| /* |
| * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <openssl/bn.h> |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/thread.h> |
| |
| #include "../../internal.h" |
| #include "internal.h" |
| |
| |
| void bn_mont_ctx_init(BN_MONT_CTX *mont) { |
| OPENSSL_memset(mont, 0, sizeof(BN_MONT_CTX)); |
| BN_init(&mont->RR); |
| BN_init(&mont->N); |
| } |
| |
| void bn_mont_ctx_cleanup(BN_MONT_CTX *mont) { |
| BN_free(&mont->RR); |
| BN_free(&mont->N); |
| } |
| |
| BN_MONT_CTX *BN_MONT_CTX_new(void) { |
| BN_MONT_CTX *ret = |
| reinterpret_cast<BN_MONT_CTX *>(OPENSSL_malloc(sizeof(BN_MONT_CTX))); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| bn_mont_ctx_init(ret); |
| return ret; |
| } |
| |
| void BN_MONT_CTX_free(BN_MONT_CTX *mont) { |
| if (mont == nullptr) { |
| return; |
| } |
| bn_mont_ctx_cleanup(mont); |
| OPENSSL_free(mont); |
| } |
| |
| BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, const BN_MONT_CTX *from) { |
| if (to == from) { |
| return to; |
| } |
| |
| if (!BN_copy(&to->RR, &from->RR) || !BN_copy(&to->N, &from->N)) { |
| return NULL; |
| } |
| to->n0[0] = from->n0[0]; |
| to->n0[1] = from->n0[1]; |
| return to; |
| } |
| |
| static int bn_mont_ctx_set_N_and_n0(BN_MONT_CTX *mont, const BIGNUM *mod) { |
| if (BN_is_zero(mod)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO); |
| return 0; |
| } |
| if (!BN_is_odd(mod)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| return 0; |
| } |
| if (BN_is_negative(mod)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| return 0; |
| } |
| if (!bn_fits_in_words(mod, BN_MONTGOMERY_MAX_WORDS)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
| return 0; |
| } |
| |
| // Save the modulus. |
| if (!BN_copy(&mont->N, mod)) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| // |mont->N| is always stored minimally. Computing RR efficiently leaks the |
| // size of the modulus. While the modulus may be private in RSA (one of the |
| // primes), their sizes are public, so this is fine. |
| bn_set_minimal_width(&mont->N); |
| |
| // Find n0 such that n0 * N == -1 (mod r). |
| // |
| // Only certain BN_BITS2<=32 platforms actually make use of n0[1]. For the |
| // others, we could use a shorter R value and use faster |BN_ULONG|-based |
| // math instead of |uint64_t|-based math, which would be double-precision. |
| // However, currently only the assembler files know which is which. |
| static_assert(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2, |
| "BN_MONT_CTX_N0_LIMBS value is invalid"); |
| static_assert(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == sizeof(uint64_t), |
| "uint64_t is insufficient precision for n0"); |
| uint64_t n0 = bn_mont_n0(&mont->N); |
| mont->n0[0] = (BN_ULONG)n0; |
| #if BN_MONT_CTX_N0_LIMBS == 2 |
| mont->n0[1] = (BN_ULONG)(n0 >> BN_BITS2); |
| #else |
| mont->n0[1] = 0; |
| #endif |
| return 1; |
| } |
| |
| int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) { |
| if (!bn_mont_ctx_set_N_and_n0(mont, mod)) { |
| return 0; |
| } |
| |
| BN_CTX *new_ctx = NULL; |
| if (ctx == NULL) { |
| new_ctx = BN_CTX_new(); |
| if (new_ctx == NULL) { |
| return 0; |
| } |
| ctx = new_ctx; |
| } |
| |
| // Save RR = R**2 (mod N). R is the smallest power of 2**BN_BITS2 such that R |
| // > mod. Even though the assembly on some 32-bit platforms works with 64-bit |
| // values, using |BN_BITS2| here, rather than |BN_MONT_CTX_N0_LIMBS * |
| // BN_BITS2|, is correct because R**2 will still be a multiple of the latter |
| // as |BN_MONT_CTX_N0_LIMBS| is either one or two. |
| unsigned lgBigR = mont->N.width * BN_BITS2; |
| BN_zero(&mont->RR); |
| int ok = BN_set_bit(&mont->RR, lgBigR * 2) && |
| BN_mod(&mont->RR, &mont->RR, &mont->N, ctx) && |
| bn_resize_words(&mont->RR, mont->N.width); |
| BN_CTX_free(new_ctx); |
| return ok; |
| } |
| |
| BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod, BN_CTX *ctx) { |
| BN_MONT_CTX *mont = BN_MONT_CTX_new(); |
| if (mont == NULL || !BN_MONT_CTX_set(mont, mod, ctx)) { |
| BN_MONT_CTX_free(mont); |
| return NULL; |
| } |
| return mont; |
| } |
| |
| BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod, BN_CTX *ctx) { |
| BN_MONT_CTX *mont = BN_MONT_CTX_new(); |
| if (mont == NULL || !bn_mont_ctx_set_N_and_n0(mont, mod) || |
| !bn_mont_ctx_set_RR_consttime(mont, ctx)) { |
| BN_MONT_CTX_free(mont); |
| return NULL; |
| } |
| return mont; |
| } |
| |
| int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock, |
| const BIGNUM *mod, BN_CTX *bn_ctx) { |
| CRYPTO_MUTEX_lock_read(lock); |
| BN_MONT_CTX *ctx = *pmont; |
| CRYPTO_MUTEX_unlock_read(lock); |
| |
| if (ctx) { |
| return 1; |
| } |
| |
| CRYPTO_MUTEX_lock_write(lock); |
| if (*pmont == NULL) { |
| *pmont = BN_MONT_CTX_new_for_modulus(mod, bn_ctx); |
| } |
| const int ok = *pmont != NULL; |
| CRYPTO_MUTEX_unlock_write(lock); |
| return ok; |
| } |
| |
| int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, const BN_MONT_CTX *mont, |
| BN_CTX *ctx) { |
| return BN_mod_mul_montgomery(ret, a, &mont->RR, mont, ctx); |
| } |
| |
| static int bn_from_montgomery_in_place(BN_ULONG *r, size_t num_r, BN_ULONG *a, |
| size_t num_a, const BN_MONT_CTX *mont) { |
| const BN_ULONG *n = mont->N.d; |
| size_t num_n = mont->N.width; |
| if (num_r != num_n || num_a != 2 * num_n) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| // Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On |
| // input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r| |
| // includes |carry| which is stored separately. |
| BN_ULONG n0 = mont->n0[0]; |
| BN_ULONG carry = 0; |
| for (size_t i = 0; i < num_n; i++) { |
| BN_ULONG v = bn_mul_add_words(a + i, n, num_n, a[i] * n0); |
| v += carry + a[i + num_n]; |
| carry |= (v != a[i + num_n]); |
| carry &= (v <= a[i + num_n]); |
| a[i + num_n] = v; |
| } |
| |
| // Shift |num_n| words to divide by R. We have |a| < 2 * |n|. Note that |a| |
| // includes |carry| which is stored separately. |
| a += num_n; |
| |
| // |a| thus requires at most one additional subtraction |n| to be reduced. |
| bn_reduce_once(r, a, carry, n, num_n); |
| return 1; |
| } |
| |
| static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r, |
| const BN_MONT_CTX *mont) { |
| if (r->neg) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| return 0; |
| } |
| |
| const BIGNUM *n = &mont->N; |
| if (n->width == 0) { |
| ret->width = 0; |
| return 1; |
| } |
| |
| int max = 2 * n->width; // carry is stored separately |
| if (!bn_resize_words(r, max) || !bn_wexpand(ret, n->width)) { |
| return 0; |
| } |
| |
| ret->width = n->width; |
| ret->neg = 0; |
| return bn_from_montgomery_in_place(ret->d, ret->width, r->d, r->width, mont); |
| } |
| |
| int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, const BN_MONT_CTX *mont, |
| BN_CTX *ctx) { |
| int ret = 0; |
| BIGNUM *t; |
| |
| BN_CTX_start(ctx); |
| t = BN_CTX_get(ctx); |
| if (t == NULL || !BN_copy(t, a)) { |
| goto err; |
| } |
| |
| ret = BN_from_montgomery_word(r, t, mont); |
| |
| err: |
| BN_CTX_end(ctx); |
| |
| return ret; |
| } |
| |
| int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx) { |
| // If the high bit of |n| is set, R = 2^(width*BN_BITS2) < 2 * |n|, so we |
| // compute R - |n| rather than perform Montgomery reduction. |
| const BIGNUM *n = &mont->N; |
| if (n->width > 0 && (n->d[n->width - 1] >> (BN_BITS2 - 1)) != 0) { |
| if (!bn_wexpand(r, n->width)) { |
| return 0; |
| } |
| r->d[0] = 0 - n->d[0]; |
| for (int i = 1; i < n->width; i++) { |
| r->d[i] = ~n->d[i]; |
| } |
| r->width = n->width; |
| r->neg = 0; |
| return 1; |
| } |
| |
| return BN_from_montgomery(r, &mont->RR, mont, ctx); |
| } |
| |
| static int bn_mod_mul_montgomery_fallback(BIGNUM *r, const BIGNUM *a, |
| const BIGNUM *b, |
| const BN_MONT_CTX *mont, |
| BN_CTX *ctx) { |
| int ret = 0; |
| |
| BN_CTX_start(ctx); |
| BIGNUM *tmp = BN_CTX_get(ctx); |
| if (tmp == NULL) { |
| goto err; |
| } |
| |
| if (a == b) { |
| if (!bn_sqr_consttime(tmp, a, ctx)) { |
| goto err; |
| } |
| } else { |
| if (!bn_mul_consttime(tmp, a, b, ctx)) { |
| goto err; |
| } |
| } |
| |
| // reduce from aRR to aR |
| if (!BN_from_montgomery_word(r, tmp, mont)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| const BN_MONT_CTX *mont, BN_CTX *ctx) { |
| if (a->neg || b->neg) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| return 0; |
| } |
| |
| #if defined(OPENSSL_BN_ASM_MONT) |
| // |bn_mul_mont| requires at least 128 bits of limbs, at least for x86. |
| int num = mont->N.width; |
| if (num >= (128 / BN_BITS2) && a->width == num && b->width == num) { |
| if (!bn_wexpand(r, num)) { |
| return 0; |
| } |
| // This bound is implied by |bn_mont_ctx_set_N_and_n0|. |bn_mul_mont| |
| // allocates |num| words on the stack, so |num| cannot be too large. |
| assert((size_t)num <= BN_MONTGOMERY_MAX_WORDS); |
| if (!bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) { |
| // The check above ensures this won't happen. |
| assert(0); |
| OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| r->neg = 0; |
| r->width = num; |
| return 1; |
| } |
| #endif |
| |
| return bn_mod_mul_montgomery_fallback(r, a, b, mont, ctx); |
| } |
| |
| int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont) { |
| return !BN_is_negative(bn) && bn_fits_in_words(bn, mont->N.width); |
| } |
| |
| void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
| const BN_MONT_CTX *mont) { |
| bn_mod_mul_montgomery_small(r, a, mont->RR.d, num, mont); |
| } |
| |
| void bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, |
| size_t num_a, const BN_MONT_CTX *mont) { |
| if (num_r != (size_t)mont->N.width || num_r > BN_SMALL_MAX_WORDS || |
| num_a > 2 * num_r) { |
| abort(); |
| } |
| BN_ULONG tmp[BN_SMALL_MAX_WORDS * 2] = {0}; |
| OPENSSL_memcpy(tmp, a, num_a * sizeof(BN_ULONG)); |
| if (!bn_from_montgomery_in_place(r, num_r, tmp, 2 * num_r, mont)) { |
| abort(); |
| } |
| OPENSSL_cleanse(tmp, 2 * num_r * sizeof(BN_ULONG)); |
| } |
| |
| void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a, |
| const BN_ULONG *b, size_t num, |
| const BN_MONT_CTX *mont) { |
| if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) { |
| abort(); |
| } |
| |
| #if defined(OPENSSL_BN_ASM_MONT) |
| // |bn_mul_mont| requires at least 128 bits of limbs, at least for x86. |
| if (num >= (128 / BN_BITS2)) { |
| if (!bn_mul_mont(r, a, b, mont->N.d, mont->n0, num)) { |
| abort(); // The check above ensures this won't happen. |
| } |
| return; |
| } |
| #endif |
| |
| // Compute the product. |
| BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS]; |
| if (a == b) { |
| bn_sqr_small(tmp, 2 * num, a, num); |
| } else { |
| bn_mul_small(tmp, 2 * num, a, num, b, num); |
| } |
| |
| // Reduce. |
| if (!bn_from_montgomery_in_place(r, num, tmp, 2 * num, mont)) { |
| abort(); |
| } |
| OPENSSL_cleanse(tmp, 2 * num * sizeof(BN_ULONG)); |
| } |
| |
| #if defined(OPENSSL_BN_ASM_MONT) && defined(OPENSSL_X86_64) |
| int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| const BN_ULONG *np, const BN_ULONG *n0, size_t num) { |
| if (ap == bp && bn_sqr8x_mont_capable(num)) { |
| return bn_sqr8x_mont(rp, ap, bn_mulx_adx_capable(), np, n0, num); |
| } |
| if (bn_mulx4x_mont_capable(num)) { |
| return bn_mulx4x_mont(rp, ap, bp, np, n0, num); |
| } |
| if (bn_mul4x_mont_capable(num)) { |
| return bn_mul4x_mont(rp, ap, bp, np, n0, num); |
| } |
| return bn_mul_mont_nohw(rp, ap, bp, np, n0, num); |
| } |
| #endif |
| |
| #if defined(OPENSSL_BN_ASM_MONT) && defined(OPENSSL_ARM) |
| int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| const BN_ULONG *np, const BN_ULONG *n0, size_t num) { |
| if (bn_mul8x_mont_neon_capable(num)) { |
| return bn_mul8x_mont_neon(rp, ap, bp, np, n0, num); |
| } |
| return bn_mul_mont_nohw(rp, ap, bp, np, n0, num); |
| } |
| #endif |