| /* |
| * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1999-2003 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* X509 v3 extension utilities */ |
| |
| #include <ctype.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/conf.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/obj.h> |
| #include <openssl/x509.h> |
| |
| #include "../conf/internal.h" |
| #include "../internal.h" |
| #include "internal.h" |
| |
| |
| static char *strip_spaces(char *name); |
| static int sk_strcmp(const char *const *a, const char *const *b); |
| static STACK_OF(OPENSSL_STRING) *get_email(const X509_NAME *name, |
| const GENERAL_NAMES *gens); |
| static void str_free(OPENSSL_STRING str); |
| static int append_ia5(STACK_OF(OPENSSL_STRING) **sk, |
| const ASN1_IA5STRING *email); |
| |
| static int ipv4_from_asc(uint8_t v4[4], const char *in); |
| static int ipv6_from_asc(uint8_t v6[16], const char *in); |
| static int ipv6_cb(const char *elem, size_t len, void *usr); |
| static int ipv6_hex(uint8_t *out, const char *in, size_t inlen); |
| |
| // Add a CONF_VALUE name value pair to stack |
| |
| static int x509V3_add_len_value(const char *name, const char *value, |
| size_t value_len, int omit_value, |
| STACK_OF(CONF_VALUE) **extlist) { |
| CONF_VALUE *vtmp = NULL; |
| char *tname = NULL, *tvalue = NULL; |
| int extlist_was_null = *extlist == NULL; |
| if (name && !(tname = OPENSSL_strdup(name))) { |
| goto err; |
| } |
| if (!omit_value) { |
| // |CONF_VALUE| cannot represent strings with NULs. |
| if (OPENSSL_memchr(value, 0, value_len)) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_VALUE); |
| goto err; |
| } |
| tvalue = OPENSSL_strndup(value, value_len); |
| if (tvalue == NULL) { |
| goto err; |
| } |
| } |
| if (!(vtmp = CONF_VALUE_new())) { |
| goto err; |
| } |
| if (!*extlist && !(*extlist = sk_CONF_VALUE_new_null())) { |
| goto err; |
| } |
| vtmp->section = NULL; |
| vtmp->name = tname; |
| vtmp->value = tvalue; |
| if (!sk_CONF_VALUE_push(*extlist, vtmp)) { |
| goto err; |
| } |
| return 1; |
| err: |
| if (extlist_was_null) { |
| sk_CONF_VALUE_free(*extlist); |
| *extlist = NULL; |
| } |
| OPENSSL_free(vtmp); |
| OPENSSL_free(tname); |
| OPENSSL_free(tvalue); |
| return 0; |
| } |
| |
| int X509V3_add_value(const char *name, const char *value, |
| STACK_OF(CONF_VALUE) **extlist) { |
| return x509V3_add_len_value(name, value, value != NULL ? strlen(value) : 0, |
| /*omit_value=*/value == NULL, extlist); |
| } |
| |
| int x509V3_add_value_asn1_string(const char *name, const ASN1_STRING *value, |
| STACK_OF(CONF_VALUE) **extlist) { |
| return x509V3_add_len_value(name, (const char *)value->data, value->length, |
| /*omit_value=*/0, extlist); |
| } |
| |
| // Free function for STACK_OF(CONF_VALUE) |
| |
| void X509V3_conf_free(CONF_VALUE *conf) { |
| if (!conf) { |
| return; |
| } |
| OPENSSL_free(conf->name); |
| OPENSSL_free(conf->value); |
| OPENSSL_free(conf->section); |
| OPENSSL_free(conf); |
| } |
| |
| int X509V3_add_value_bool(const char *name, int asn1_bool, |
| STACK_OF(CONF_VALUE) **extlist) { |
| if (asn1_bool) { |
| return X509V3_add_value(name, "TRUE", extlist); |
| } |
| return X509V3_add_value(name, "FALSE", extlist); |
| } |
| |
| static char *bignum_to_string(const BIGNUM *bn) { |
| char *tmp, *ret; |
| size_t len; |
| |
| // Display large numbers in hex and small numbers in decimal. Converting to |
| // decimal takes quadratic time and is no more useful than hex for large |
| // numbers. |
| if (BN_num_bits(bn) < 32) { |
| return BN_bn2dec(bn); |
| } |
| |
| tmp = BN_bn2hex(bn); |
| if (tmp == NULL) { |
| return NULL; |
| } |
| |
| len = strlen(tmp) + 3; |
| ret = OPENSSL_malloc(len); |
| if (ret == NULL) { |
| OPENSSL_free(tmp); |
| return NULL; |
| } |
| |
| // Prepend "0x", but place it after the "-" if negative. |
| if (tmp[0] == '-') { |
| OPENSSL_strlcpy(ret, "-0x", len); |
| OPENSSL_strlcat(ret, tmp + 1, len); |
| } else { |
| OPENSSL_strlcpy(ret, "0x", len); |
| OPENSSL_strlcat(ret, tmp, len); |
| } |
| OPENSSL_free(tmp); |
| return ret; |
| } |
| |
| char *i2s_ASN1_ENUMERATED(const X509V3_EXT_METHOD *method, |
| const ASN1_ENUMERATED *a) { |
| BIGNUM *bntmp = NULL; |
| char *strtmp = NULL; |
| if (!a) { |
| return NULL; |
| } |
| if (!(bntmp = ASN1_ENUMERATED_to_BN(a, NULL)) || |
| !(strtmp = bignum_to_string(bntmp))) { |
| } |
| BN_free(bntmp); |
| return strtmp; |
| } |
| |
| char *i2s_ASN1_INTEGER(const X509V3_EXT_METHOD *method, const ASN1_INTEGER *a) { |
| BIGNUM *bntmp = NULL; |
| char *strtmp = NULL; |
| if (!a) { |
| return NULL; |
| } |
| if (!(bntmp = ASN1_INTEGER_to_BN(a, NULL)) || |
| !(strtmp = bignum_to_string(bntmp))) { |
| } |
| BN_free(bntmp); |
| return strtmp; |
| } |
| |
| ASN1_INTEGER *s2i_ASN1_INTEGER(const X509V3_EXT_METHOD *method, |
| const char *value) { |
| BIGNUM *bn = NULL; |
| ASN1_INTEGER *aint; |
| int isneg, ishex; |
| int ret; |
| if (!value) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_VALUE); |
| return 0; |
| } |
| bn = BN_new(); |
| if (value[0] == '-') { |
| value++; |
| isneg = 1; |
| } else { |
| isneg = 0; |
| } |
| |
| if (value[0] == '0' && ((value[1] == 'x') || (value[1] == 'X'))) { |
| value += 2; |
| ishex = 1; |
| } else { |
| ishex = 0; |
| } |
| |
| if (ishex) { |
| ret = BN_hex2bn(&bn, value); |
| } else { |
| // Decoding from decimal scales quadratically in the input length. Bound the |
| // largest decimal input we accept in the config parser. 8,192 decimal |
| // digits allows values up to 27,213 bits. Ths exceeds the largest RSA, DSA, |
| // or DH modulus we support, and those are not usefully represented in |
| // decimal. |
| if (strlen(value) > 8192) { |
| BN_free(bn); |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NUMBER); |
| return 0; |
| } |
| ret = BN_dec2bn(&bn, value); |
| } |
| |
| if (!ret || value[ret]) { |
| BN_free(bn); |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_BN_DEC2BN_ERROR); |
| return 0; |
| } |
| |
| if (isneg && BN_is_zero(bn)) { |
| isneg = 0; |
| } |
| |
| aint = BN_to_ASN1_INTEGER(bn, NULL); |
| BN_free(bn); |
| if (!aint) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_BN_TO_ASN1_INTEGER_ERROR); |
| return 0; |
| } |
| if (isneg) { |
| aint->type |= V_ASN1_NEG; |
| } |
| return aint; |
| } |
| |
| int X509V3_add_value_int(const char *name, const ASN1_INTEGER *aint, |
| STACK_OF(CONF_VALUE) **extlist) { |
| char *strtmp; |
| int ret; |
| if (!aint) { |
| return 1; |
| } |
| if (!(strtmp = i2s_ASN1_INTEGER(NULL, aint))) { |
| return 0; |
| } |
| ret = X509V3_add_value(name, strtmp, extlist); |
| OPENSSL_free(strtmp); |
| return ret; |
| } |
| |
| int X509V3_bool_from_string(const char *str, ASN1_BOOLEAN *out_bool) { |
| if (!strcmp(str, "TRUE") || !strcmp(str, "true") || !strcmp(str, "Y") || |
| !strcmp(str, "y") || !strcmp(str, "YES") || !strcmp(str, "yes")) { |
| *out_bool = ASN1_BOOLEAN_TRUE; |
| return 1; |
| } |
| if (!strcmp(str, "FALSE") || !strcmp(str, "false") || !strcmp(str, "N") || |
| !strcmp(str, "n") || !strcmp(str, "NO") || !strcmp(str, "no")) { |
| *out_bool = ASN1_BOOLEAN_FALSE; |
| return 1; |
| } |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_BOOLEAN_STRING); |
| return 0; |
| } |
| |
| int X509V3_get_value_bool(const CONF_VALUE *value, ASN1_BOOLEAN *out_bool) { |
| const char *btmp = value->value; |
| if (btmp == NULL) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_BOOLEAN_STRING); |
| goto err; |
| } |
| if (!X509V3_bool_from_string(btmp, out_bool)) { |
| goto err; |
| } |
| return 1; |
| |
| err: |
| X509V3_conf_err(value); |
| return 0; |
| } |
| |
| int X509V3_get_value_int(const CONF_VALUE *value, ASN1_INTEGER **aint) { |
| ASN1_INTEGER *itmp; |
| if (!(itmp = s2i_ASN1_INTEGER(NULL, value->value))) { |
| X509V3_conf_err(value); |
| return 0; |
| } |
| ASN1_INTEGER_free(*aint); |
| *aint = itmp; |
| return 1; |
| } |
| |
| #define HDR_NAME 1 |
| #define HDR_VALUE 2 |
| |
| // #define DEBUG |
| |
| STACK_OF(CONF_VALUE) *X509V3_parse_list(const char *line) { |
| char *p, *q, c; |
| char *ntmp, *vtmp; |
| STACK_OF(CONF_VALUE) *values = NULL; |
| char *linebuf; |
| int state; |
| // We are going to modify the line so copy it first |
| linebuf = OPENSSL_strdup(line); |
| if (linebuf == NULL) { |
| goto err; |
| } |
| state = HDR_NAME; |
| ntmp = NULL; |
| // Go through all characters |
| for (p = linebuf, q = linebuf; (c = *p) && (c != '\r') && (c != '\n'); p++) { |
| switch (state) { |
| case HDR_NAME: |
| if (c == ':') { |
| state = HDR_VALUE; |
| *p = 0; |
| ntmp = strip_spaces(q); |
| if (!ntmp) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_NAME); |
| goto err; |
| } |
| q = p + 1; |
| } else if (c == ',') { |
| *p = 0; |
| ntmp = strip_spaces(q); |
| q = p + 1; |
| #if 0 |
| printf("%s\n", ntmp); |
| #endif |
| if (!ntmp) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_NAME); |
| goto err; |
| } |
| X509V3_add_value(ntmp, NULL, &values); |
| } |
| break; |
| |
| case HDR_VALUE: |
| if (c == ',') { |
| state = HDR_NAME; |
| *p = 0; |
| vtmp = strip_spaces(q); |
| #if 0 |
| printf("%s\n", ntmp); |
| #endif |
| if (!vtmp) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_VALUE); |
| goto err; |
| } |
| X509V3_add_value(ntmp, vtmp, &values); |
| ntmp = NULL; |
| q = p + 1; |
| } |
| } |
| } |
| |
| if (state == HDR_VALUE) { |
| vtmp = strip_spaces(q); |
| #if 0 |
| printf("%s=%s\n", ntmp, vtmp); |
| #endif |
| if (!vtmp) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_VALUE); |
| goto err; |
| } |
| X509V3_add_value(ntmp, vtmp, &values); |
| } else { |
| ntmp = strip_spaces(q); |
| #if 0 |
| printf("%s\n", ntmp); |
| #endif |
| if (!ntmp) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_NAME); |
| goto err; |
| } |
| X509V3_add_value(ntmp, NULL, &values); |
| } |
| OPENSSL_free(linebuf); |
| return values; |
| |
| err: |
| OPENSSL_free(linebuf); |
| sk_CONF_VALUE_pop_free(values, X509V3_conf_free); |
| return NULL; |
| } |
| |
| // Delete leading and trailing spaces from a string |
| static char *strip_spaces(char *name) { |
| char *p, *q; |
| // Skip over leading spaces |
| p = name; |
| while (*p && OPENSSL_isspace((unsigned char)*p)) { |
| p++; |
| } |
| if (!*p) { |
| return NULL; |
| } |
| q = p + strlen(p) - 1; |
| while ((q != p) && OPENSSL_isspace((unsigned char)*q)) { |
| q--; |
| } |
| if (p != q) { |
| q[1] = 0; |
| } |
| if (!*p) { |
| return NULL; |
| } |
| return p; |
| } |
| |
| // hex string utilities |
| |
| char *x509v3_bytes_to_hex(const uint8_t *in, size_t len) { |
| CBB cbb; |
| if (!CBB_init(&cbb, len * 3 + 1)) { |
| goto err; |
| } |
| for (size_t i = 0; i < len; i++) { |
| static const char hex[] = "0123456789ABCDEF"; |
| if ((i > 0 && !CBB_add_u8(&cbb, ':')) || |
| !CBB_add_u8(&cbb, hex[in[i] >> 4]) || |
| !CBB_add_u8(&cbb, hex[in[i] & 0xf])) { |
| goto err; |
| } |
| } |
| uint8_t *ret; |
| size_t unused_len; |
| if (!CBB_add_u8(&cbb, 0) || !CBB_finish(&cbb, &ret, &unused_len)) { |
| goto err; |
| } |
| |
| return (char *)ret; |
| |
| err: |
| CBB_cleanup(&cbb); |
| return NULL; |
| } |
| |
| unsigned char *x509v3_hex_to_bytes(const char *str, size_t *len) { |
| unsigned char *hexbuf, *q; |
| unsigned char ch, cl, *p; |
| uint8_t high, low; |
| if (!str) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_NULL_ARGUMENT); |
| return NULL; |
| } |
| if (!(hexbuf = OPENSSL_malloc(strlen(str) >> 1))) { |
| goto err; |
| } |
| for (p = (unsigned char *)str, q = hexbuf; *p;) { |
| ch = *p++; |
| if (ch == ':') { |
| continue; |
| } |
| cl = *p++; |
| if (!cl) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_ODD_NUMBER_OF_DIGITS); |
| OPENSSL_free(hexbuf); |
| return NULL; |
| } |
| if (!OPENSSL_fromxdigit(&high, ch)) { |
| goto badhex; |
| } |
| if (!OPENSSL_fromxdigit(&low, cl)) { |
| goto badhex; |
| } |
| *q++ = (high << 4) | low; |
| } |
| |
| if (len) { |
| *len = q - hexbuf; |
| } |
| |
| return hexbuf; |
| |
| err: |
| OPENSSL_free(hexbuf); |
| return NULL; |
| |
| badhex: |
| OPENSSL_free(hexbuf); |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_ILLEGAL_HEX_DIGIT); |
| return NULL; |
| } |
| |
| int x509v3_conf_name_matches(const char *name, const char *cmp) { |
| // |name| must begin with |cmp|. |
| size_t len = strlen(cmp); |
| if (strncmp(name, cmp, len) != 0) { |
| return 0; |
| } |
| // |name| must either be equal to |cmp| or begin with |cmp|, followed by '.'. |
| return name[len] == '\0' || name[len] == '.'; |
| } |
| |
| static int sk_strcmp(const char *const *a, const char *const *b) { |
| return strcmp(*a, *b); |
| } |
| |
| STACK_OF(OPENSSL_STRING) *X509_get1_email(const X509 *x) { |
| GENERAL_NAMES *gens; |
| STACK_OF(OPENSSL_STRING) *ret; |
| |
| gens = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); |
| ret = get_email(X509_get_subject_name(x), gens); |
| sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); |
| return ret; |
| } |
| |
| STACK_OF(OPENSSL_STRING) *X509_get1_ocsp(const X509 *x) { |
| AUTHORITY_INFO_ACCESS *info; |
| STACK_OF(OPENSSL_STRING) *ret = NULL; |
| size_t i; |
| |
| info = X509_get_ext_d2i(x, NID_info_access, NULL, NULL); |
| if (!info) { |
| return NULL; |
| } |
| for (i = 0; i < sk_ACCESS_DESCRIPTION_num(info); i++) { |
| ACCESS_DESCRIPTION *ad = sk_ACCESS_DESCRIPTION_value(info, i); |
| if (OBJ_obj2nid(ad->method) == NID_ad_OCSP) { |
| if (ad->location->type == GEN_URI) { |
| if (!append_ia5(&ret, ad->location->d.uniformResourceIdentifier)) { |
| break; |
| } |
| } |
| } |
| } |
| AUTHORITY_INFO_ACCESS_free(info); |
| return ret; |
| } |
| |
| STACK_OF(OPENSSL_STRING) *X509_REQ_get1_email(const X509_REQ *x) { |
| GENERAL_NAMES *gens; |
| STACK_OF(X509_EXTENSION) *exts; |
| STACK_OF(OPENSSL_STRING) *ret; |
| |
| exts = X509_REQ_get_extensions(x); |
| gens = X509V3_get_d2i(exts, NID_subject_alt_name, NULL, NULL); |
| ret = get_email(X509_REQ_get_subject_name(x), gens); |
| sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free); |
| sk_X509_EXTENSION_pop_free(exts, X509_EXTENSION_free); |
| return ret; |
| } |
| |
| static STACK_OF(OPENSSL_STRING) *get_email(const X509_NAME *name, |
| const GENERAL_NAMES *gens) { |
| STACK_OF(OPENSSL_STRING) *ret = NULL; |
| // Now add any email address(es) to STACK |
| int i = -1; |
| // First supplied X509_NAME |
| while ((i = X509_NAME_get_index_by_NID(name, NID_pkcs9_emailAddress, i)) >= |
| 0) { |
| const X509_NAME_ENTRY *ne = X509_NAME_get_entry(name, i); |
| const ASN1_IA5STRING *email = X509_NAME_ENTRY_get_data(ne); |
| if (!append_ia5(&ret, email)) { |
| return NULL; |
| } |
| } |
| for (size_t j = 0; j < sk_GENERAL_NAME_num(gens); j++) { |
| const GENERAL_NAME *gen = sk_GENERAL_NAME_value(gens, j); |
| if (gen->type != GEN_EMAIL) { |
| continue; |
| } |
| if (!append_ia5(&ret, gen->d.ia5)) { |
| return NULL; |
| } |
| } |
| return ret; |
| } |
| |
| static void str_free(OPENSSL_STRING str) { OPENSSL_free(str); } |
| |
| static int append_ia5(STACK_OF(OPENSSL_STRING) **sk, |
| const ASN1_IA5STRING *email) { |
| // First some sanity checks |
| if (email->type != V_ASN1_IA5STRING) { |
| return 1; |
| } |
| if (email->data == NULL || email->length == 0) { |
| return 1; |
| } |
| // |OPENSSL_STRING| cannot represent strings with embedded NULs. Do not |
| // report them as outputs. |
| if (OPENSSL_memchr(email->data, 0, email->length) != NULL) { |
| return 1; |
| } |
| |
| char *emtmp = NULL; |
| if (!*sk) { |
| *sk = sk_OPENSSL_STRING_new(sk_strcmp); |
| } |
| if (!*sk) { |
| goto err; |
| } |
| |
| emtmp = OPENSSL_strndup((char *)email->data, email->length); |
| if (emtmp == NULL) { |
| goto err; |
| } |
| |
| // Don't add duplicates |
| sk_OPENSSL_STRING_sort(*sk); |
| if (sk_OPENSSL_STRING_find(*sk, NULL, emtmp)) { |
| OPENSSL_free(emtmp); |
| return 1; |
| } |
| if (!sk_OPENSSL_STRING_push(*sk, emtmp)) { |
| goto err; |
| } |
| return 1; |
| |
| err: |
| // TODO(davidben): Fix the error-handling in this file. It currently relies |
| // on |append_ia5| leaving |*sk| at NULL on error. |
| OPENSSL_free(emtmp); |
| X509_email_free(*sk); |
| *sk = NULL; |
| return 0; |
| } |
| |
| void X509_email_free(STACK_OF(OPENSSL_STRING) *sk) { |
| sk_OPENSSL_STRING_pop_free(sk, str_free); |
| } |
| |
| typedef int (*equal_fn)(const unsigned char *pattern, size_t pattern_len, |
| const unsigned char *subject, size_t subject_len, |
| unsigned int flags); |
| |
| // Compare while ASCII ignoring case. |
| static int equal_nocase(const unsigned char *pattern, size_t pattern_len, |
| const unsigned char *subject, size_t subject_len, |
| unsigned int flags) { |
| if (pattern_len != subject_len) { |
| return 0; |
| } |
| while (pattern_len) { |
| unsigned char l = *pattern; |
| unsigned char r = *subject; |
| // The pattern must not contain NUL characters. |
| if (l == 0) { |
| return 0; |
| } |
| if (l != r) { |
| if (OPENSSL_tolower(l) != OPENSSL_tolower(r)) { |
| return 0; |
| } |
| } |
| ++pattern; |
| ++subject; |
| --pattern_len; |
| } |
| return 1; |
| } |
| |
| // Compare using OPENSSL_memcmp. |
| static int equal_case(const unsigned char *pattern, size_t pattern_len, |
| const unsigned char *subject, size_t subject_len, |
| unsigned int flags) { |
| if (pattern_len != subject_len) { |
| return 0; |
| } |
| return !OPENSSL_memcmp(pattern, subject, pattern_len); |
| } |
| |
| // RFC 5280, section 7.5, requires that only the domain is compared in a |
| // case-insensitive manner. |
| static int equal_email(const unsigned char *a, size_t a_len, |
| const unsigned char *b, size_t b_len, |
| unsigned int unused_flags) { |
| size_t i = a_len; |
| if (a_len != b_len) { |
| return 0; |
| } |
| // We search backwards for the '@' character, so that we do not have to |
| // deal with quoted local-parts. The domain part is compared in a |
| // case-insensitive manner. |
| while (i > 0) { |
| --i; |
| if (a[i] == '@' || b[i] == '@') { |
| if (!equal_nocase(a + i, a_len - i, b + i, a_len - i, 0)) { |
| return 0; |
| } |
| break; |
| } |
| } |
| if (i == 0) { |
| i = a_len; |
| } |
| return equal_case(a, i, b, i, 0); |
| } |
| |
| // Compare the prefix and suffix with the subject, and check that the |
| // characters in-between are valid. |
| static int wildcard_match(const unsigned char *prefix, size_t prefix_len, |
| const unsigned char *suffix, size_t suffix_len, |
| const unsigned char *subject, size_t subject_len, |
| unsigned int flags) { |
| const unsigned char *wildcard_start; |
| const unsigned char *wildcard_end; |
| const unsigned char *p; |
| int allow_idna = 0; |
| |
| if (subject_len < prefix_len + suffix_len) { |
| return 0; |
| } |
| if (!equal_nocase(prefix, prefix_len, subject, prefix_len, flags)) { |
| return 0; |
| } |
| wildcard_start = subject + prefix_len; |
| wildcard_end = subject + (subject_len - suffix_len); |
| if (!equal_nocase(wildcard_end, suffix_len, suffix, suffix_len, flags)) { |
| return 0; |
| } |
| // If the wildcard makes up the entire first label, it must match at |
| // least one character. |
| if (prefix_len == 0 && *suffix == '.') { |
| if (wildcard_start == wildcard_end) { |
| return 0; |
| } |
| allow_idna = 1; |
| } |
| // IDNA labels cannot match partial wildcards |
| if (!allow_idna && subject_len >= 4 && |
| OPENSSL_strncasecmp((char *)subject, "xn--", 4) == 0) { |
| return 0; |
| } |
| // The wildcard may match a literal '*' |
| if (wildcard_end == wildcard_start + 1 && *wildcard_start == '*') { |
| return 1; |
| } |
| // Check that the part matched by the wildcard contains only |
| // permitted characters and only matches a single label. |
| for (p = wildcard_start; p != wildcard_end; ++p) { |
| if (!OPENSSL_isalnum(*p) && *p != '-') { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| #define LABEL_START (1 << 0) |
| #define LABEL_END (1 << 1) |
| #define LABEL_HYPHEN (1 << 2) |
| #define LABEL_IDNA (1 << 3) |
| |
| static const unsigned char *valid_star(const unsigned char *p, size_t len, |
| unsigned int flags) { |
| const unsigned char *star = 0; |
| size_t i; |
| int state = LABEL_START; |
| int dots = 0; |
| for (i = 0; i < len; ++i) { |
| // Locate first and only legal wildcard, either at the start |
| // or end of a non-IDNA first and not final label. |
| if (p[i] == '*') { |
| int atstart = (state & LABEL_START); |
| int atend = (i == len - 1 || p[i + 1] == '.'); |
| // At most one wildcard per pattern. |
| // No wildcards in IDNA labels. |
| // No wildcards after the first label. |
| if (star != NULL || (state & LABEL_IDNA) != 0 || dots) { |
| return NULL; |
| } |
| // Only full-label '*.example.com' wildcards. |
| if (!atstart || !atend) { |
| return NULL; |
| } |
| star = &p[i]; |
| state &= ~LABEL_START; |
| } else if (OPENSSL_isalnum(p[i])) { |
| if ((state & LABEL_START) != 0 && len - i >= 4 && |
| OPENSSL_strncasecmp((char *)&p[i], "xn--", 4) == 0) { |
| state |= LABEL_IDNA; |
| } |
| state &= ~(LABEL_HYPHEN | LABEL_START); |
| } else if (p[i] == '.') { |
| if ((state & (LABEL_HYPHEN | LABEL_START)) != 0) { |
| return NULL; |
| } |
| state = LABEL_START; |
| ++dots; |
| } else if (p[i] == '-') { |
| // no domain/subdomain starts with '-' |
| if ((state & LABEL_START) != 0) { |
| return NULL; |
| } |
| state |= LABEL_HYPHEN; |
| } else { |
| return NULL; |
| } |
| } |
| |
| // The final label must not end in a hyphen or ".", and |
| // there must be at least two dots after the star. |
| if ((state & (LABEL_START | LABEL_HYPHEN)) != 0 || dots < 2) { |
| return NULL; |
| } |
| return star; |
| } |
| |
| // Compare using wildcards. |
| static int equal_wildcard(const unsigned char *pattern, size_t pattern_len, |
| const unsigned char *subject, size_t subject_len, |
| unsigned int flags) { |
| const unsigned char *star = NULL; |
| |
| // Subject names starting with '.' can only match a wildcard pattern |
| // via a subject sub-domain pattern suffix match. |
| if (!(subject_len > 1 && subject[0] == '.')) { |
| star = valid_star(pattern, pattern_len, flags); |
| } |
| if (star == NULL) { |
| return equal_nocase(pattern, pattern_len, subject, subject_len, flags); |
| } |
| return wildcard_match(pattern, star - pattern, star + 1, |
| (pattern + pattern_len) - star - 1, subject, |
| subject_len, flags); |
| } |
| |
| int x509v3_looks_like_dns_name(const unsigned char *in, size_t len) { |
| // This function is used as a heuristic for whether a common name is a |
| // hostname to be matched, or merely a decorative name to describe the |
| // subject. This heuristic must be applied to both name constraints and the |
| // common name fallback, so it must be loose enough to accept hostname |
| // common names, and tight enough to reject decorative common names. |
| |
| if (len > 0 && in[len - 1] == '.') { |
| len--; |
| } |
| |
| // Wildcards are allowed in front. |
| if (len >= 2 && in[0] == '*' && in[1] == '.') { |
| in += 2; |
| len -= 2; |
| } |
| |
| if (len == 0) { |
| return 0; |
| } |
| |
| size_t label_start = 0; |
| for (size_t i = 0; i < len; i++) { |
| unsigned char c = in[i]; |
| if (OPENSSL_isalnum(c) || (c == '-' && i > label_start) || |
| // These are not valid characters in hostnames, but commonly found |
| // in deployments outside the Web PKI. |
| c == '_' || c == ':') { |
| continue; |
| } |
| |
| // Labels must not be empty. |
| if (c == '.' && i > label_start && i < len - 1) { |
| label_start = i + 1; |
| continue; |
| } |
| |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| // Compare an ASN1_STRING to a supplied string. If they match return 1. If |
| // cmp_type > 0 only compare if string matches the type, otherwise convert it |
| // to UTF8. |
| |
| static int do_check_string(const ASN1_STRING *a, int cmp_type, equal_fn equal, |
| unsigned int flags, int check_type, const char *b, |
| size_t blen, char **peername) { |
| int rv = 0; |
| |
| if (!a->data || !a->length) { |
| return 0; |
| } |
| if (cmp_type > 0) { |
| if (cmp_type != a->type) { |
| return 0; |
| } |
| if (cmp_type == V_ASN1_IA5STRING) { |
| rv = equal(a->data, a->length, (unsigned char *)b, blen, flags); |
| } else if (a->length == (int)blen && !OPENSSL_memcmp(a->data, b, blen)) { |
| rv = 1; |
| } |
| if (rv > 0 && peername) { |
| *peername = OPENSSL_strndup((char *)a->data, a->length); |
| if (*peername == NULL) { |
| return -1; |
| } |
| } |
| } else { |
| int astrlen; |
| unsigned char *astr; |
| astrlen = ASN1_STRING_to_UTF8(&astr, a); |
| if (astrlen < 0) { |
| return -1; |
| } |
| // We check the common name against DNS name constraints if it passes |
| // |x509v3_looks_like_dns_name|. Thus we must not consider common names |
| // for DNS fallbacks if they fail this check. |
| if (check_type == GEN_DNS && !x509v3_looks_like_dns_name(astr, astrlen)) { |
| rv = 0; |
| } else { |
| rv = equal(astr, astrlen, (unsigned char *)b, blen, flags); |
| } |
| if (rv > 0 && peername) { |
| *peername = OPENSSL_strndup((char *)astr, astrlen); |
| if (*peername == NULL) { |
| return -1; |
| } |
| } |
| OPENSSL_free(astr); |
| } |
| return rv; |
| } |
| |
| static int do_x509_check(const X509 *x, const char *chk, size_t chklen, |
| unsigned int flags, int check_type, char **peername) { |
| int cnid = NID_undef; |
| int alt_type; |
| int rv = 0; |
| equal_fn equal; |
| if (check_type == GEN_EMAIL) { |
| cnid = NID_pkcs9_emailAddress; |
| alt_type = V_ASN1_IA5STRING; |
| equal = equal_email; |
| } else if (check_type == GEN_DNS) { |
| cnid = NID_commonName; |
| alt_type = V_ASN1_IA5STRING; |
| if (flags & X509_CHECK_FLAG_NO_WILDCARDS) { |
| equal = equal_nocase; |
| } else { |
| equal = equal_wildcard; |
| } |
| } else { |
| alt_type = V_ASN1_OCTET_STRING; |
| equal = equal_case; |
| } |
| |
| GENERAL_NAMES *gens = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); |
| if (gens) { |
| for (size_t i = 0; i < sk_GENERAL_NAME_num(gens); i++) { |
| const GENERAL_NAME *gen = sk_GENERAL_NAME_value(gens, i); |
| if (gen->type != check_type) { |
| continue; |
| } |
| const ASN1_STRING *cstr; |
| if (check_type == GEN_EMAIL) { |
| cstr = gen->d.rfc822Name; |
| } else if (check_type == GEN_DNS) { |
| cstr = gen->d.dNSName; |
| } else { |
| cstr = gen->d.iPAddress; |
| } |
| // Positive on success, negative on error! |
| if ((rv = do_check_string(cstr, alt_type, equal, flags, check_type, chk, |
| chklen, peername)) != 0) { |
| break; |
| } |
| } |
| GENERAL_NAMES_free(gens); |
| return rv; |
| } |
| |
| // We're done if CN-ID is not pertinent |
| if (cnid == NID_undef || (flags & X509_CHECK_FLAG_NEVER_CHECK_SUBJECT)) { |
| return 0; |
| } |
| |
| int j = -1; |
| const X509_NAME *name = X509_get_subject_name(x); |
| while ((j = X509_NAME_get_index_by_NID(name, cnid, j)) >= 0) { |
| const X509_NAME_ENTRY *ne = X509_NAME_get_entry(name, j); |
| const ASN1_STRING *str = X509_NAME_ENTRY_get_data(ne); |
| // Positive on success, negative on error! |
| if ((rv = do_check_string(str, -1, equal, flags, check_type, chk, chklen, |
| peername)) != 0) { |
| return rv; |
| } |
| } |
| return 0; |
| } |
| |
| int X509_check_host(const X509 *x, const char *chk, size_t chklen, |
| unsigned int flags, char **peername) { |
| if (chk == NULL) { |
| return -2; |
| } |
| if (OPENSSL_memchr(chk, '\0', chklen)) { |
| return -2; |
| } |
| return do_x509_check(x, chk, chklen, flags, GEN_DNS, peername); |
| } |
| |
| int X509_check_email(const X509 *x, const char *chk, size_t chklen, |
| unsigned int flags) { |
| if (chk == NULL) { |
| return -2; |
| } |
| if (OPENSSL_memchr(chk, '\0', chklen)) { |
| return -2; |
| } |
| return do_x509_check(x, chk, chklen, flags, GEN_EMAIL, NULL); |
| } |
| |
| int X509_check_ip(const X509 *x, const unsigned char *chk, size_t chklen, |
| unsigned int flags) { |
| if (chk == NULL) { |
| return -2; |
| } |
| return do_x509_check(x, (const char *)chk, chklen, flags, GEN_IPADD, NULL); |
| } |
| |
| int X509_check_ip_asc(const X509 *x, const char *ipasc, unsigned int flags) { |
| unsigned char ipout[16]; |
| size_t iplen; |
| |
| if (ipasc == NULL) { |
| return -2; |
| } |
| iplen = (size_t)x509v3_a2i_ipadd(ipout, ipasc); |
| if (iplen == 0) { |
| return -2; |
| } |
| return do_x509_check(x, (const char *)ipout, iplen, flags, GEN_IPADD, NULL); |
| } |
| |
| // Convert IP addresses both IPv4 and IPv6 into an OCTET STRING compatible |
| // with RFC 3280. |
| |
| ASN1_OCTET_STRING *a2i_IPADDRESS(const char *ipasc) { |
| unsigned char ipout[16]; |
| ASN1_OCTET_STRING *ret; |
| int iplen; |
| |
| iplen = x509v3_a2i_ipadd(ipout, ipasc); |
| if (!iplen) { |
| return NULL; |
| } |
| |
| ret = ASN1_OCTET_STRING_new(); |
| if (!ret) { |
| return NULL; |
| } |
| if (!ASN1_OCTET_STRING_set(ret, ipout, iplen)) { |
| ASN1_OCTET_STRING_free(ret); |
| return NULL; |
| } |
| return ret; |
| } |
| |
| ASN1_OCTET_STRING *a2i_IPADDRESS_NC(const char *ipasc) { |
| ASN1_OCTET_STRING *ret = NULL; |
| unsigned char ipout[32]; |
| char *iptmp = NULL, *p; |
| int iplen1, iplen2; |
| p = strchr(ipasc, '/'); |
| if (!p) { |
| return NULL; |
| } |
| iptmp = OPENSSL_strdup(ipasc); |
| if (!iptmp) { |
| return NULL; |
| } |
| p = iptmp + (p - ipasc); |
| *p++ = 0; |
| |
| iplen1 = x509v3_a2i_ipadd(ipout, iptmp); |
| |
| if (!iplen1) { |
| goto err; |
| } |
| |
| iplen2 = x509v3_a2i_ipadd(ipout + iplen1, p); |
| |
| OPENSSL_free(iptmp); |
| iptmp = NULL; |
| |
| if (!iplen2 || (iplen1 != iplen2)) { |
| goto err; |
| } |
| |
| ret = ASN1_OCTET_STRING_new(); |
| if (!ret) { |
| goto err; |
| } |
| if (!ASN1_OCTET_STRING_set(ret, ipout, iplen1 + iplen2)) { |
| goto err; |
| } |
| |
| return ret; |
| |
| err: |
| OPENSSL_free(iptmp); |
| ASN1_OCTET_STRING_free(ret); |
| return NULL; |
| } |
| |
| int x509v3_a2i_ipadd(uint8_t ipout[16], const char *ipasc) { |
| // If string contains a ':' assume IPv6 |
| |
| if (strchr(ipasc, ':')) { |
| if (!ipv6_from_asc(ipout, ipasc)) { |
| return 0; |
| } |
| return 16; |
| } else { |
| if (!ipv4_from_asc(ipout, ipasc)) { |
| return 0; |
| } |
| return 4; |
| } |
| } |
| |
| // get_ipv4_component consumes one IPv4 component, terminated by either '.' or |
| // the end of the string, from |*str|. On success, it returns one, sets |*out| |
| // to the component, and advances |*str| to the first unconsumed character. On |
| // invalid input, it returns zero. |
| static int get_ipv4_component(uint8_t *out_byte, const char **str) { |
| // Store a slightly larger intermediary so the overflow check is easier. |
| uint32_t out = 0; |
| for (;;) { |
| if (!OPENSSL_isdigit(**str)) { |
| return 0; |
| } |
| out = (out * 10) + (**str - '0'); |
| if (out > 255) { |
| // Components must be 8-bit. |
| return 0; |
| } |
| (*str)++; |
| if ((**str) == '.' || (**str) == '\0') { |
| *out_byte = (uint8_t)out; |
| return 1; |
| } |
| if (out == 0) { |
| // Reject extra leading zeros. Parsers sometimes treat them as octal, so |
| // accepting them would misinterpret input. |
| return 0; |
| } |
| } |
| } |
| |
| // get_ipv4_dot consumes a '.' from |*str| and advances it. It returns one on |
| // success and zero if |*str| does not point to a '.'. |
| static int get_ipv4_dot(const char **str) { |
| if (**str != '.') { |
| return 0; |
| } |
| (*str)++; |
| return 1; |
| } |
| |
| static int ipv4_from_asc(uint8_t v4[4], const char *in) { |
| if (!get_ipv4_component(&v4[0], &in) || !get_ipv4_dot(&in) || |
| !get_ipv4_component(&v4[1], &in) || !get_ipv4_dot(&in) || |
| !get_ipv4_component(&v4[2], &in) || !get_ipv4_dot(&in) || |
| !get_ipv4_component(&v4[3], &in) || *in != '\0') { |
| return 0; |
| } |
| return 1; |
| } |
| |
| typedef struct { |
| // Temporary store for IPV6 output |
| uint8_t tmp[16]; |
| // Total number of bytes in tmp |
| int total; |
| // The position of a zero (corresponding to '::') |
| int zero_pos; |
| // Number of zeroes |
| int zero_cnt; |
| } IPV6_STAT; |
| |
| static int ipv6_from_asc(uint8_t v6[16], const char *in) { |
| IPV6_STAT v6stat; |
| v6stat.total = 0; |
| v6stat.zero_pos = -1; |
| v6stat.zero_cnt = 0; |
| // Treat the IPv6 representation as a list of values separated by ':'. |
| // The presence of a '::' will parse as one, two or three zero length |
| // elements. |
| if (!CONF_parse_list(in, ':', 0, ipv6_cb, &v6stat)) { |
| return 0; |
| } |
| |
| if (v6stat.zero_pos == -1) { |
| // If no '::' must have exactly 16 bytes |
| if (v6stat.total != 16) { |
| return 0; |
| } |
| } else { |
| // If '::' must have less than 16 bytes |
| if (v6stat.total >= 16) { |
| return 0; |
| } |
| if (v6stat.zero_cnt > 3) { |
| // More than three zeroes is an error |
| return 0; |
| } else if (v6stat.zero_cnt == 3) { |
| // Can only have three zeroes if nothing else present |
| if (v6stat.total > 0) { |
| return 0; |
| } |
| } else if (v6stat.zero_cnt == 2) { |
| // Can only have two zeroes if at start or end |
| if (v6stat.zero_pos != 0 && v6stat.zero_pos != v6stat.total) { |
| return 0; |
| } |
| } else { |
| // Can only have one zero if *not* start or end |
| if (v6stat.zero_pos == 0 || v6stat.zero_pos == v6stat.total) { |
| return 0; |
| } |
| } |
| } |
| |
| // Format the result. |
| if (v6stat.zero_pos >= 0) { |
| // Copy initial part |
| OPENSSL_memcpy(v6, v6stat.tmp, v6stat.zero_pos); |
| // Zero middle |
| OPENSSL_memset(v6 + v6stat.zero_pos, 0, 16 - v6stat.total); |
| // Copy final part |
| if (v6stat.total != v6stat.zero_pos) { |
| OPENSSL_memcpy(v6 + v6stat.zero_pos + 16 - v6stat.total, |
| v6stat.tmp + v6stat.zero_pos, |
| v6stat.total - v6stat.zero_pos); |
| } |
| } else { |
| OPENSSL_memcpy(v6, v6stat.tmp, 16); |
| } |
| |
| return 1; |
| } |
| |
| static int ipv6_cb(const char *elem, size_t len, void *usr) { |
| IPV6_STAT *s = usr; |
| // Error if 16 bytes written |
| if (s->total == 16) { |
| return 0; |
| } |
| if (len == 0) { |
| // Zero length element, corresponds to '::' |
| if (s->zero_pos == -1) { |
| s->zero_pos = s->total; |
| } else if (s->zero_pos != s->total) { |
| // If we've already got a :: its an error |
| return 0; |
| } |
| if (s->zero_cnt >= 3) { |
| // More than three zeros is an error. |
| return 0; |
| } |
| s->zero_cnt++; |
| } else { |
| // If more than 4 characters could be final a.b.c.d form |
| if (len > 4) { |
| // Need at least 4 bytes left |
| if (s->total > 12) { |
| return 0; |
| } |
| // Must be end of string |
| if (elem[len]) { |
| return 0; |
| } |
| if (!ipv4_from_asc(s->tmp + s->total, elem)) { |
| return 0; |
| } |
| s->total += 4; |
| } else { |
| if (!ipv6_hex(s->tmp + s->total, elem, len)) { |
| return 0; |
| } |
| s->total += 2; |
| } |
| } |
| return 1; |
| } |
| |
| // Convert a string of up to 4 hex digits into the corresponding IPv6 form. |
| |
| static int ipv6_hex(uint8_t *out, const char *in, size_t inlen) { |
| if (inlen > 4) { |
| return 0; |
| } |
| uint16_t num = 0; |
| while (inlen--) { |
| uint8_t val; |
| if (!OPENSSL_fromxdigit(&val, *in++)) { |
| return 0; |
| } |
| num = (num << 4) | val; |
| } |
| out[0] = num >> 8; |
| out[1] = num & 0xff; |
| return 1; |
| } |
| |
| int X509V3_NAME_from_section(X509_NAME *nm, const STACK_OF(CONF_VALUE) *dn_sk, |
| int chtype) { |
| if (!nm) { |
| return 0; |
| } |
| |
| for (size_t i = 0; i < sk_CONF_VALUE_num(dn_sk); i++) { |
| const CONF_VALUE *v = sk_CONF_VALUE_value(dn_sk, i); |
| const char *type = v->name; |
| // Skip past any leading X. X: X, etc to allow for multiple instances |
| for (const char *p = type; *p; p++) { |
| if ((*p == ':') || (*p == ',') || (*p == '.')) { |
| p++; |
| if (*p) { |
| type = p; |
| } |
| break; |
| } |
| } |
| int mval; |
| if (*type == '+') { |
| mval = -1; |
| type++; |
| } else { |
| mval = 0; |
| } |
| if (!X509_NAME_add_entry_by_txt(nm, type, chtype, (unsigned char *)v->value, |
| -1, -1, mval)) { |
| return 0; |
| } |
| } |
| return 1; |
| } |