| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the Eric Young open source |
| * license provided above. |
| * |
| * The binary polynomial arithmetic software is originally written by |
| * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| * Laboratories. */ |
| |
| /* Per C99, various stdint.h and inttypes.h macros (the latter used by bn.h) are |
| * unavailable in C++ unless some macros are defined. C++11 overruled this |
| * decision, but older Android NDKs still require it. */ |
| #if !defined(__STDC_CONSTANT_MACROS) |
| #define __STDC_CONSTANT_MACROS |
| #endif |
| #if !defined(__STDC_FORMAT_MACROS) |
| #define __STDC_FORMAT_MACROS |
| #endif |
| |
| #include <assert.h> |
| #include <errno.h> |
| #include <limits.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <utility> |
| |
| #include <openssl/bn.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "../internal.h" |
| #include "../test/file_test.h" |
| #include "../test/test_util.h" |
| |
| |
| static int HexToBIGNUM(bssl::UniquePtr<BIGNUM> *out, const char *in) { |
| BIGNUM *raw = NULL; |
| int ret = BN_hex2bn(&raw, in); |
| out->reset(raw); |
| return ret; |
| } |
| |
| static bssl::UniquePtr<BIGNUM> GetBIGNUM(FileTest *t, const char *attribute) { |
| std::string hex; |
| if (!t->GetAttribute(&hex, attribute)) { |
| return nullptr; |
| } |
| |
| bssl::UniquePtr<BIGNUM> ret; |
| if (HexToBIGNUM(&ret, hex.c_str()) != static_cast<int>(hex.size())) { |
| t->PrintLine("Could not decode '%s'.", hex.c_str()); |
| return nullptr; |
| } |
| return ret; |
| } |
| |
| static bool GetInt(FileTest *t, int *out, const char *attribute) { |
| bssl::UniquePtr<BIGNUM> ret = GetBIGNUM(t, attribute); |
| if (!ret) { |
| return false; |
| } |
| |
| BN_ULONG word = BN_get_word(ret.get()); |
| if (word > INT_MAX) { |
| return false; |
| } |
| |
| *out = static_cast<int>(word); |
| return true; |
| } |
| |
| static bool ExpectBIGNUMsEqual(FileTest *t, const char *operation, |
| const BIGNUM *expected, const BIGNUM *actual) { |
| if (BN_cmp(expected, actual) == 0) { |
| return true; |
| } |
| |
| bssl::UniquePtr<char> expected_str(BN_bn2hex(expected)); |
| bssl::UniquePtr<char> actual_str(BN_bn2hex(actual)); |
| if (!expected_str || !actual_str) { |
| return false; |
| } |
| |
| t->PrintLine("Got %s =", operation); |
| t->PrintLine("\t%s", actual_str.get()); |
| t->PrintLine("wanted:"); |
| t->PrintLine("\t%s", expected_str.get()); |
| return false; |
| } |
| |
| static bool TestSum(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B"); |
| bssl::UniquePtr<BIGNUM> sum = GetBIGNUM(t, "Sum"); |
| if (!a || !b || !sum) { |
| return false; |
| } |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()); |
| if (!ret || |
| !BN_add(ret.get(), a.get(), b.get()) || |
| !ExpectBIGNUMsEqual(t, "A + B", sum.get(), ret.get()) || |
| !BN_sub(ret.get(), sum.get(), a.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum - A", b.get(), ret.get()) || |
| !BN_sub(ret.get(), sum.get(), b.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum - B", a.get(), ret.get())) { |
| return false; |
| } |
| |
| // Test that the functions work when |r| and |a| point to the same |BIGNUM|, |
| // or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where |
| // all of |r|, |a|, and |b| point to the same |BIGNUM|. |
| if (!BN_copy(ret.get(), a.get()) || |
| !BN_add(ret.get(), ret.get(), b.get()) || |
| !ExpectBIGNUMsEqual(t, "A + B (r is a)", sum.get(), ret.get()) || |
| !BN_copy(ret.get(), b.get()) || |
| !BN_add(ret.get(), a.get(), ret.get()) || |
| !ExpectBIGNUMsEqual(t, "A + B (r is b)", sum.get(), ret.get()) || |
| !BN_copy(ret.get(), sum.get()) || |
| !BN_sub(ret.get(), ret.get(), a.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum - A (r is a)", b.get(), ret.get()) || |
| !BN_copy(ret.get(), a.get()) || |
| !BN_sub(ret.get(), sum.get(), ret.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum - A (r is b)", b.get(), ret.get()) || |
| !BN_copy(ret.get(), sum.get()) || |
| !BN_sub(ret.get(), ret.get(), b.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum - B (r is a)", a.get(), ret.get()) || |
| !BN_copy(ret.get(), b.get()) || |
| !BN_sub(ret.get(), sum.get(), ret.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum - B (r is b)", a.get(), ret.get())) { |
| return false; |
| } |
| |
| // Test |BN_uadd| and |BN_usub| with the prerequisites they are documented as |
| // having. Note that these functions are frequently used when the |
| // prerequisites don't hold. In those cases, they are supposed to work as if |
| // the prerequisite hold, but we don't test that yet. TODO: test that. |
| if (!BN_is_negative(a.get()) && |
| !BN_is_negative(b.get()) && BN_cmp(a.get(), b.get()) >= 0) { |
| if (!BN_uadd(ret.get(), a.get(), b.get()) || |
| !ExpectBIGNUMsEqual(t, "A +u B", sum.get(), ret.get()) || |
| !BN_usub(ret.get(), sum.get(), a.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum -u A", b.get(), ret.get()) || |
| !BN_usub(ret.get(), sum.get(), b.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum -u B", a.get(), ret.get())) { |
| return false; |
| } |
| |
| // Test that the functions work when |r| and |a| point to the same |BIGNUM|, |
| // or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where |
| // all of |r|, |a|, and |b| point to the same |BIGNUM|. |
| if (!BN_copy(ret.get(), a.get()) || |
| !BN_uadd(ret.get(), ret.get(), b.get()) || |
| !ExpectBIGNUMsEqual(t, "A +u B (r is a)", sum.get(), ret.get()) || |
| !BN_copy(ret.get(), b.get()) || |
| !BN_uadd(ret.get(), a.get(), ret.get()) || |
| !ExpectBIGNUMsEqual(t, "A +u B (r is b)", sum.get(), ret.get()) || |
| !BN_copy(ret.get(), sum.get()) || |
| !BN_usub(ret.get(), ret.get(), a.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum -u A (r is a)", b.get(), ret.get()) || |
| !BN_copy(ret.get(), a.get()) || |
| !BN_usub(ret.get(), sum.get(), ret.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum -u A (r is b)", b.get(), ret.get()) || |
| !BN_copy(ret.get(), sum.get()) || |
| !BN_usub(ret.get(), ret.get(), b.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum -u B (r is a)", a.get(), ret.get()) || |
| !BN_copy(ret.get(), b.get()) || |
| !BN_usub(ret.get(), sum.get(), ret.get()) || |
| !ExpectBIGNUMsEqual(t, "Sum -u B (r is b)", a.get(), ret.get())) { |
| return false; |
| } |
| } |
| |
| // Test with |BN_add_word| and |BN_sub_word| if |b| is small enough. |
| BN_ULONG b_word = BN_get_word(b.get()); |
| if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) { |
| if (!BN_copy(ret.get(), a.get()) || |
| !BN_add_word(ret.get(), b_word) || |
| !ExpectBIGNUMsEqual(t, "A + B (word)", sum.get(), ret.get()) || |
| !BN_copy(ret.get(), sum.get()) || |
| !BN_sub_word(ret.get(), b_word) || |
| !ExpectBIGNUMsEqual(t, "Sum - B (word)", a.get(), ret.get())) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool TestLShift1(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> lshift1 = GetBIGNUM(t, "LShift1"); |
| bssl::UniquePtr<BIGNUM> zero(BN_new()); |
| if (!a || !lshift1 || !zero) { |
| return false; |
| } |
| |
| BN_zero(zero.get()); |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()), two(BN_new()), remainder(BN_new()); |
| if (!ret || !two || !remainder || |
| !BN_set_word(two.get(), 2) || |
| !BN_add(ret.get(), a.get(), a.get()) || |
| !ExpectBIGNUMsEqual(t, "A + A", lshift1.get(), ret.get()) || |
| !BN_mul(ret.get(), a.get(), two.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "A * 2", lshift1.get(), ret.get()) || |
| !BN_div(ret.get(), remainder.get(), lshift1.get(), two.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "LShift1 / 2", a.get(), ret.get()) || |
| !ExpectBIGNUMsEqual(t, "LShift1 % 2", zero.get(), remainder.get()) || |
| !BN_lshift1(ret.get(), a.get()) || |
| !ExpectBIGNUMsEqual(t, "A << 1", lshift1.get(), ret.get()) || |
| !BN_rshift1(ret.get(), lshift1.get()) || |
| !ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get()) || |
| !BN_rshift1(ret.get(), lshift1.get()) || |
| !ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get())) { |
| return false; |
| } |
| |
| // Set the LSB to 1 and test rshift1 again. |
| if (!BN_set_bit(lshift1.get(), 0) || |
| !BN_div(ret.get(), nullptr /* rem */, lshift1.get(), two.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "(LShift1 | 1) / 2", a.get(), ret.get()) || |
| !BN_rshift1(ret.get(), lshift1.get()) || |
| !ExpectBIGNUMsEqual(t, "(LShift | 1) >> 1", a.get(), ret.get())) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestLShift(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> lshift = GetBIGNUM(t, "LShift"); |
| int n = 0; |
| if (!a || !lshift || !GetInt(t, &n, "N")) { |
| return false; |
| } |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()); |
| if (!ret || |
| !BN_lshift(ret.get(), a.get(), n) || |
| !ExpectBIGNUMsEqual(t, "A << N", lshift.get(), ret.get()) || |
| !BN_rshift(ret.get(), lshift.get(), n) || |
| !ExpectBIGNUMsEqual(t, "A >> N", a.get(), ret.get())) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestRShift(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> rshift = GetBIGNUM(t, "RShift"); |
| int n = 0; |
| if (!a || !rshift || !GetInt(t, &n, "N")) { |
| return false; |
| } |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()); |
| if (!ret || |
| !BN_rshift(ret.get(), a.get(), n) || |
| !ExpectBIGNUMsEqual(t, "A >> N", rshift.get(), ret.get())) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestSquare(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> square = GetBIGNUM(t, "Square"); |
| bssl::UniquePtr<BIGNUM> zero(BN_new()); |
| if (!a || !square || !zero) { |
| return false; |
| } |
| |
| BN_zero(zero.get()); |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()), remainder(BN_new()); |
| if (!ret || !remainder || |
| !BN_sqr(ret.get(), a.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "A^2", square.get(), ret.get()) || |
| !BN_mul(ret.get(), a.get(), a.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "A * A", square.get(), ret.get()) || |
| !BN_div(ret.get(), remainder.get(), square.get(), a.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "Square / A", a.get(), ret.get()) || |
| !ExpectBIGNUMsEqual(t, "Square % A", zero.get(), remainder.get())) { |
| return false; |
| } |
| |
| BN_set_negative(a.get(), 0); |
| if (!BN_sqrt(ret.get(), square.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "sqrt(Square)", a.get(), ret.get())) { |
| return false; |
| } |
| |
| // BN_sqrt should fail on non-squares and negative numbers. |
| if (!BN_is_zero(square.get())) { |
| bssl::UniquePtr<BIGNUM> tmp(BN_new()); |
| if (!tmp || !BN_copy(tmp.get(), square.get())) { |
| return false; |
| } |
| BN_set_negative(tmp.get(), 1); |
| |
| if (BN_sqrt(ret.get(), tmp.get(), ctx)) { |
| t->PrintLine("BN_sqrt succeeded on a negative number"); |
| return false; |
| } |
| ERR_clear_error(); |
| |
| BN_set_negative(tmp.get(), 0); |
| if (!BN_add(tmp.get(), tmp.get(), BN_value_one())) { |
| return false; |
| } |
| if (BN_sqrt(ret.get(), tmp.get(), ctx)) { |
| t->PrintLine("BN_sqrt succeeded on a non-square"); |
| return false; |
| } |
| ERR_clear_error(); |
| } |
| |
| return true; |
| } |
| |
| static bool TestProduct(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B"); |
| bssl::UniquePtr<BIGNUM> product = GetBIGNUM(t, "Product"); |
| bssl::UniquePtr<BIGNUM> zero(BN_new()); |
| if (!a || !b || !product || !zero) { |
| return false; |
| } |
| |
| BN_zero(zero.get()); |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()), remainder(BN_new()); |
| if (!ret || !remainder || |
| !BN_mul(ret.get(), a.get(), b.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "A * B", product.get(), ret.get()) || |
| !BN_div(ret.get(), remainder.get(), product.get(), a.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "Product / A", b.get(), ret.get()) || |
| !ExpectBIGNUMsEqual(t, "Product % A", zero.get(), remainder.get()) || |
| !BN_div(ret.get(), remainder.get(), product.get(), b.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "Product / B", a.get(), ret.get()) || |
| !ExpectBIGNUMsEqual(t, "Product % B", zero.get(), remainder.get())) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestQuotient(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B"); |
| bssl::UniquePtr<BIGNUM> quotient = GetBIGNUM(t, "Quotient"); |
| bssl::UniquePtr<BIGNUM> remainder = GetBIGNUM(t, "Remainder"); |
| if (!a || !b || !quotient || !remainder) { |
| return false; |
| } |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()), ret2(BN_new()); |
| if (!ret || !ret2 || |
| !BN_div(ret.get(), ret2.get(), a.get(), b.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "A / B", quotient.get(), ret.get()) || |
| !ExpectBIGNUMsEqual(t, "A % B", remainder.get(), ret2.get()) || |
| !BN_mul(ret.get(), quotient.get(), b.get(), ctx) || |
| !BN_add(ret.get(), ret.get(), remainder.get()) || |
| !ExpectBIGNUMsEqual(t, "Quotient * B + Remainder", a.get(), ret.get())) { |
| return false; |
| } |
| |
| // Test with |BN_mod_word| and |BN_div_word| if the divisor is small enough. |
| BN_ULONG b_word = BN_get_word(b.get()); |
| if (!BN_is_negative(b.get()) && b_word != (BN_ULONG)-1) { |
| BN_ULONG remainder_word = BN_get_word(remainder.get()); |
| assert(remainder_word != (BN_ULONG)-1); |
| if (!BN_copy(ret.get(), a.get())) { |
| return false; |
| } |
| BN_ULONG ret_word = BN_div_word(ret.get(), b_word); |
| if (ret_word != remainder_word) { |
| t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1 |
| "\n", |
| ret_word, remainder_word); |
| return false; |
| } |
| if (!ExpectBIGNUMsEqual(t, "A / B (word)", quotient.get(), ret.get())) { |
| return false; |
| } |
| |
| ret_word = BN_mod_word(a.get(), b_word); |
| if (ret_word != remainder_word) { |
| t->PrintLine("Got A %% B (word) = " BN_HEX_FMT1 ", wanted " BN_HEX_FMT1 |
| "\n", |
| ret_word, remainder_word); |
| return false; |
| } |
| } |
| |
| // Test BN_nnmod. |
| if (!BN_is_negative(b.get())) { |
| bssl::UniquePtr<BIGNUM> nnmod(BN_new()); |
| if (!nnmod || |
| !BN_copy(nnmod.get(), remainder.get()) || |
| (BN_is_negative(nnmod.get()) && |
| !BN_add(nnmod.get(), nnmod.get(), b.get())) || |
| !BN_nnmod(ret.get(), a.get(), b.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "A % B (non-negative)", nnmod.get(), |
| ret.get())) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool TestModMul(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> b = GetBIGNUM(t, "B"); |
| bssl::UniquePtr<BIGNUM> m = GetBIGNUM(t, "M"); |
| bssl::UniquePtr<BIGNUM> mod_mul = GetBIGNUM(t, "ModMul"); |
| if (!a || !b || !m || !mod_mul) { |
| return false; |
| } |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()); |
| if (!ret || |
| !BN_mod_mul(ret.get(), a.get(), b.get(), m.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "A * B (mod M)", mod_mul.get(), ret.get())) { |
| return false; |
| } |
| |
| if (BN_is_odd(m.get())) { |
| // Reduce |a| and |b| and test the Montgomery version. |
| bssl::UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new()); |
| bssl::UniquePtr<BIGNUM> a_tmp(BN_new()), b_tmp(BN_new()); |
| if (!mont || !a_tmp || !b_tmp || |
| !BN_MONT_CTX_set(mont.get(), m.get(), ctx) || |
| !BN_nnmod(a_tmp.get(), a.get(), m.get(), ctx) || |
| !BN_nnmod(b_tmp.get(), b.get(), m.get(), ctx) || |
| !BN_to_montgomery(a_tmp.get(), a_tmp.get(), mont.get(), ctx) || |
| !BN_to_montgomery(b_tmp.get(), b_tmp.get(), mont.get(), ctx) || |
| !BN_mod_mul_montgomery(ret.get(), a_tmp.get(), b_tmp.get(), mont.get(), |
| ctx) || |
| !BN_from_montgomery(ret.get(), ret.get(), mont.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "A * B (mod M) (Montgomery)", |
| mod_mul.get(), ret.get())) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool TestModExp(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> e = GetBIGNUM(t, "E"); |
| bssl::UniquePtr<BIGNUM> m = GetBIGNUM(t, "M"); |
| bssl::UniquePtr<BIGNUM> mod_exp = GetBIGNUM(t, "ModExp"); |
| if (!a || !e || !m || !mod_exp) { |
| return false; |
| } |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()); |
| if (!ret || |
| !BN_mod_exp(ret.get(), a.get(), e.get(), m.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "A ^ E (mod M)", mod_exp.get(), ret.get())) { |
| return false; |
| } |
| |
| if (BN_is_odd(m.get())) { |
| if (!BN_mod_exp_mont(ret.get(), a.get(), e.get(), m.get(), ctx, NULL) || |
| !ExpectBIGNUMsEqual(t, "A ^ E (mod M) (Montgomery)", mod_exp.get(), |
| ret.get()) || |
| !BN_mod_exp_mont_consttime(ret.get(), a.get(), e.get(), m.get(), ctx, |
| NULL) || |
| !ExpectBIGNUMsEqual(t, "A ^ E (mod M) (constant-time)", mod_exp.get(), |
| ret.get())) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool TestExp(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> e = GetBIGNUM(t, "E"); |
| bssl::UniquePtr<BIGNUM> exp = GetBIGNUM(t, "Exp"); |
| if (!a || !e || !exp) { |
| return false; |
| } |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()); |
| if (!ret || |
| !BN_exp(ret.get(), a.get(), e.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "A ^ E", exp.get(), ret.get())) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestModSqrt(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> p = GetBIGNUM(t, "P"); |
| bssl::UniquePtr<BIGNUM> mod_sqrt = GetBIGNUM(t, "ModSqrt"); |
| if (!a || !p || !mod_sqrt) { |
| return false; |
| } |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()); |
| bssl::UniquePtr<BIGNUM> ret2(BN_new()); |
| if (!ret || |
| !ret2 || |
| !BN_mod_sqrt(ret.get(), a.get(), p.get(), ctx) || |
| // There are two possible answers. |
| !BN_sub(ret2.get(), p.get(), ret.get())) { |
| return false; |
| } |
| |
| if (BN_cmp(ret2.get(), mod_sqrt.get()) != 0 && |
| !ExpectBIGNUMsEqual(t, "sqrt(A) (mod P)", mod_sqrt.get(), ret.get())) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestModInv(FileTest *t, BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a = GetBIGNUM(t, "A"); |
| bssl::UniquePtr<BIGNUM> m = GetBIGNUM(t, "M"); |
| bssl::UniquePtr<BIGNUM> mod_inv = GetBIGNUM(t, "ModInv"); |
| if (!a || !m || !mod_inv) { |
| return false; |
| } |
| |
| bssl::UniquePtr<BIGNUM> ret(BN_new()); |
| if (!ret || |
| !BN_mod_inverse(ret.get(), a.get(), m.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "inv(A) (mod M)", mod_inv.get(), ret.get())) { |
| return false; |
| } |
| |
| BN_set_flags(a.get(), BN_FLG_CONSTTIME); |
| |
| if (!ret || |
| !BN_mod_inverse(ret.get(), a.get(), m.get(), ctx) || |
| !ExpectBIGNUMsEqual(t, "inv(A) (mod M) (constant-time)", mod_inv.get(), |
| ret.get())) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| struct Test { |
| const char *name; |
| bool (*func)(FileTest *t, BN_CTX *ctx); |
| }; |
| |
| static const Test kTests[] = { |
| {"Sum", TestSum}, |
| {"LShift1", TestLShift1}, |
| {"LShift", TestLShift}, |
| {"RShift", TestRShift}, |
| {"Square", TestSquare}, |
| {"Product", TestProduct}, |
| {"Quotient", TestQuotient}, |
| {"ModMul", TestModMul}, |
| {"ModExp", TestModExp}, |
| {"Exp", TestExp}, |
| {"ModSqrt", TestModSqrt}, |
| {"ModInv", TestModInv}, |
| }; |
| |
| static bool RunTest(FileTest *t, void *arg) { |
| BN_CTX *ctx = reinterpret_cast<BN_CTX *>(arg); |
| for (const Test &test : kTests) { |
| if (t->GetType() != test.name) { |
| continue; |
| } |
| return test.func(t, ctx); |
| } |
| t->PrintLine("Unknown test type: %s", t->GetType().c_str()); |
| return false; |
| } |
| |
| static bool TestBN2BinPadded(BN_CTX *ctx) { |
| uint8_t zeros[256], out[256], reference[128]; |
| |
| memset(zeros, 0, sizeof(zeros)); |
| |
| // Test edge case at 0. |
| bssl::UniquePtr<BIGNUM> n(BN_new()); |
| if (!n || !BN_bn2bin_padded(NULL, 0, n.get())) { |
| fprintf(stderr, |
| "BN_bn2bin_padded failed to encode 0 in an empty buffer.\n"); |
| return false; |
| } |
| memset(out, -1, sizeof(out)); |
| if (!BN_bn2bin_padded(out, sizeof(out), n.get())) { |
| fprintf(stderr, |
| "BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n"); |
| return false; |
| } |
| if (memcmp(zeros, out, sizeof(out))) { |
| fprintf(stderr, "BN_bn2bin_padded did not zero buffer.\n"); |
| return false; |
| } |
| |
| // Test a random numbers at various byte lengths. |
| for (size_t bytes = 128 - 7; bytes <= 128; bytes++) { |
| if (!BN_rand(n.get(), bytes * 8, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) { |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| if (BN_num_bytes(n.get()) != bytes || |
| BN_bn2bin(n.get(), reference) != bytes) { |
| fprintf(stderr, "Bad result from BN_rand; bytes.\n"); |
| return false; |
| } |
| // Empty buffer should fail. |
| if (BN_bn2bin_padded(NULL, 0, n.get())) { |
| fprintf(stderr, |
| "BN_bn2bin_padded incorrectly succeeded on empty buffer.\n"); |
| return false; |
| } |
| // One byte short should fail. |
| if (BN_bn2bin_padded(out, bytes - 1, n.get())) { |
| fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on short.\n"); |
| return false; |
| } |
| // Exactly right size should encode. |
| if (!BN_bn2bin_padded(out, bytes, n.get()) || |
| memcmp(out, reference, bytes) != 0) { |
| fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); |
| return false; |
| } |
| // Pad up one byte extra. |
| if (!BN_bn2bin_padded(out, bytes + 1, n.get()) || |
| memcmp(out + 1, reference, bytes) || memcmp(out, zeros, 1)) { |
| fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); |
| return false; |
| } |
| // Pad up to 256. |
| if (!BN_bn2bin_padded(out, sizeof(out), n.get()) || |
| memcmp(out + sizeof(out) - bytes, reference, bytes) || |
| memcmp(out, zeros, sizeof(out) - bytes)) { |
| fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static int DecimalToBIGNUM(bssl::UniquePtr<BIGNUM> *out, const char *in) { |
| BIGNUM *raw = NULL; |
| int ret = BN_dec2bn(&raw, in); |
| out->reset(raw); |
| return ret; |
| } |
| |
| static bool TestDec2BN(BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> bn; |
| int ret = DecimalToBIGNUM(&bn, "0"); |
| if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_dec2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| ret = DecimalToBIGNUM(&bn, "256"); |
| if (ret != 3 || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_dec2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| ret = DecimalToBIGNUM(&bn, "-42"); |
| if (ret != 3 || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_dec2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| ret = DecimalToBIGNUM(&bn, "-0"); |
| if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_dec2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| ret = DecimalToBIGNUM(&bn, "42trailing garbage is ignored"); |
| if (ret != 2 || !BN_abs_is_word(bn.get(), 42) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_dec2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestHex2BN(BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> bn; |
| int ret = HexToBIGNUM(&bn, "0"); |
| if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_hex2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| ret = HexToBIGNUM(&bn, "256"); |
| if (ret != 3 || !BN_is_word(bn.get(), 0x256) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_hex2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| ret = HexToBIGNUM(&bn, "-42"); |
| if (ret != 3 || !BN_abs_is_word(bn.get(), 0x42) || !BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_hex2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| ret = HexToBIGNUM(&bn, "-0"); |
| if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_hex2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| ret = HexToBIGNUM(&bn, "abctrailing garbage is ignored"); |
| if (ret != 3 || !BN_is_word(bn.get(), 0xabc) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_hex2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bssl::UniquePtr<BIGNUM> ASCIIToBIGNUM(const char *in) { |
| BIGNUM *raw = NULL; |
| if (!BN_asc2bn(&raw, in)) { |
| return nullptr; |
| } |
| return bssl::UniquePtr<BIGNUM>(raw); |
| } |
| |
| static bool TestASC2BN(BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM("0"); |
| if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_asc2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| bn = ASCIIToBIGNUM("256"); |
| if (!bn || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_asc2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| bn = ASCIIToBIGNUM("-42"); |
| if (!bn || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_asc2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| bn = ASCIIToBIGNUM("0x1234"); |
| if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_asc2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| bn = ASCIIToBIGNUM("0X1234"); |
| if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_asc2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| bn = ASCIIToBIGNUM("-0xabcd"); |
| if (!bn || !BN_abs_is_word(bn.get(), 0xabcd) || !BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_asc2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| bn = ASCIIToBIGNUM("-0"); |
| if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_asc2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| bn = ASCIIToBIGNUM("123trailing garbage is ignored"); |
| if (!bn || !BN_is_word(bn.get(), 123) || BN_is_negative(bn.get())) { |
| fprintf(stderr, "BN_asc2bn gave a bad result.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| struct MPITest { |
| const char *base10; |
| const char *mpi; |
| size_t mpi_len; |
| }; |
| |
| static const MPITest kMPITests[] = { |
| { "0", "\x00\x00\x00\x00", 4 }, |
| { "1", "\x00\x00\x00\x01\x01", 5 }, |
| { "-1", "\x00\x00\x00\x01\x81", 5 }, |
| { "128", "\x00\x00\x00\x02\x00\x80", 6 }, |
| { "256", "\x00\x00\x00\x02\x01\x00", 6 }, |
| { "-256", "\x00\x00\x00\x02\x81\x00", 6 }, |
| }; |
| |
| static bool TestMPI() { |
| uint8_t scratch[8]; |
| |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kMPITests); i++) { |
| const MPITest &test = kMPITests[i]; |
| bssl::UniquePtr<BIGNUM> bn(ASCIIToBIGNUM(test.base10)); |
| if (!bn) { |
| return false; |
| } |
| |
| const size_t mpi_len = BN_bn2mpi(bn.get(), NULL); |
| if (mpi_len > sizeof(scratch)) { |
| fprintf(stderr, "MPI test #%u: MPI size is too large to test.\n", |
| (unsigned)i); |
| return false; |
| } |
| |
| const size_t mpi_len2 = BN_bn2mpi(bn.get(), scratch); |
| if (mpi_len != mpi_len2) { |
| fprintf(stderr, "MPI test #%u: length changes.\n", (unsigned)i); |
| return false; |
| } |
| |
| if (mpi_len != test.mpi_len || |
| memcmp(test.mpi, scratch, mpi_len) != 0) { |
| fprintf(stderr, "MPI test #%u failed:\n", (unsigned)i); |
| hexdump(stderr, "Expected: ", test.mpi, test.mpi_len); |
| hexdump(stderr, "Got: ", scratch, mpi_len); |
| return false; |
| } |
| |
| bssl::UniquePtr<BIGNUM> bn2(BN_mpi2bn(scratch, mpi_len, NULL)); |
| if (bn2.get() == nullptr) { |
| fprintf(stderr, "MPI test #%u: failed to parse\n", (unsigned)i); |
| return false; |
| } |
| |
| if (BN_cmp(bn.get(), bn2.get()) != 0) { |
| fprintf(stderr, "MPI test #%u: wrong result\n", (unsigned)i); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool TestRand() { |
| bssl::UniquePtr<BIGNUM> bn(BN_new()); |
| if (!bn) { |
| return false; |
| } |
| |
| // Test BN_rand accounts for degenerate cases with |top| and |bottom| |
| // parameters. |
| if (!BN_rand(bn.get(), 0, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY) || |
| !BN_is_zero(bn.get())) { |
| fprintf(stderr, "BN_rand gave a bad result.\n"); |
| return false; |
| } |
| if (!BN_rand(bn.get(), 0, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD) || |
| !BN_is_zero(bn.get())) { |
| fprintf(stderr, "BN_rand gave a bad result.\n"); |
| return false; |
| } |
| |
| if (!BN_rand(bn.get(), 1, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY) || |
| !BN_is_word(bn.get(), 1)) { |
| fprintf(stderr, "BN_rand gave a bad result.\n"); |
| return false; |
| } |
| if (!BN_rand(bn.get(), 1, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY) || |
| !BN_is_word(bn.get(), 1)) { |
| fprintf(stderr, "BN_rand gave a bad result.\n"); |
| return false; |
| } |
| if (!BN_rand(bn.get(), 1, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ODD) || |
| !BN_is_word(bn.get(), 1)) { |
| fprintf(stderr, "BN_rand gave a bad result.\n"); |
| return false; |
| } |
| |
| if (!BN_rand(bn.get(), 2, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY) || |
| !BN_is_word(bn.get(), 3)) { |
| fprintf(stderr, "BN_rand gave a bad result.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| struct ASN1Test { |
| const char *value_ascii; |
| const char *der; |
| size_t der_len; |
| }; |
| |
| static const ASN1Test kASN1Tests[] = { |
| {"0", "\x02\x01\x00", 3}, |
| {"1", "\x02\x01\x01", 3}, |
| {"127", "\x02\x01\x7f", 3}, |
| {"128", "\x02\x02\x00\x80", 4}, |
| {"0xdeadbeef", "\x02\x05\x00\xde\xad\xbe\xef", 7}, |
| {"0x0102030405060708", |
| "\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10}, |
| {"0xffffffffffffffff", |
| "\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11}, |
| }; |
| |
| struct ASN1InvalidTest { |
| const char *der; |
| size_t der_len; |
| }; |
| |
| static const ASN1InvalidTest kASN1InvalidTests[] = { |
| // Bad tag. |
| {"\x03\x01\x00", 3}, |
| // Empty contents. |
| {"\x02\x00", 2}, |
| }; |
| |
| // kASN1BuggyTests contains incorrect encodings and the corresponding, expected |
| // results of |BN_parse_asn1_unsigned_buggy| given that input. |
| static const ASN1Test kASN1BuggyTests[] = { |
| // Negative numbers. |
| {"128", "\x02\x01\x80", 3}, |
| {"255", "\x02\x01\xff", 3}, |
| // Unnecessary leading zeros. |
| {"1", "\x02\x02\x00\x01", 4}, |
| }; |
| |
| static bool TestASN1() { |
| for (const ASN1Test &test : kASN1Tests) { |
| bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM(test.value_ascii); |
| if (!bn) { |
| return false; |
| } |
| |
| // Test that the input is correctly parsed. |
| bssl::UniquePtr<BIGNUM> bn2(BN_new()); |
| if (!bn2) { |
| return false; |
| } |
| CBS cbs; |
| CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len); |
| if (!BN_parse_asn1_unsigned(&cbs, bn2.get()) || CBS_len(&cbs) != 0) { |
| fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n"); |
| return false; |
| } |
| if (BN_cmp(bn.get(), bn2.get()) != 0) { |
| fprintf(stderr, "Bad parse.\n"); |
| return false; |
| } |
| |
| // Test the value serializes correctly. |
| CBB cbb; |
| uint8_t *der; |
| size_t der_len; |
| CBB_zero(&cbb); |
| if (!CBB_init(&cbb, 0) || |
| !BN_marshal_asn1(&cbb, bn.get()) || |
| !CBB_finish(&cbb, &der, &der_len)) { |
| CBB_cleanup(&cbb); |
| return false; |
| } |
| bssl::UniquePtr<uint8_t> delete_der(der); |
| if (der_len != test.der_len || |
| memcmp(der, reinterpret_cast<const uint8_t*>(test.der), der_len) != 0) { |
| fprintf(stderr, "Bad serialization.\n"); |
| return false; |
| } |
| |
| // |BN_parse_asn1_unsigned_buggy| parses all valid input. |
| CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len); |
| if (!BN_parse_asn1_unsigned_buggy(&cbs, bn2.get()) || CBS_len(&cbs) != 0) { |
| fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n"); |
| return false; |
| } |
| if (BN_cmp(bn.get(), bn2.get()) != 0) { |
| fprintf(stderr, "Bad parse.\n"); |
| return false; |
| } |
| } |
| |
| for (const ASN1InvalidTest &test : kASN1InvalidTests) { |
| bssl::UniquePtr<BIGNUM> bn(BN_new()); |
| if (!bn) { |
| return false; |
| } |
| CBS cbs; |
| CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len); |
| if (BN_parse_asn1_unsigned(&cbs, bn.get())) { |
| fprintf(stderr, "Parsed invalid input.\n"); |
| return false; |
| } |
| ERR_clear_error(); |
| |
| // All tests in kASN1InvalidTests are also rejected by |
| // |BN_parse_asn1_unsigned_buggy|. |
| CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len); |
| if (BN_parse_asn1_unsigned_buggy(&cbs, bn.get())) { |
| fprintf(stderr, "Parsed invalid input.\n"); |
| return false; |
| } |
| ERR_clear_error(); |
| } |
| |
| for (const ASN1Test &test : kASN1BuggyTests) { |
| // These broken encodings are rejected by |BN_parse_asn1_unsigned|. |
| bssl::UniquePtr<BIGNUM> bn(BN_new()); |
| if (!bn) { |
| return false; |
| } |
| |
| CBS cbs; |
| CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len); |
| if (BN_parse_asn1_unsigned(&cbs, bn.get())) { |
| fprintf(stderr, "Parsed invalid input.\n"); |
| return false; |
| } |
| ERR_clear_error(); |
| |
| // However |BN_parse_asn1_unsigned_buggy| accepts them. |
| bssl::UniquePtr<BIGNUM> bn2 = ASCIIToBIGNUM(test.value_ascii); |
| if (!bn2) { |
| return false; |
| } |
| |
| CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len); |
| if (!BN_parse_asn1_unsigned_buggy(&cbs, bn.get()) || CBS_len(&cbs) != 0) { |
| fprintf(stderr, "Parsing (invalid) ASN.1 INTEGER failed.\n"); |
| return false; |
| } |
| |
| if (BN_cmp(bn.get(), bn2.get()) != 0) { |
| fprintf(stderr, "\"Bad\" parse.\n"); |
| return false; |
| } |
| } |
| |
| // Serializing negative numbers is not supported. |
| bssl::UniquePtr<BIGNUM> bn = ASCIIToBIGNUM("-1"); |
| if (!bn) { |
| return false; |
| } |
| CBB cbb; |
| CBB_zero(&cbb); |
| if (!CBB_init(&cbb, 0) || |
| BN_marshal_asn1(&cbb, bn.get())) { |
| fprintf(stderr, "Serialized negative number.\n"); |
| CBB_cleanup(&cbb); |
| return false; |
| } |
| ERR_clear_error(); |
| CBB_cleanup(&cbb); |
| |
| return true; |
| } |
| |
| static bool TestNegativeZero(BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a(BN_new()); |
| bssl::UniquePtr<BIGNUM> b(BN_new()); |
| bssl::UniquePtr<BIGNUM> c(BN_new()); |
| if (!a || !b || !c) { |
| return false; |
| } |
| |
| // Test that BN_mul never gives negative zero. |
| if (!BN_set_word(a.get(), 1)) { |
| return false; |
| } |
| BN_set_negative(a.get(), 1); |
| BN_zero(b.get()); |
| if (!BN_mul(c.get(), a.get(), b.get(), ctx)) { |
| return false; |
| } |
| if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) { |
| fprintf(stderr, "Multiplication test failed.\n"); |
| return false; |
| } |
| |
| for (int consttime = 0; consttime < 2; consttime++) { |
| bssl::UniquePtr<BIGNUM> numerator(BN_new()), denominator(BN_new()); |
| if (!numerator || !denominator) { |
| return false; |
| } |
| |
| if (consttime) { |
| BN_set_flags(numerator.get(), BN_FLG_CONSTTIME); |
| BN_set_flags(denominator.get(), BN_FLG_CONSTTIME); |
| } |
| |
| // Test that BN_div never gives negative zero in the quotient. |
| if (!BN_set_word(numerator.get(), 1) || |
| !BN_set_word(denominator.get(), 2)) { |
| return false; |
| } |
| BN_set_negative(numerator.get(), 1); |
| if (!BN_div(a.get(), b.get(), numerator.get(), denominator.get(), ctx)) { |
| return false; |
| } |
| if (!BN_is_zero(a.get()) || BN_is_negative(a.get())) { |
| fprintf(stderr, "Incorrect quotient (consttime = %d).\n", consttime); |
| return false; |
| } |
| |
| // Test that BN_div never gives negative zero in the remainder. |
| if (!BN_set_word(denominator.get(), 1)) { |
| return false; |
| } |
| if (!BN_div(a.get(), b.get(), numerator.get(), denominator.get(), ctx)) { |
| return false; |
| } |
| if (!BN_is_zero(b.get()) || BN_is_negative(b.get())) { |
| fprintf(stderr, "Incorrect remainder (consttime = %d).\n", consttime); |
| return false; |
| } |
| } |
| |
| // Test that BN_set_negative will not produce a negative zero. |
| BN_zero(a.get()); |
| BN_set_negative(a.get(), 1); |
| if (BN_is_negative(a.get())) { |
| fprintf(stderr, "BN_set_negative produced a negative zero.\n"); |
| return false; |
| } |
| |
| // Test that forcibly creating a negative zero does not break |BN_bn2hex| or |
| // |BN_bn2dec|. |
| a->neg = 1; |
| bssl::UniquePtr<char> dec(BN_bn2dec(a.get())); |
| bssl::UniquePtr<char> hex(BN_bn2hex(a.get())); |
| if (!dec || !hex || |
| strcmp(dec.get(), "-0") != 0 || |
| strcmp(hex.get(), "-0") != 0) { |
| fprintf(stderr, "BN_bn2dec or BN_bn2hex failed with negative zero.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestBadModulus(BN_CTX *ctx) { |
| bssl::UniquePtr<BIGNUM> a(BN_new()); |
| bssl::UniquePtr<BIGNUM> b(BN_new()); |
| bssl::UniquePtr<BIGNUM> zero(BN_new()); |
| bssl::UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new()); |
| if (!a || !b || !zero || !mont) { |
| return false; |
| } |
| |
| BN_zero(zero.get()); |
| |
| if (BN_div(a.get(), b.get(), BN_value_one(), zero.get(), ctx)) { |
| fprintf(stderr, "Division by zero unexpectedly succeeded.\n"); |
| return false; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_mul(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) { |
| fprintf(stderr, "BN_mod_mul with zero modulus unexpectedly succeeded.\n"); |
| return false; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_exp(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx)) { |
| fprintf(stderr, "BN_mod_exp with zero modulus unexpectedly succeeded.\n"); |
| return 0; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), zero.get(), ctx, |
| NULL)) { |
| fprintf(stderr, |
| "BN_mod_exp_mont with zero modulus unexpectedly succeeded.\n"); |
| return 0; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(), |
| zero.get(), ctx, nullptr)) { |
| fprintf(stderr, |
| "BN_mod_exp_mont_consttime with zero modulus unexpectedly " |
| "succeeded.\n"); |
| return 0; |
| } |
| ERR_clear_error(); |
| |
| if (BN_MONT_CTX_set(mont.get(), zero.get(), ctx)) { |
| fprintf(stderr, |
| "BN_MONT_CTX_set unexpectedly succeeded for zero modulus.\n"); |
| return false; |
| } |
| ERR_clear_error(); |
| |
| // Some operations also may not be used with an even modulus. |
| |
| if (!BN_set_word(b.get(), 16)) { |
| return false; |
| } |
| |
| if (BN_MONT_CTX_set(mont.get(), b.get(), ctx)) { |
| fprintf(stderr, |
| "BN_MONT_CTX_set unexpectedly succeeded for even modulus.\n"); |
| return false; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_exp_mont(a.get(), BN_value_one(), BN_value_one(), b.get(), ctx, |
| NULL)) { |
| fprintf(stderr, |
| "BN_mod_exp_mont with even modulus unexpectedly succeeded.\n"); |
| return 0; |
| } |
| ERR_clear_error(); |
| |
| if (BN_mod_exp_mont_consttime(a.get(), BN_value_one(), BN_value_one(), |
| b.get(), ctx, nullptr)) { |
| fprintf(stderr, |
| "BN_mod_exp_mont_consttime with even modulus unexpectedly " |
| "succeeded.\n"); |
| return 0; |
| } |
| ERR_clear_error(); |
| |
| return true; |
| } |
| |
| // TestExpModZero tests that 1**0 mod 1 == 0. |
| static bool TestExpModZero() { |
| bssl::UniquePtr<BIGNUM> zero(BN_new()), a(BN_new()), r(BN_new()); |
| if (!zero || !a || !r || |
| !BN_rand(a.get(), 1024, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) { |
| return false; |
| } |
| BN_zero(zero.get()); |
| |
| if (!BN_mod_exp(r.get(), a.get(), zero.get(), BN_value_one(), nullptr) || |
| !BN_is_zero(r.get()) || |
| !BN_mod_exp_mont(r.get(), a.get(), zero.get(), BN_value_one(), nullptr, |
| nullptr) || |
| !BN_is_zero(r.get()) || |
| !BN_mod_exp_mont_consttime(r.get(), a.get(), zero.get(), BN_value_one(), |
| nullptr, nullptr) || |
| !BN_is_zero(r.get()) || |
| !BN_mod_exp_mont_word(r.get(), 42, zero.get(), BN_value_one(), nullptr, |
| nullptr) || |
| !BN_is_zero(r.get())) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestSmallPrime(BN_CTX *ctx) { |
| static const unsigned kBits = 10; |
| |
| bssl::UniquePtr<BIGNUM> r(BN_new()); |
| if (!r || !BN_generate_prime_ex(r.get(), static_cast<int>(kBits), 0, NULL, |
| NULL, NULL)) { |
| return false; |
| } |
| if (BN_num_bits(r.get()) != kBits) { |
| fprintf(stderr, "Expected %u bit prime, got %u bit number\n", kBits, |
| BN_num_bits(r.get())); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestCmpWord() { |
| static const BN_ULONG kMaxWord = (BN_ULONG)-1; |
| |
| bssl::UniquePtr<BIGNUM> r(BN_new()); |
| if (!r || |
| !BN_set_word(r.get(), 0)) { |
| return false; |
| } |
| |
| if (BN_cmp_word(r.get(), 0) != 0 || |
| BN_cmp_word(r.get(), 1) >= 0 || |
| BN_cmp_word(r.get(), kMaxWord) >= 0) { |
| fprintf(stderr, "BN_cmp_word compared against 0 incorrectly.\n"); |
| return false; |
| } |
| |
| if (!BN_set_word(r.get(), 100)) { |
| return false; |
| } |
| |
| if (BN_cmp_word(r.get(), 0) <= 0 || |
| BN_cmp_word(r.get(), 99) <= 0 || |
| BN_cmp_word(r.get(), 100) != 0 || |
| BN_cmp_word(r.get(), 101) >= 0 || |
| BN_cmp_word(r.get(), kMaxWord) >= 0) { |
| fprintf(stderr, "BN_cmp_word compared against 100 incorrectly.\n"); |
| return false; |
| } |
| |
| BN_set_negative(r.get(), 1); |
| |
| if (BN_cmp_word(r.get(), 0) >= 0 || |
| BN_cmp_word(r.get(), 100) >= 0 || |
| BN_cmp_word(r.get(), kMaxWord) >= 0) { |
| fprintf(stderr, "BN_cmp_word compared against -100 incorrectly.\n"); |
| return false; |
| } |
| |
| if (!BN_set_word(r.get(), kMaxWord)) { |
| return false; |
| } |
| |
| if (BN_cmp_word(r.get(), 0) <= 0 || |
| BN_cmp_word(r.get(), kMaxWord - 1) <= 0 || |
| BN_cmp_word(r.get(), kMaxWord) != 0) { |
| fprintf(stderr, "BN_cmp_word compared against kMaxWord incorrectly.\n"); |
| return false; |
| } |
| |
| if (!BN_add(r.get(), r.get(), BN_value_one())) { |
| return false; |
| } |
| |
| if (BN_cmp_word(r.get(), 0) <= 0 || |
| BN_cmp_word(r.get(), kMaxWord) <= 0) { |
| fprintf(stderr, "BN_cmp_word compared against kMaxWord + 1 incorrectly.\n"); |
| return false; |
| } |
| |
| BN_set_negative(r.get(), 1); |
| |
| if (BN_cmp_word(r.get(), 0) >= 0 || |
| BN_cmp_word(r.get(), kMaxWord) >= 0) { |
| fprintf(stderr, |
| "BN_cmp_word compared against -kMaxWord - 1 incorrectly.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestBN2Dec() { |
| static const char *kBN2DecTests[] = { |
| "0", |
| "1", |
| "-1", |
| "100", |
| "-100", |
| "123456789012345678901234567890", |
| "-123456789012345678901234567890", |
| "123456789012345678901234567890123456789012345678901234567890", |
| "-123456789012345678901234567890123456789012345678901234567890", |
| }; |
| |
| for (const char *test : kBN2DecTests) { |
| bssl::UniquePtr<BIGNUM> bn; |
| int ret = DecimalToBIGNUM(&bn, test); |
| if (ret == 0) { |
| return false; |
| } |
| |
| bssl::UniquePtr<char> dec(BN_bn2dec(bn.get())); |
| if (!dec) { |
| fprintf(stderr, "BN_bn2dec failed on %s.\n", test); |
| return false; |
| } |
| |
| if (strcmp(dec.get(), test) != 0) { |
| fprintf(stderr, "BN_bn2dec gave %s, wanted %s.\n", dec.get(), test); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool TestBNSetU64() { |
| static const struct { |
| const char *hex; |
| uint64_t value; |
| } kU64Tests[] = { |
| {"0", UINT64_C(0x0)}, |
| {"1", UINT64_C(0x1)}, |
| {"ffffffff", UINT64_C(0xffffffff)}, |
| {"100000000", UINT64_C(0x100000000)}, |
| {"ffffffffffffffff", UINT64_C(0xffffffffffffffff)}, |
| }; |
| |
| for (const auto& test : kU64Tests) { |
| bssl::UniquePtr<BIGNUM> bn(BN_new()), expected; |
| if (!bn || |
| !BN_set_u64(bn.get(), test.value) || |
| !HexToBIGNUM(&expected, test.hex) || |
| BN_cmp(bn.get(), expected.get()) != 0) { |
| fprintf(stderr, "BN_set_u64 test failed for 0x%s.\n", test.hex); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| int main(int argc, char *argv[]) { |
| CRYPTO_library_init(); |
| |
| if (argc != 2) { |
| fprintf(stderr, "%s TEST_FILE\n", argv[0]); |
| return 1; |
| } |
| |
| bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
| if (!ctx) { |
| return 1; |
| } |
| |
| if (!TestBN2BinPadded(ctx.get()) || |
| !TestDec2BN(ctx.get()) || |
| !TestHex2BN(ctx.get()) || |
| !TestASC2BN(ctx.get()) || |
| !TestMPI() || |
| !TestRand() || |
| !TestASN1() || |
| !TestNegativeZero(ctx.get()) || |
| !TestBadModulus(ctx.get()) || |
| !TestExpModZero() || |
| !TestSmallPrime(ctx.get()) || |
| !TestCmpWord() || |
| !TestBN2Dec() || |
| !TestBNSetU64()) { |
| return 1; |
| } |
| |
| return FileTestMain(RunTest, ctx.get(), argv[1]); |
| } |