blob: 9cf42f1a179d4b7b587575f06e0c2dc6da193fc8 [file] [log] [blame]
/*
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/bn.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/thread.h>
#include "../../internal.h"
#include "internal.h"
void bn_mont_ctx_init(BN_MONT_CTX *mont) {
OPENSSL_memset(mont, 0, sizeof(BN_MONT_CTX));
BN_init(&mont->RR);
BN_init(&mont->N);
}
void bn_mont_ctx_cleanup(BN_MONT_CTX *mont) {
BN_free(&mont->RR);
BN_free(&mont->N);
}
BN_MONT_CTX *BN_MONT_CTX_new(void) {
BN_MONT_CTX *ret =
reinterpret_cast<BN_MONT_CTX *>(OPENSSL_malloc(sizeof(BN_MONT_CTX)));
if (ret == NULL) {
return NULL;
}
bn_mont_ctx_init(ret);
return ret;
}
void BN_MONT_CTX_free(BN_MONT_CTX *mont) {
if (mont == nullptr) {
return;
}
bn_mont_ctx_cleanup(mont);
OPENSSL_free(mont);
}
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, const BN_MONT_CTX *from) {
if (to == from) {
return to;
}
if (!BN_copy(&to->RR, &from->RR) || !BN_copy(&to->N, &from->N)) {
return NULL;
}
to->n0[0] = from->n0[0];
to->n0[1] = from->n0[1];
return to;
}
static int bn_mont_ctx_set_N_and_n0(BN_MONT_CTX *mont, const BIGNUM *mod) {
if (BN_is_zero(mod)) {
OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
return 0;
}
if (!BN_is_odd(mod)) {
OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
return 0;
}
if (BN_is_negative(mod)) {
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
return 0;
}
if (!bn_fits_in_words(mod, BN_MONTGOMERY_MAX_WORDS)) {
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
return 0;
}
// Save the modulus.
if (!BN_copy(&mont->N, mod)) {
OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
return 0;
}
// |mont->N| is always stored minimally. Computing RR efficiently leaks the
// size of the modulus. While the modulus may be private in RSA (one of the
// primes), their sizes are public, so this is fine.
bn_set_minimal_width(&mont->N);
// Find n0 such that n0 * N == -1 (mod r).
//
// Only certain BN_BITS2<=32 platforms actually make use of n0[1]. For the
// others, we could use a shorter R value and use faster |BN_ULONG|-based
// math instead of |uint64_t|-based math, which would be double-precision.
// However, currently only the assembler files know which is which.
static_assert(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2,
"BN_MONT_CTX_N0_LIMBS value is invalid");
static_assert(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == sizeof(uint64_t),
"uint64_t is insufficient precision for n0");
uint64_t n0 = bn_mont_n0(&mont->N);
mont->n0[0] = (BN_ULONG)n0;
#if BN_MONT_CTX_N0_LIMBS == 2
mont->n0[1] = (BN_ULONG)(n0 >> BN_BITS2);
#else
mont->n0[1] = 0;
#endif
return 1;
}
int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) {
if (!bn_mont_ctx_set_N_and_n0(mont, mod)) {
return 0;
}
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
new_ctx = BN_CTX_new();
if (new_ctx == NULL) {
return 0;
}
ctx = new_ctx;
}
// Save RR = R**2 (mod N). R is the smallest power of 2**BN_BITS2 such that R
// > mod. Even though the assembly on some 32-bit platforms works with 64-bit
// values, using |BN_BITS2| here, rather than |BN_MONT_CTX_N0_LIMBS *
// BN_BITS2|, is correct because R**2 will still be a multiple of the latter
// as |BN_MONT_CTX_N0_LIMBS| is either one or two.
unsigned lgBigR = mont->N.width * BN_BITS2;
BN_zero(&mont->RR);
int ok = BN_set_bit(&mont->RR, lgBigR * 2) &&
BN_mod(&mont->RR, &mont->RR, &mont->N, ctx) &&
bn_resize_words(&mont->RR, mont->N.width);
BN_CTX_free(new_ctx);
return ok;
}
BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod, BN_CTX *ctx) {
BN_MONT_CTX *mont = BN_MONT_CTX_new();
if (mont == NULL || !BN_MONT_CTX_set(mont, mod, ctx)) {
BN_MONT_CTX_free(mont);
return NULL;
}
return mont;
}
BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod, BN_CTX *ctx) {
BN_MONT_CTX *mont = BN_MONT_CTX_new();
if (mont == NULL || !bn_mont_ctx_set_N_and_n0(mont, mod) ||
!bn_mont_ctx_set_RR_consttime(mont, ctx)) {
BN_MONT_CTX_free(mont);
return NULL;
}
return mont;
}
int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock,
const BIGNUM *mod, BN_CTX *bn_ctx) {
CRYPTO_MUTEX_lock_read(lock);
BN_MONT_CTX *ctx = *pmont;
CRYPTO_MUTEX_unlock_read(lock);
if (ctx) {
return 1;
}
CRYPTO_MUTEX_lock_write(lock);
if (*pmont == NULL) {
*pmont = BN_MONT_CTX_new_for_modulus(mod, bn_ctx);
}
const int ok = *pmont != NULL;
CRYPTO_MUTEX_unlock_write(lock);
return ok;
}
int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, const BN_MONT_CTX *mont,
BN_CTX *ctx) {
return BN_mod_mul_montgomery(ret, a, &mont->RR, mont, ctx);
}
static int bn_from_montgomery_in_place(BN_ULONG *r, size_t num_r, BN_ULONG *a,
size_t num_a, const BN_MONT_CTX *mont) {
const BN_ULONG *n = mont->N.d;
size_t num_n = mont->N.width;
if (num_r != num_n || num_a != 2 * num_n) {
OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
// Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On
// input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r|
// includes |carry| which is stored separately.
BN_ULONG n0 = mont->n0[0];
BN_ULONG carry = 0;
for (size_t i = 0; i < num_n; i++) {
BN_ULONG v = bn_mul_add_words(a + i, n, num_n, a[i] * n0);
v += carry + a[i + num_n];
carry |= (v != a[i + num_n]);
carry &= (v <= a[i + num_n]);
a[i + num_n] = v;
}
// Shift |num_n| words to divide by R. We have |a| < 2 * |n|. Note that |a|
// includes |carry| which is stored separately.
a += num_n;
// |a| thus requires at most one additional subtraction |n| to be reduced.
bn_reduce_once(r, a, carry, n, num_n);
return 1;
}
static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r,
const BN_MONT_CTX *mont) {
if (r->neg) {
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
return 0;
}
const BIGNUM *n = &mont->N;
if (n->width == 0) {
ret->width = 0;
return 1;
}
int max = 2 * n->width; // carry is stored separately
if (!bn_resize_words(r, max) || !bn_wexpand(ret, n->width)) {
return 0;
}
ret->width = n->width;
ret->neg = 0;
return bn_from_montgomery_in_place(ret->d, ret->width, r->d, r->width, mont);
}
int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, const BN_MONT_CTX *mont,
BN_CTX *ctx) {
int ret = 0;
BIGNUM *t;
BN_CTX_start(ctx);
t = BN_CTX_get(ctx);
if (t == NULL || !BN_copy(t, a)) {
goto err;
}
ret = BN_from_montgomery_word(r, t, mont);
err:
BN_CTX_end(ctx);
return ret;
}
int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx) {
// If the high bit of |n| is set, R = 2^(width*BN_BITS2) < 2 * |n|, so we
// compute R - |n| rather than perform Montgomery reduction.
const BIGNUM *n = &mont->N;
if (n->width > 0 && (n->d[n->width - 1] >> (BN_BITS2 - 1)) != 0) {
if (!bn_wexpand(r, n->width)) {
return 0;
}
r->d[0] = 0 - n->d[0];
for (int i = 1; i < n->width; i++) {
r->d[i] = ~n->d[i];
}
r->width = n->width;
r->neg = 0;
return 1;
}
return BN_from_montgomery(r, &mont->RR, mont, ctx);
}
static int bn_mod_mul_montgomery_fallback(BIGNUM *r, const BIGNUM *a,
const BIGNUM *b,
const BN_MONT_CTX *mont,
BN_CTX *ctx) {
int ret = 0;
BN_CTX_start(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
if (tmp == NULL) {
goto err;
}
if (a == b) {
if (!bn_sqr_consttime(tmp, a, ctx)) {
goto err;
}
} else {
if (!bn_mul_consttime(tmp, a, b, ctx)) {
goto err;
}
}
// reduce from aRR to aR
if (!BN_from_montgomery_word(r, tmp, mont)) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BN_MONT_CTX *mont, BN_CTX *ctx) {
if (a->neg || b->neg) {
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
return 0;
}
#if defined(OPENSSL_BN_ASM_MONT)
// |bn_mul_mont| requires at least 128 bits of limbs, at least for x86.
int num = mont->N.width;
if (num >= (128 / BN_BITS2) && a->width == num && b->width == num) {
if (!bn_wexpand(r, num)) {
return 0;
}
// This bound is implied by |bn_mont_ctx_set_N_and_n0|. |bn_mul_mont|
// allocates |num| words on the stack, so |num| cannot be too large.
assert((size_t)num <= BN_MONTGOMERY_MAX_WORDS);
if (!bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) {
// The check above ensures this won't happen.
assert(0);
OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
return 0;
}
r->neg = 0;
r->width = num;
return 1;
}
#endif
return bn_mod_mul_montgomery_fallback(r, a, b, mont, ctx);
}
int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont) {
return !BN_is_negative(bn) && bn_fits_in_words(bn, mont->N.width);
}
void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
const BN_MONT_CTX *mont) {
bn_mod_mul_montgomery_small(r, a, mont->RR.d, num, mont);
}
void bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
size_t num_a, const BN_MONT_CTX *mont) {
if (num_r != (size_t)mont->N.width || num_r > BN_SMALL_MAX_WORDS ||
num_a > 2 * num_r) {
abort();
}
BN_ULONG tmp[BN_SMALL_MAX_WORDS * 2] = {0};
OPENSSL_memcpy(tmp, a, num_a * sizeof(BN_ULONG));
if (!bn_from_montgomery_in_place(r, num_r, tmp, 2 * num_r, mont)) {
abort();
}
OPENSSL_cleanse(tmp, 2 * num_r * sizeof(BN_ULONG));
}
void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a,
const BN_ULONG *b, size_t num,
const BN_MONT_CTX *mont) {
if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) {
abort();
}
#if defined(OPENSSL_BN_ASM_MONT)
// |bn_mul_mont| requires at least 128 bits of limbs, at least for x86.
if (num >= (128 / BN_BITS2)) {
if (!bn_mul_mont(r, a, b, mont->N.d, mont->n0, num)) {
abort(); // The check above ensures this won't happen.
}
return;
}
#endif
// Compute the product.
BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS];
if (a == b) {
bn_sqr_small(tmp, 2 * num, a, num);
} else {
bn_mul_small(tmp, 2 * num, a, num, b, num);
}
// Reduce.
if (!bn_from_montgomery_in_place(r, num, tmp, 2 * num, mont)) {
abort();
}
OPENSSL_cleanse(tmp, 2 * num * sizeof(BN_ULONG));
}
#if defined(OPENSSL_BN_ASM_MONT) && defined(OPENSSL_X86_64)
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
const BN_ULONG *np, const BN_ULONG *n0, size_t num) {
if (ap == bp && bn_sqr8x_mont_capable(num)) {
return bn_sqr8x_mont(rp, ap, bn_mulx_adx_capable(), np, n0, num);
}
if (bn_mulx4x_mont_capable(num)) {
return bn_mulx4x_mont(rp, ap, bp, np, n0, num);
}
if (bn_mul4x_mont_capable(num)) {
return bn_mul4x_mont(rp, ap, bp, np, n0, num);
}
return bn_mul_mont_nohw(rp, ap, bp, np, n0, num);
}
#endif
#if defined(OPENSSL_BN_ASM_MONT) && defined(OPENSSL_ARM)
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
const BN_ULONG *np, const BN_ULONG *n0, size_t num) {
if (bn_mul8x_mont_neon_capable(num)) {
return bn_mul8x_mont_neon(rp, ap, bp, np, n0, num);
}
return bn_mul_mont_nohw(rp, ap, bp, np, n0, num);
}
#endif