| /* Copyright (c) 2016, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <openssl/base.h> |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/ec.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| |
| #include "internal.h" |
| #include "../bn/internal.h" |
| #include "../../internal.h" |
| #include "../../test/abi_test.h" |
| #include "../../test/file_test.h" |
| #include "../../test/test_util.h" |
| #include "p256-nistz.h" |
| |
| |
| // Disable tests if BORINGSSL_SHARED_LIBRARY is defined. These tests need access |
| // to internal functions. |
| #if !defined(OPENSSL_NO_ASM) && \ |
| (defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) && \ |
| !defined(OPENSSL_SMALL) && !defined(BORINGSSL_SHARED_LIBRARY) |
| |
| TEST(P256_NistzTest, SelectW5) { |
| // Fill a table with some garbage input. |
| alignas(64) P256_POINT table[16]; |
| for (size_t i = 0; i < 16; i++) { |
| OPENSSL_memset(table[i].X, static_cast<uint8_t>(3 * i), sizeof(table[i].X)); |
| OPENSSL_memset(table[i].Y, static_cast<uint8_t>(3 * i + 1), |
| sizeof(table[i].Y)); |
| OPENSSL_memset(table[i].Z, static_cast<uint8_t>(3 * i + 2), |
| sizeof(table[i].Z)); |
| } |
| |
| for (int i = 0; i <= 16; i++) { |
| P256_POINT val; |
| ecp_nistz256_select_w5(&val, table, i); |
| |
| P256_POINT expected; |
| if (i == 0) { |
| OPENSSL_memset(&expected, 0, sizeof(expected)); |
| } else { |
| expected = table[i-1]; |
| } |
| |
| EXPECT_EQ(Bytes(reinterpret_cast<const char *>(&expected), sizeof(expected)), |
| Bytes(reinterpret_cast<const char *>(&val), sizeof(val))); |
| } |
| |
| // This is a constant-time function, so it is only necessary to instrument one |
| // index for ABI checking. |
| P256_POINT val; |
| CHECK_ABI(ecp_nistz256_select_w5, &val, table, 7); |
| } |
| |
| TEST(P256_NistzTest, SelectW7) { |
| // Fill a table with some garbage input. |
| alignas(64) P256_POINT_AFFINE table[64]; |
| for (size_t i = 0; i < 64; i++) { |
| OPENSSL_memset(table[i].X, static_cast<uint8_t>(2 * i), sizeof(table[i].X)); |
| OPENSSL_memset(table[i].Y, static_cast<uint8_t>(2 * i + 1), |
| sizeof(table[i].Y)); |
| } |
| |
| for (int i = 0; i <= 64; i++) { |
| P256_POINT_AFFINE val; |
| ecp_nistz256_select_w7(&val, table, i); |
| |
| P256_POINT_AFFINE expected; |
| if (i == 0) { |
| OPENSSL_memset(&expected, 0, sizeof(expected)); |
| } else { |
| expected = table[i-1]; |
| } |
| |
| EXPECT_EQ(Bytes(reinterpret_cast<const char *>(&expected), sizeof(expected)), |
| Bytes(reinterpret_cast<const char *>(&val), sizeof(val))); |
| } |
| |
| // This is a constant-time function, so it is only necessary to instrument one |
| // index for ABI checking. |
| P256_POINT_AFFINE val; |
| CHECK_ABI(ecp_nistz256_select_w7, &val, table, 42); |
| } |
| |
| TEST(P256_NistzTest, BEEU) { |
| #if defined(OPENSSL_X86_64) |
| if (!CRYPTO_is_AVX_capable()) { |
| // No AVX support; cannot run the BEEU code. |
| return; |
| } |
| #endif |
| |
| const EC_GROUP *group = EC_group_p256(); |
| BN_ULONG order_words[P256_LIMBS]; |
| ASSERT_TRUE( |
| bn_copy_words(order_words, P256_LIMBS, EC_GROUP_get0_order(group))); |
| |
| BN_ULONG in[P256_LIMBS], out[P256_LIMBS]; |
| EC_SCALAR in_scalar, out_scalar, result; |
| OPENSSL_memset(in, 0, sizeof(in)); |
| |
| // Trying to find the inverse of zero should fail. |
| ASSERT_FALSE(beeu_mod_inverse_vartime(out, in, order_words)); |
| // This is not a constant-time function, so instrument both zero and a few |
| // inputs below. |
| ASSERT_FALSE(CHECK_ABI(beeu_mod_inverse_vartime, out, in, order_words)); |
| |
| // kOneMont is 1, in Montgomery form. |
| static const BN_ULONG kOneMont[P256_LIMBS] = { |
| TOBN(0xc46353d, 0x039cdaaf), |
| TOBN(0x43190552, 0x58e8617b), |
| 0, |
| 0xffffffff, |
| }; |
| |
| for (BN_ULONG i = 1; i < 2000; i++) { |
| SCOPED_TRACE(i); |
| |
| in[0] = i; |
| if (i >= 1000) { |
| in[1] = i << 8; |
| in[2] = i << 32; |
| in[3] = i << 48; |
| } else { |
| in[1] = in[2] = in[3] = 0; |
| } |
| |
| EXPECT_TRUE(bn_less_than_words(in, order_words, P256_LIMBS)); |
| ASSERT_TRUE(beeu_mod_inverse_vartime(out, in, order_words)); |
| EXPECT_TRUE(bn_less_than_words(out, order_words, P256_LIMBS)); |
| |
| // Calculate out*in and confirm that it equals one, modulo the order. |
| OPENSSL_memcpy(in_scalar.words, in, sizeof(in)); |
| OPENSSL_memcpy(out_scalar.words, out, sizeof(out)); |
| ec_scalar_to_montgomery(group, &in_scalar, &in_scalar); |
| ec_scalar_to_montgomery(group, &out_scalar, &out_scalar); |
| ec_scalar_mul_montgomery(group, &result, &in_scalar, &out_scalar); |
| |
| EXPECT_EQ(0, OPENSSL_memcmp(kOneMont, &result, sizeof(kOneMont))); |
| |
| // Invert the result and expect to get back to the original value. |
| ASSERT_TRUE(beeu_mod_inverse_vartime(out, out, order_words)); |
| EXPECT_EQ(0, OPENSSL_memcmp(in, out, sizeof(in))); |
| |
| if (i < 5) { |
| EXPECT_TRUE(CHECK_ABI(beeu_mod_inverse_vartime, out, in, order_words)); |
| } |
| } |
| } |
| |
| static bool GetFieldElement(FileTest *t, BN_ULONG out[P256_LIMBS], |
| const char *name) { |
| std::vector<uint8_t> bytes; |
| if (!t->GetBytes(&bytes, name)) { |
| return false; |
| } |
| |
| if (bytes.size() != BN_BYTES * P256_LIMBS) { |
| ADD_FAILURE() << "Invalid length: " << name; |
| return false; |
| } |
| |
| // |byte| contains bytes in big-endian while |out| should contain |BN_ULONG|s |
| // in little-endian. |
| OPENSSL_memset(out, 0, P256_LIMBS * sizeof(BN_ULONG)); |
| for (size_t i = 0; i < bytes.size(); i++) { |
| out[P256_LIMBS - 1 - (i / BN_BYTES)] <<= 8; |
| out[P256_LIMBS - 1 - (i / BN_BYTES)] |= bytes[i]; |
| } |
| |
| return true; |
| } |
| |
| static std::string FieldElementToString(const BN_ULONG a[P256_LIMBS]) { |
| std::string ret; |
| for (size_t i = P256_LIMBS-1; i < P256_LIMBS; i--) { |
| char buf[2 * BN_BYTES + 1]; |
| snprintf(buf, sizeof(buf), BN_HEX_FMT2, a[i]); |
| ret += buf; |
| } |
| return ret; |
| } |
| |
| static testing::AssertionResult ExpectFieldElementsEqual( |
| const char *expected_expr, const char *actual_expr, |
| const BN_ULONG expected[P256_LIMBS], const BN_ULONG actual[P256_LIMBS]) { |
| if (OPENSSL_memcmp(expected, actual, sizeof(BN_ULONG) * P256_LIMBS) == 0) { |
| return testing::AssertionSuccess(); |
| } |
| |
| return testing::AssertionFailure() |
| << "Expected: " << FieldElementToString(expected) << " (" |
| << expected_expr << ")\n" |
| << "Actual: " << FieldElementToString(actual) << " (" << actual_expr |
| << ")"; |
| } |
| |
| #define EXPECT_FIELD_ELEMENTS_EQUAL(a, b) \ |
| EXPECT_PRED_FORMAT2(ExpectFieldElementsEqual, a, b) |
| |
| static bool PointToAffine(P256_POINT_AFFINE *out, const P256_POINT *in) { |
| static const uint8_t kP[] = { |
| 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| }; |
| |
| bssl::UniquePtr<BIGNUM> x(BN_new()), y(BN_new()), z(BN_new()); |
| bssl::UniquePtr<BIGNUM> p(BN_bin2bn(kP, sizeof(kP), nullptr)); |
| if (!x || !y || !z || !p || |
| !bn_set_words(x.get(), in->X, P256_LIMBS) || |
| !bn_set_words(y.get(), in->Y, P256_LIMBS) || |
| !bn_set_words(z.get(), in->Z, P256_LIMBS)) { |
| return false; |
| } |
| |
| // Coordinates must be fully-reduced. |
| if (BN_cmp(x.get(), p.get()) >= 0 || |
| BN_cmp(y.get(), p.get()) >= 0 || |
| BN_cmp(z.get(), p.get()) >= 0) { |
| return false; |
| } |
| |
| if (BN_is_zero(z.get())) { |
| // The point at infinity is represented as (0, 0). |
| OPENSSL_memset(out, 0, sizeof(P256_POINT_AFFINE)); |
| return true; |
| } |
| |
| bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
| bssl::UniquePtr<BN_MONT_CTX> mont( |
| BN_MONT_CTX_new_for_modulus(p.get(), ctx.get())); |
| if (!ctx || !mont || |
| // Invert Z. |
| !BN_from_montgomery(z.get(), z.get(), mont.get(), ctx.get()) || |
| !BN_mod_inverse(z.get(), z.get(), p.get(), ctx.get()) || |
| !BN_to_montgomery(z.get(), z.get(), mont.get(), ctx.get()) || |
| // Convert (X, Y, Z) to (X/Z^2, Y/Z^3). |
| !BN_mod_mul_montgomery(x.get(), x.get(), z.get(), mont.get(), |
| ctx.get()) || |
| !BN_mod_mul_montgomery(x.get(), x.get(), z.get(), mont.get(), |
| ctx.get()) || |
| !BN_mod_mul_montgomery(y.get(), y.get(), z.get(), mont.get(), |
| ctx.get()) || |
| !BN_mod_mul_montgomery(y.get(), y.get(), z.get(), mont.get(), |
| ctx.get()) || |
| !BN_mod_mul_montgomery(y.get(), y.get(), z.get(), mont.get(), |
| ctx.get()) || |
| !bn_copy_words(out->X, P256_LIMBS, x.get()) || |
| !bn_copy_words(out->Y, P256_LIMBS, y.get())) { |
| return false; |
| } |
| return true; |
| } |
| |
| static testing::AssertionResult ExpectPointsEqual( |
| const char *expected_expr, const char *actual_expr, |
| const P256_POINT_AFFINE *expected, const P256_POINT *actual) { |
| // There are multiple representations of the same |P256_POINT|, so convert to |
| // |P256_POINT_AFFINE| and compare. |
| P256_POINT_AFFINE affine; |
| if (!PointToAffine(&affine, actual)) { |
| return testing::AssertionFailure() |
| << "Could not convert " << actual_expr << " to affine: (" |
| << FieldElementToString(actual->X) << ", " |
| << FieldElementToString(actual->Y) << ", " |
| << FieldElementToString(actual->Z) << ")"; |
| } |
| |
| if (OPENSSL_memcmp(expected, &affine, sizeof(P256_POINT_AFFINE)) != 0) { |
| return testing::AssertionFailure() |
| << "Expected: (" << FieldElementToString(expected->X) << ", " |
| << FieldElementToString(expected->Y) << ") (" << expected_expr |
| << "; affine)\n" |
| << "Actual: (" << FieldElementToString(affine.X) << ", " |
| << FieldElementToString(affine.Y) << ") (" << actual_expr << ")"; |
| } |
| |
| return testing::AssertionSuccess(); |
| } |
| |
| #define EXPECT_POINTS_EQUAL(a, b) EXPECT_PRED_FORMAT2(ExpectPointsEqual, a, b) |
| |
| static void TestNegate(FileTest *t) { |
| BN_ULONG a[P256_LIMBS], b[P256_LIMBS]; |
| ASSERT_TRUE(GetFieldElement(t, a, "A")); |
| ASSERT_TRUE(GetFieldElement(t, b, "B")); |
| |
| // Test that -A = B. |
| BN_ULONG ret[P256_LIMBS]; |
| ecp_nistz256_neg(ret, a); |
| EXPECT_FIELD_ELEMENTS_EQUAL(b, ret); |
| |
| OPENSSL_memcpy(ret, a, sizeof(ret)); |
| ecp_nistz256_neg(ret, ret /* a */); |
| EXPECT_FIELD_ELEMENTS_EQUAL(b, ret); |
| |
| // Test that -B = A. |
| ecp_nistz256_neg(ret, b); |
| EXPECT_FIELD_ELEMENTS_EQUAL(a, ret); |
| |
| OPENSSL_memcpy(ret, b, sizeof(ret)); |
| ecp_nistz256_neg(ret, ret /* b */); |
| EXPECT_FIELD_ELEMENTS_EQUAL(a, ret); |
| } |
| |
| static void TestMulMont(FileTest *t) { |
| BN_ULONG a[P256_LIMBS], b[P256_LIMBS], result[P256_LIMBS]; |
| ASSERT_TRUE(GetFieldElement(t, a, "A")); |
| ASSERT_TRUE(GetFieldElement(t, b, "B")); |
| ASSERT_TRUE(GetFieldElement(t, result, "Result")); |
| |
| BN_ULONG ret[P256_LIMBS]; |
| ecp_nistz256_mul_mont(ret, a, b); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| ecp_nistz256_mul_mont(ret, b, a); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| OPENSSL_memcpy(ret, a, sizeof(ret)); |
| ecp_nistz256_mul_mont(ret, ret /* a */, b); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| OPENSSL_memcpy(ret, a, sizeof(ret)); |
| ecp_nistz256_mul_mont(ret, b, ret); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| OPENSSL_memcpy(ret, b, sizeof(ret)); |
| ecp_nistz256_mul_mont(ret, a, ret /* b */); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| OPENSSL_memcpy(ret, b, sizeof(ret)); |
| ecp_nistz256_mul_mont(ret, ret /* b */, a); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| if (OPENSSL_memcmp(a, b, sizeof(a)) == 0) { |
| ecp_nistz256_sqr_mont(ret, a); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| OPENSSL_memcpy(ret, a, sizeof(ret)); |
| ecp_nistz256_sqr_mont(ret, ret /* a */); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| } |
| } |
| |
| static void TestPointAdd(FileTest *t) { |
| P256_POINT a, b; |
| P256_POINT_AFFINE result; |
| ASSERT_TRUE(GetFieldElement(t, a.X, "A.X")); |
| ASSERT_TRUE(GetFieldElement(t, a.Y, "A.Y")); |
| ASSERT_TRUE(GetFieldElement(t, a.Z, "A.Z")); |
| ASSERT_TRUE(GetFieldElement(t, b.X, "B.X")); |
| ASSERT_TRUE(GetFieldElement(t, b.Y, "B.Y")); |
| ASSERT_TRUE(GetFieldElement(t, b.Z, "B.Z")); |
| ASSERT_TRUE(GetFieldElement(t, result.X, "Result.X")); |
| ASSERT_TRUE(GetFieldElement(t, result.Y, "Result.Y")); |
| |
| P256_POINT ret; |
| ecp_nistz256_point_add(&ret, &a, &b); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| |
| ecp_nistz256_point_add(&ret, &b, &a); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| |
| OPENSSL_memcpy(&ret, &a, sizeof(ret)); |
| ecp_nistz256_point_add(&ret, &ret /* a */, &b); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| |
| OPENSSL_memcpy(&ret, &a, sizeof(ret)); |
| ecp_nistz256_point_add(&ret, &b, &ret /* a */); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| |
| OPENSSL_memcpy(&ret, &b, sizeof(ret)); |
| ecp_nistz256_point_add(&ret, &a, &ret /* b */); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| |
| OPENSSL_memcpy(&ret, &b, sizeof(ret)); |
| ecp_nistz256_point_add(&ret, &ret /* b */, &a); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| |
| P256_POINT_AFFINE a_affine, b_affine, infinity; |
| OPENSSL_memset(&infinity, 0, sizeof(infinity)); |
| ASSERT_TRUE(PointToAffine(&a_affine, &a)); |
| ASSERT_TRUE(PointToAffine(&b_affine, &b)); |
| |
| // ecp_nistz256_point_add_affine does not work when a == b unless doubling the |
| // point at infinity. |
| if (OPENSSL_memcmp(&a_affine, &b_affine, sizeof(a_affine)) != 0 || |
| OPENSSL_memcmp(&a_affine, &infinity, sizeof(a_affine)) == 0) { |
| ecp_nistz256_point_add_affine(&ret, &a, &b_affine); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| |
| OPENSSL_memcpy(&ret, &a, sizeof(ret)); |
| ecp_nistz256_point_add_affine(&ret, &ret /* a */, &b_affine); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| |
| ecp_nistz256_point_add_affine(&ret, &b, &a_affine); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| |
| OPENSSL_memcpy(&ret, &b, sizeof(ret)); |
| ecp_nistz256_point_add_affine(&ret, &ret /* b */, &a_affine); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| } |
| |
| if (OPENSSL_memcmp(&a, &b, sizeof(a)) == 0) { |
| ecp_nistz256_point_double(&ret, &a); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| |
| ret = a; |
| ecp_nistz256_point_double(&ret, &ret /* a */); |
| EXPECT_POINTS_EQUAL(&result, &ret); |
| } |
| } |
| |
| static void TestOrdMulMont(FileTest *t) { |
| // This test works on scalars rather than field elements, but the |
| // representation is the same. |
| BN_ULONG a[P256_LIMBS], b[P256_LIMBS], result[P256_LIMBS]; |
| ASSERT_TRUE(GetFieldElement(t, a, "A")); |
| ASSERT_TRUE(GetFieldElement(t, b, "B")); |
| ASSERT_TRUE(GetFieldElement(t, result, "Result")); |
| |
| BN_ULONG ret[P256_LIMBS]; |
| ecp_nistz256_ord_mul_mont(ret, a, b); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| ecp_nistz256_ord_mul_mont(ret, b, a); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| OPENSSL_memcpy(ret, a, sizeof(ret)); |
| ecp_nistz256_ord_mul_mont(ret, ret /* a */, b); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| OPENSSL_memcpy(ret, a, sizeof(ret)); |
| ecp_nistz256_ord_mul_mont(ret, b, ret); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| OPENSSL_memcpy(ret, b, sizeof(ret)); |
| ecp_nistz256_ord_mul_mont(ret, a, ret /* b */); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| OPENSSL_memcpy(ret, b, sizeof(ret)); |
| ecp_nistz256_ord_mul_mont(ret, ret /* b */, a); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| if (OPENSSL_memcmp(a, b, sizeof(a)) == 0) { |
| ecp_nistz256_ord_sqr_mont(ret, a, 1); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| |
| OPENSSL_memcpy(ret, a, sizeof(ret)); |
| ecp_nistz256_ord_sqr_mont(ret, ret /* a */, 1); |
| EXPECT_FIELD_ELEMENTS_EQUAL(result, ret); |
| } |
| } |
| |
| TEST(P256_NistzTest, TestVectors) { |
| return FileTestGTest("crypto/fipsmodule/ec/p256-nistz_tests.txt", |
| [](FileTest *t) { |
| if (t->GetParameter() == "Negate") { |
| TestNegate(t); |
| } else if (t->GetParameter() == "MulMont") { |
| TestMulMont(t); |
| } else if (t->GetParameter() == "PointAdd") { |
| TestPointAdd(t); |
| } else if (t->GetParameter() == "OrdMulMont") { |
| TestOrdMulMont(t); |
| } else { |
| FAIL() << "Unknown test type:" << t->GetParameter(); |
| } |
| }); |
| } |
| |
| // Instrument the functions covered in TestVectors for ABI checking. |
| TEST(P256_NistzTest, ABI) { |
| BN_ULONG a[P256_LIMBS], b[P256_LIMBS], c[P256_LIMBS]; |
| OPENSSL_memset(a, 0x01, sizeof(a)); |
| // These functions are all constant-time, so it is only necessary to |
| // instrument one call each for ABI checking. |
| CHECK_ABI(ecp_nistz256_neg, b, a); |
| CHECK_ABI(ecp_nistz256_mul_mont, c, a, b); |
| CHECK_ABI(ecp_nistz256_sqr_mont, c, a); |
| CHECK_ABI(ecp_nistz256_ord_mul_mont, c, a, b); |
| |
| // Check a few different loop counts. |
| CHECK_ABI(ecp_nistz256_ord_sqr_mont, b, a, 1); |
| CHECK_ABI(ecp_nistz256_ord_sqr_mont, b, a, 3); |
| |
| // Point addition has some special cases around infinity and doubling. Test a |
| // few different scenarios. |
| static const P256_POINT kA = { |
| {TOBN(0x60559ac7, 0xc8d0d89d), TOBN(0x6cda3400, 0x545f7e2c), |
| TOBN(0x9b5159e0, 0x323e6048), TOBN(0xcb8dea33, 0x27057fe6)}, |
| {TOBN(0x81a2d3bc, 0xc93a2d53), TOBN(0x81f40762, 0xa4f33ccf), |
| TOBN(0xc3c3300a, 0xa8ad50ea), TOBN(0x553de89b, 0x31719830)}, |
| {TOBN(0x3fd9470f, 0xb277d181), TOBN(0xc191b8d5, 0x6376f206), |
| TOBN(0xb2572c1f, 0x45eda26f), TOBN(0x4589e40d, 0xf2efc546)}, |
| }; |
| static const P256_POINT kB = { |
| {TOBN(0x3cf0b0aa, 0x92054341), TOBN(0xb949bb80, 0xdab57807), |
| TOBN(0x99de6814, 0xefd21b3e), TOBN(0x32ad5649, 0x7c6c6e83)}, |
| {TOBN(0x06afaa02, 0x688399e0), TOBN(0x75f2d096, 0x2a3ce65c), |
| TOBN(0xf6a31eb7, 0xca0244b3), TOBN(0x57b33b7a, 0xcfeee75e)}, |
| {TOBN(0x7617d2e0, 0xb4f1d35f), TOBN(0xa922cb10, 0x7f592b65), |
| TOBN(0x12fd6c7a, 0x51a2f474), TOBN(0x337d5e1e, 0xc2fc711b)}, |
| }; |
| // This file represents Jacobian infinity as (*, *, 0). |
| static const P256_POINT kInfinity = { |
| {TOBN(0, 0), TOBN(0, 0), TOBN(0, 0), TOBN(0, 0)}, |
| {TOBN(0, 0), TOBN(0, 0), TOBN(0, 0), TOBN(0, 0)}, |
| {TOBN(0, 0), TOBN(0, 0), TOBN(0, 0), TOBN(0, 0)}, |
| }; |
| |
| P256_POINT p; |
| CHECK_ABI(ecp_nistz256_point_add, &p, &kA, &kB); |
| CHECK_ABI(ecp_nistz256_point_add, &p, &kA, &kA); |
| OPENSSL_memcpy(&p, &kA, sizeof(P256_POINT)); |
| ecp_nistz256_neg(p.Y, p.Y); |
| CHECK_ABI(ecp_nistz256_point_add, &p, &kA, &p); // A + -A |
| CHECK_ABI(ecp_nistz256_point_add, &p, &kA, &kInfinity); |
| CHECK_ABI(ecp_nistz256_point_add, &p, &kInfinity, &kA); |
| CHECK_ABI(ecp_nistz256_point_add, &p, &kInfinity, &kInfinity); |
| CHECK_ABI(ecp_nistz256_point_double, &p, &kA); |
| CHECK_ABI(ecp_nistz256_point_double, &p, &kInfinity); |
| |
| static const P256_POINT_AFFINE kC = { |
| {TOBN(0x7e3ad339, 0xfb3fa5f0), TOBN(0x559d669d, 0xe3a047b2), |
| TOBN(0x8883b298, 0x7042e595), TOBN(0xfabada65, 0x7e477f08)}, |
| {TOBN(0xd9cfceb8, 0xda1c3e85), TOBN(0x80863761, 0x0ce6d6bc), |
| TOBN(0xa8409d84, 0x66034f02), TOBN(0x05519925, 0x31a68d55)}, |
| }; |
| // This file represents affine infinity as (0, 0). |
| static const P256_POINT_AFFINE kInfinityAffine = { |
| {TOBN(0, 0), TOBN(0, 0), TOBN(0, 0), TOBN(0, 0)}, |
| {TOBN(0, 0), TOBN(0, 0), TOBN(0, 0), TOBN(0, 0)}, |
| }; |
| |
| CHECK_ABI(ecp_nistz256_point_add_affine, &p, &kA, &kC); |
| CHECK_ABI(ecp_nistz256_point_add_affine, &p, &kA, &kInfinityAffine); |
| CHECK_ABI(ecp_nistz256_point_add_affine, &p, &kInfinity, &kInfinityAffine); |
| CHECK_ABI(ecp_nistz256_point_add_affine, &p, &kInfinity, &kC); |
| } |
| |
| #endif |