)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((key->p != NULL) != (key->q != NULL)) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // |key->d| must be bounded by |key->n|. This ensures bounds on |RSA_bits| | 
|  | // translate to bounds on the running time of private key operations. | 
|  | if (key->d != NULL && | 
|  | (BN_is_negative(key->d) || BN_cmp(key->d, key->n) >= 0)) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_D_OUT_OF_RANGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (key->d == NULL || key->p == NULL) { | 
|  | // For a public key, or without p and q, there's nothing that can be | 
|  | // checked. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | BN_CTX *ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BIGNUM tmp, de, pm1, qm1, dmp1, dmq1; | 
|  | int ok = 0; | 
|  | BN_init(&tmp); | 
|  | BN_init(&de); | 
|  | BN_init(&pm1); | 
|  | BN_init(&qm1); | 
|  | BN_init(&dmp1); | 
|  | BN_init(&dmq1); | 
|  |  | 
|  | // Check that p * q == n. Before we multiply, we check that p and q are in | 
|  | // bounds, to avoid a DoS vector in |bn_mul_consttime| below. Note that | 
|  | // n was bound by |rsa_check_public_key|. This also implicitly checks p and q | 
|  | // are odd, which is a necessary condition for Montgomery reduction. | 
|  | if (BN_is_negative(key->p) || | 
|  | constant_time_declassify_int(BN_cmp(key->p, key->n) >= 0) || | 
|  | BN_is_negative(key->q) || | 
|  | constant_time_declassify_int(BN_cmp(key->q, key->n) >= 0)) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q); | 
|  | goto out; | 
|  | } | 
|  | if (!bn_mul_consttime(&tmp, key->p, key->q, ctx)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); | 
|  | goto out; | 
|  | } | 
|  | if (BN_cmp(&tmp, key->n) != 0) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | // d must be an inverse of e mod the Carmichael totient, lcm(p-1, q-1), but it | 
|  | // may be unreduced because other implementations use the Euler totient. We | 
|  | // simply check that d * e is one mod p-1 and mod q-1. Note d and e were bound | 
|  | // by earlier checks in this function. | 
|  | if (!bn_usub_consttime(&pm1, key->p, BN_value_one()) || | 
|  | !bn_usub_consttime(&qm1, key->q, BN_value_one())) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); | 
|  | goto out; | 
|  | } | 
|  | const unsigned pm1_bits = BN_num_bits(&pm1); | 
|  | const unsigned qm1_bits = BN_num_bits(&qm1); | 
|  | if (!bn_mul_consttime(&de, key->d, key->e, ctx) || | 
|  | !bn_div_consttime(NULL, &tmp, &de, &pm1, pm1_bits, ctx) || | 
|  | !bn_div_consttime(NULL, &de, &de, &qm1, qm1_bits, ctx)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (constant_time_declassify_int(!BN_is_one(&tmp)) || | 
|  | constant_time_declassify_int(!BN_is_one(&de))) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | int has_crt_values = key->dmp1 != NULL; | 
|  | if (has_crt_values != (key->dmq1 != NULL) || | 
|  | has_crt_values != (key->iqmp != NULL)) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (has_crt_values) { | 
|  | int dmp1_ok, dmq1_ok, iqmp_ok; | 
|  | if (!check_mod_inverse(&dmp1_ok, key->e, key->dmp1, &pm1, pm1_bits, ctx) || | 
|  | !check_mod_inverse(&dmq1_ok, key->e, key->dmq1, &qm1, qm1_bits, ctx) || | 
|  | // |p| is odd, so |pm1| and |p| have the same bit width. If they didn't, | 
|  | // we only need a lower bound anyway. | 
|  | !check_mod_inverse(&iqmp_ok, key->q, key->iqmp, key->p, pm1_bits, | 
|  | ctx)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!dmp1_ok || !dmq1_ok || !iqmp_ok) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ok = 1; | 
|  |  | 
|  | out: | 
|  | BN_free(&tmp); | 
|  | BN_free(&de); | 
|  | BN_free(&pm1); | 
|  | BN_free(&qm1); | 
|  | BN_free(&dmp1); | 
|  | BN_free(&dmq1); | 
|  | BN_CTX_free(ctx); | 
|  |  | 
|  | return ok; | 
|  | } | 
|  |  | 
|  |  | 
|  | // This is the product of the 132 smallest odd primes, from 3 to 751. | 
|  | static const BN_ULONG kSmallFactorsLimbs[] = { | 
|  | TOBN(0xc4309333, 0x3ef4e3e1), TOBN(0x71161eb6, 0xcd2d655f), | 
|  | TOBN(0x95e2238c, 0x0bf94862), TOBN(0x3eb233d3, 0x24f7912b), | 
|  | TOBN(0x6b55514b, 0xbf26c483), TOBN(0x0a84d817, 0x5a144871), | 
|  | TOBN(0x77d12fee, 0x9b82210a), TOBN(0xdb5b93c2, 0x97f050b3), | 
|  | TOBN(0x4acad6b9, 0x4d6c026b), TOBN(0xeb7751f3, 0x54aec893), | 
|  | TOBN(0xdba53368, 0x36bc85c4), TOBN(0xd85a1b28, 0x7f5ec78e), | 
|  | TOBN(0x2eb072d8, 0x6b322244), TOBN(0xbba51112, 0x5e2b3aea), | 
|  | TOBN(0x36ed1a6c, 0x0e2486bf), TOBN(0x5f270460, 0xec0c5727), | 
|  | 0x000017b1 | 
|  | }; | 
|  |  | 
|  | DEFINE_LOCAL_DATA(BIGNUM, g_small_factors) { | 
|  | out->d = (BN_ULONG *) kSmallFactorsLimbs; | 
|  | out->width = OPENSSL_ARRAY_SIZE(kSmallFactorsLimbs); | 
|  | out->dmax = out->width; | 
|  | out->neg = 0; | 
|  | out->flags = BN_FLG_STATIC_DATA; | 
|  | } | 
|  |  | 
|  | int RSA_check_fips(RSA *key) { | 
|  | if (RSA_is_opaque(key)) { | 
|  | // Opaque keys can't be checked. | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!RSA_check_key(key)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_CTX *ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BIGNUM small_gcd; | 
|  | BN_init(&small_gcd); | 
|  |  | 
|  | int ret = 1; | 
|  |  | 
|  | // Perform partial public key validation of RSA keys (SP 800-89 5.3.3). | 
|  | // Although this is not for primality testing, SP 800-89 cites an RSA | 
|  | // primality testing algorithm, so we use |BN_prime_checks_for_generation| to | 
|  | // match. This is only a plausibility test and we expect the value to be | 
|  | // composite, so too few iterations will cause us to reject the key, not use | 
|  | // an implausible one. | 
|  | enum bn_primality_result_t primality_result; | 
|  | if (BN_num_bits(key->e) <= 16 || | 
|  | BN_num_bits(key->e) > 256 || | 
|  | !BN_is_odd(key->n) || | 
|  | !BN_is_odd(key->e) || | 
|  | !BN_gcd(&small_gcd, key->n, g_small_factors(), ctx) || | 
|  | !BN_is_one(&small_gcd) || | 
|  | !BN_enhanced_miller_rabin_primality_test(&primality_result, key->n, | 
|  | BN_prime_checks_for_generation, | 
|  | ctx, NULL) || | 
|  | primality_result != bn_non_prime_power_composite) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | BN_free(&small_gcd); | 
|  | BN_CTX_free(ctx); | 
|  |  | 
|  | if (!ret || key->d == NULL || key->p == NULL) { | 
|  | // On a failure or on only a public key, there's nothing else can be | 
|  | // checked. | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // FIPS pairwise consistency test (FIPS 140-2 4.9.2). Per FIPS 140-2 IG, | 
|  | // section 9.9, it is not known whether |rsa| will be used for signing or | 
|  | // encryption, so either pair-wise consistency self-test is acceptable. We | 
|  | // perform a signing test. | 
|  | uint8_t data[32] = {0}; | 
|  | unsigned sig_len = RSA_size(key); | 
|  | uint8_t *sig = OPENSSL_malloc(sig_len); | 
|  | if (sig == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!RSA_sign(NID_sha256, data, sizeof(data), sig, &sig_len, key)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
|  | ret = 0; | 
|  | goto cleanup; | 
|  | } | 
|  | if (boringssl_fips_break_test("RSA_PWCT")) { | 
|  | data[0] = ~data[0]; | 
|  | } | 
|  | if (!RSA_verify(NID_sha256, data, sizeof(data), sig, sig_len, key)) { | 
|  | OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | OPENSSL_free(sig); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int rsa_private_transform_no_self_test(RSA *rsa, uint8_t *out, | 
|  | const uint8_t *in, size_t len) { | 
|  | if (rsa->meth->private_transform) { | 
|  | return rsa->meth->private_transform(rsa, out, in, len); | 
|  | } | 
|  |  | 
|  | return rsa_default_private_transform(rsa, out, in, len); | 
|  | } | 
|  |  | 
|  | int rsa_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, | 
|  | size_t len) { | 
|  | boringssl_ensure_rsa_self_test(); | 
|  | return rsa_private_transform_no_self_test(rsa, out, in, len); | 
|  | } | 
|  |  | 
|  | int RSA_flags(const RSA *rsa) { return rsa->flags; } | 
|  |  | 
|  | int RSA_test_flags(const RSA *rsa, int flags) { return rsa->flags & flags; } | 
|  |  | 
|  | int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) { | 
|  | return 1; | 
|  | } |