blob: 23445cba85954889fba93e9ccbb46095e984de7a [file] [log] [blame]
/* Copyright (c) 2019, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include "mock_quic_transport.h"
#include <openssl/span.h>
#include <cstring>
#include <limits>
namespace {
const uint8_t kTagHandshake = 'H';
const uint8_t kTagApplication = 'A';
bool write_header(BIO *bio, uint8_t tag, size_t len) {
uint8_t header[5];
header[0] = tag;
header[1] = (len >> 24) & 0xff;
header[2] = (len >> 16) & 0xff;
header[3] = (len >> 8) & 0xff;
header[4] = len & 0xff;
return BIO_write_all(bio, header, sizeof(header));
}
} // namespace
MockQuicTransport::MockQuicTransport(bssl::UniquePtr<BIO> bio, SSL *ssl)
: bio_(std::move(bio)),
read_secrets_(ssl_encryption_application + 1),
write_secrets_(ssl_encryption_application + 1),
ssl_(ssl) {}
bool MockQuicTransport::SetReadSecret(enum ssl_encryption_level_t level,
const SSL_CIPHER *cipher,
const uint8_t *secret,
size_t secret_len) {
// TODO(davidben): Assert the various encryption secret invariants.
read_secrets_[level].assign(secret, secret + secret_len);
return true;
}
bool MockQuicTransport::SetWriteSecret(enum ssl_encryption_level_t level,
const SSL_CIPHER *cipher,
const uint8_t *secret,
size_t secret_len) {
// TODO(davidben): Assert the various encryption secret invariants.
write_secrets_[level].assign(secret, secret + secret_len);
return true;
}
namespace {
bool ReadAll(BIO *bio, bssl::Span<uint8_t> out) {
size_t len = out.size();
uint8_t *buf = out.data();
while (len > 0) {
int chunk_len = std::numeric_limits<int>::max();
if (len <= static_cast<unsigned int>(std::numeric_limits<int>::max())) {
chunk_len = len;
}
int ret = BIO_read(bio, buf, chunk_len);
if (ret <= 0) {
return false;
}
buf += ret;
len -= ret;
}
return true;
}
bool ReadHeader(BIO *bio, uint8_t *out_tag, size_t *out_len) {
uint8_t header[5];
if (!ReadAll(bio, header)) {
return false;
}
*out_len = header[1] << 24 | header[2] << 16 | header[3] << 8 | header[4];
*out_tag = header[0];
return true;
}
} // namespace
bool MockQuicTransport::ReadHandshake() {
enum ssl_encryption_level_t level = SSL_quic_read_level(ssl_);
uint8_t tag;
size_t len;
if (!ReadHeader(bio_.get(), &tag, &len)) {
return false;
}
if (tag != kTagHandshake) {
return false;
}
const std::vector<uint8_t> &secret = read_secrets_[level];
std::vector<uint8_t> read_secret(secret.size());
if (!ReadAll(bio_.get(), bssl::MakeSpan(read_secret))) {
return false;
}
if (read_secret != secret) {
return false;
}
std::vector<uint8_t> buf(len);
if (!ReadAll(bio_.get(), bssl::MakeSpan(buf))) {
return false;
}
return SSL_provide_quic_data(ssl_, SSL_quic_read_level(ssl_), buf.data(),
buf.size());
}
int MockQuicTransport::ReadApplicationData(uint8_t *out, size_t max_out) {
if (pending_app_data_.size() > 0) {
size_t len = pending_app_data_.size() - app_data_offset_;
if (len > max_out) {
len = max_out;
}
memcpy(out, pending_app_data_.data() + app_data_offset_, len);
app_data_offset_ += len;
if (app_data_offset_ == pending_app_data_.size()) {
pending_app_data_.clear();
app_data_offset_ = 0;
}
return len;
}
uint8_t tag = 0;
size_t len;
while (true) {
if (!ReadHeader(bio_.get(), &tag, &len)) {
// Assume that a failure to read the header means there's no more to read,
// not an error reading.
return 0;
}
if (tag != kTagHandshake && tag != kTagApplication) {
return -1;
}
const std::vector<uint8_t> &secret =
read_secrets_[ssl_encryption_application];
std::vector<uint8_t> read_secret(secret.size());
if (!ReadAll(bio_.get(), bssl::MakeSpan(read_secret))) {
return -1;
}
if (read_secret != secret) {
return -1;
}
if (tag == kTagApplication) {
break;
}
std::vector<uint8_t> buf(len);
if (!ReadAll(bio_.get(), bssl::MakeSpan(buf))) {
return -1;
}
if (SSL_provide_quic_data(ssl_, SSL_quic_read_level(ssl_), buf.data(),
buf.size()) != 1 ||
SSL_process_quic_post_handshake(ssl_) != 1) {
return -1;
}
}
uint8_t *buf = out;
if (len > max_out) {
pending_app_data_.resize(len);
buf = pending_app_data_.data();
}
app_data_offset_ = 0;
if (!ReadAll(bio_.get(), bssl::MakeSpan(buf, len))) {
return -1;
}
if (len > max_out) {
memcpy(out, buf, max_out);
app_data_offset_ = max_out;
return max_out;
}
return len;
}
bool MockQuicTransport::WriteHandshakeData(enum ssl_encryption_level_t level,
const uint8_t *data, size_t len) {
const std::vector<uint8_t> &secret = write_secrets_[level];
if (!write_header(bio_.get(), kTagHandshake, len) ||
BIO_write_all(bio_.get(), secret.data(), secret.size()) != 1 ||
BIO_write_all(bio_.get(), data, len) != 1) {
return false;
}
return true;
}
bool MockQuicTransport::WriteApplicationData(const uint8_t *in, size_t len) {
const std::vector<uint8_t> &secret =
write_secrets_[ssl_encryption_application];
if (!write_header(bio_.get(), kTagApplication, len) ||
BIO_write_all(bio_.get(), secret.data(), secret.size()) != 1 ||
BIO_write_all(bio_.get(), in, len) != 1) {
return false;
}
return true;
}
bool MockQuicTransport::Flush() { return BIO_flush(bio_.get()); }