blob: 08512d396d81e83b93db649f3046b9f1b691347b [file] [log] [blame]
/*
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/bio.h>
#include <limits.h>
#include <string.h>
#include <openssl/buf.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../internal.h"
BIO *BIO_new_mem_buf(const void *buf, ossl_ssize_t len) {
BIO *ret;
BUF_MEM *b;
const size_t size = len < 0 ? strlen((char *)buf) : (size_t)len;
if (!buf && len != 0) {
OPENSSL_PUT_ERROR(BIO, BIO_R_NULL_PARAMETER);
return NULL;
}
ret = BIO_new(BIO_s_mem());
if (ret == NULL) {
return NULL;
}
b = (BUF_MEM *)ret->ptr;
// BIO_FLAGS_MEM_RDONLY ensures |b->data| is not written to.
b->data = reinterpret_cast<char *>(const_cast<void *>(buf));
b->length = size;
b->max = size;
ret->flags |= BIO_FLAGS_MEM_RDONLY;
// |num| is used to store the value that this BIO will return when it runs
// out of data. If it's negative then the retry flags will also be set. Since
// this is static data, retrying wont help
ret->num = 0;
return ret;
}
static int mem_new(BIO *bio) {
BUF_MEM *b;
b = BUF_MEM_new();
if (b == NULL) {
return 0;
}
// |shutdown| is used to store the close flag: whether the BIO has ownership
// of the BUF_MEM.
bio->shutdown = 1;
bio->init = 1;
bio->num = -1;
bio->ptr = (char *)b;
return 1;
}
static int mem_free(BIO *bio) {
if (!bio->shutdown || !bio->init || bio->ptr == NULL) {
return 1;
}
BUF_MEM *b = (BUF_MEM *)bio->ptr;
if (bio->flags & BIO_FLAGS_MEM_RDONLY) {
b->data = NULL;
}
BUF_MEM_free(b);
bio->ptr = NULL;
return 1;
}
static int mem_read(BIO *bio, char *out, int outl) {
BIO_clear_retry_flags(bio);
if (outl <= 0) {
return 0;
}
BUF_MEM *b = reinterpret_cast<BUF_MEM *>(bio->ptr);
int ret = outl;
if ((size_t)ret > b->length) {
ret = (int)b->length;
}
if (ret > 0) {
OPENSSL_memcpy(out, b->data, ret);
b->length -= ret;
if (bio->flags & BIO_FLAGS_MEM_RDONLY) {
b->data += ret;
} else {
OPENSSL_memmove(b->data, &b->data[ret], b->length);
}
} else if (b->length == 0) {
ret = bio->num;
if (ret != 0) {
BIO_set_retry_read(bio);
}
}
return ret;
}
static int mem_write(BIO *bio, const char *in, int inl) {
BIO_clear_retry_flags(bio);
if (inl <= 0) {
return 0; // Successfully write zero bytes.
}
if (bio->flags & BIO_FLAGS_MEM_RDONLY) {
OPENSSL_PUT_ERROR(BIO, BIO_R_WRITE_TO_READ_ONLY_BIO);
return -1;
}
BUF_MEM *b = reinterpret_cast<BUF_MEM *>(bio->ptr);
if (!BUF_MEM_append(b, in, inl)) {
return -1;
}
return inl;
}
static int mem_gets(BIO *bio, char *buf, int size) {
BIO_clear_retry_flags(bio);
if (size <= 0) {
return 0;
}
// The buffer size includes space for the trailing NUL, so we can read at most
// one fewer byte.
BUF_MEM *b = reinterpret_cast<BUF_MEM *>(bio->ptr);
int ret = size - 1;
if ((size_t)ret > b->length) {
ret = (int)b->length;
}
// Stop at the first newline.
const char *newline =
reinterpret_cast<char *>(OPENSSL_memchr(b->data, '\n', ret));
if (newline != NULL) {
ret = (int)(newline - b->data + 1);
}
ret = mem_read(bio, buf, ret);
if (ret >= 0) {
buf[ret] = '\0';
}
return ret;
}
static long mem_ctrl(BIO *bio, int cmd, long num, void *ptr) {
long ret = 1;
BUF_MEM *b = (BUF_MEM *)bio->ptr;
switch (cmd) {
case BIO_CTRL_RESET:
if (b->data != NULL) {
// For read only case reset to the start again
if (bio->flags & BIO_FLAGS_MEM_RDONLY) {
b->data -= b->max - b->length;
b->length = b->max;
} else {
OPENSSL_memset(b->data, 0, b->max);
b->length = 0;
}
}
break;
case BIO_CTRL_EOF:
ret = (long)(b->length == 0);
break;
case BIO_C_SET_BUF_MEM_EOF_RETURN:
bio->num = (int)num;
break;
case BIO_CTRL_INFO:
ret = (long)b->length;
if (ptr != NULL) {
char **pptr = reinterpret_cast<char **>(ptr);
*pptr = b->data;
}
break;
case BIO_C_SET_BUF_MEM:
mem_free(bio);
bio->shutdown = (int)num;
bio->ptr = ptr;
break;
case BIO_C_GET_BUF_MEM_PTR:
if (ptr != NULL) {
BUF_MEM **pptr = reinterpret_cast<BUF_MEM **>(ptr);
*pptr = b;
}
break;
case BIO_CTRL_GET_CLOSE:
ret = (long)bio->shutdown;
break;
case BIO_CTRL_SET_CLOSE:
bio->shutdown = (int)num;
break;
case BIO_CTRL_WPENDING:
ret = 0L;
break;
case BIO_CTRL_PENDING:
ret = (long)b->length;
break;
case BIO_CTRL_FLUSH:
ret = 1;
break;
default:
ret = 0;
break;
}
return ret;
}
static const BIO_METHOD mem_method = {
BIO_TYPE_MEM, "memory buffer",
mem_write, mem_read,
NULL /* puts */, mem_gets,
mem_ctrl, mem_new,
mem_free, NULL /* callback_ctrl */,
};
const BIO_METHOD *BIO_s_mem(void) { return &mem_method; }
int BIO_mem_contents(const BIO *bio, const uint8_t **out_contents,
size_t *out_len) {
const BUF_MEM *b;
if (bio->method != &mem_method) {
return 0;
}
b = (BUF_MEM *)bio->ptr;
*out_contents = (uint8_t *)b->data;
*out_len = b->length;
return 1;
}
long BIO_get_mem_data(BIO *bio, char **contents) {
return BIO_ctrl(bio, BIO_CTRL_INFO, 0, contents);
}
int BIO_get_mem_ptr(BIO *bio, BUF_MEM **out) {
return (int)BIO_ctrl(bio, BIO_C_GET_BUF_MEM_PTR, 0, out);
}
int BIO_set_mem_buf(BIO *bio, BUF_MEM *b, int take_ownership) {
return (int)BIO_ctrl(bio, BIO_C_SET_BUF_MEM, take_ownership, b);
}
int BIO_set_mem_eof_return(BIO *bio, int eof_value) {
return (int)BIO_ctrl(bio, BIO_C_SET_BUF_MEM_EOF_RETURN, eof_value, NULL);
}