| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/cipher.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| |
| #include "internal.h" |
| #include "../service_indicator/internal.h" |
| #include "../../internal.h" |
| |
| |
| void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) { |
| OPENSSL_memset(ctx, 0, sizeof(EVP_CIPHER_CTX)); |
| } |
| |
| EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) { |
| EVP_CIPHER_CTX *ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX)); |
| if (ctx) { |
| EVP_CIPHER_CTX_init(ctx); |
| } |
| return ctx; |
| } |
| |
| int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) { |
| if (c->cipher != NULL && c->cipher->cleanup) { |
| c->cipher->cleanup(c); |
| } |
| OPENSSL_free(c->cipher_data); |
| |
| OPENSSL_memset(c, 0, sizeof(EVP_CIPHER_CTX)); |
| return 1; |
| } |
| |
| void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) { |
| if (ctx) { |
| EVP_CIPHER_CTX_cleanup(ctx); |
| OPENSSL_free(ctx); |
| } |
| } |
| |
| int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) { |
| if (in == NULL || in->cipher == NULL) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INPUT_NOT_INITIALIZED); |
| return 0; |
| } |
| |
| if (in->poisoned) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| EVP_CIPHER_CTX_cleanup(out); |
| OPENSSL_memcpy(out, in, sizeof(EVP_CIPHER_CTX)); |
| |
| if (in->cipher_data && in->cipher->ctx_size) { |
| out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size); |
| if (!out->cipher_data) { |
| out->cipher = NULL; |
| return 0; |
| } |
| OPENSSL_memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size); |
| } |
| |
| if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) { |
| if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) { |
| out->cipher = NULL; |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx) { |
| EVP_CIPHER_CTX_cleanup(ctx); |
| EVP_CIPHER_CTX_init(ctx); |
| return 1; |
| } |
| |
| int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| ENGINE *engine, const uint8_t *key, const uint8_t *iv, |
| int enc) { |
| if (enc == -1) { |
| enc = ctx->encrypt; |
| } else { |
| if (enc) { |
| enc = 1; |
| } |
| ctx->encrypt = enc; |
| } |
| |
| if (cipher) { |
| // Ensure a context left from last time is cleared (the previous check |
| // attempted to avoid this if the same ENGINE and EVP_CIPHER could be |
| // used). |
| if (ctx->cipher) { |
| EVP_CIPHER_CTX_cleanup(ctx); |
| // Restore encrypt and flags |
| ctx->encrypt = enc; |
| } |
| |
| ctx->cipher = cipher; |
| if (ctx->cipher->ctx_size) { |
| ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size); |
| if (!ctx->cipher_data) { |
| ctx->cipher = NULL; |
| return 0; |
| } |
| } else { |
| ctx->cipher_data = NULL; |
| } |
| |
| ctx->key_len = cipher->key_len; |
| ctx->flags = 0; |
| |
| if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) { |
| if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) { |
| ctx->cipher = NULL; |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INITIALIZATION_ERROR); |
| return 0; |
| } |
| } |
| } else if (!ctx->cipher) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET); |
| return 0; |
| } |
| |
| // we assume block size is a power of 2 in *cryptUpdate |
| assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 || |
| ctx->cipher->block_size == 16); |
| |
| if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) { |
| switch (EVP_CIPHER_CTX_mode(ctx)) { |
| case EVP_CIPH_STREAM_CIPHER: |
| case EVP_CIPH_ECB_MODE: |
| break; |
| |
| case EVP_CIPH_CFB_MODE: |
| ctx->num = 0; |
| OPENSSL_FALLTHROUGH; |
| |
| case EVP_CIPH_CBC_MODE: |
| assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv)); |
| if (iv) { |
| OPENSSL_memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx)); |
| } |
| OPENSSL_memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx)); |
| break; |
| |
| case EVP_CIPH_CTR_MODE: |
| case EVP_CIPH_OFB_MODE: |
| ctx->num = 0; |
| // Don't reuse IV for CTR mode |
| if (iv) { |
| OPENSSL_memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); |
| } |
| break; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) { |
| if (!ctx->cipher->init(ctx, key, iv, enc)) { |
| return 0; |
| } |
| } |
| |
| ctx->buf_len = 0; |
| ctx->final_used = 0; |
| // Clear the poisoned flag to permit re-use of a CTX that previously had a |
| // failed operation. |
| ctx->poisoned = 0; |
| return 1; |
| } |
| |
| int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| ENGINE *impl, const uint8_t *key, const uint8_t *iv) { |
| return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1); |
| } |
| |
| int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| ENGINE *impl, const uint8_t *key, const uint8_t *iv) { |
| return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0); |
| } |
| |
| // block_remainder returns the number of bytes to remove from |len| to get a |
| // multiple of |ctx|'s block size. |
| static int block_remainder(const EVP_CIPHER_CTX *ctx, int len) { |
| // |block_size| must be a power of two. |
| assert(ctx->cipher->block_size != 0); |
| assert((ctx->cipher->block_size & (ctx->cipher->block_size - 1)) == 0); |
| return len & (ctx->cipher->block_size - 1); |
| } |
| |
| int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, |
| const uint8_t *in, int in_len) { |
| if (ctx->poisoned) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| // If the first call to |cipher| succeeds and the second fails, |ctx| may be |
| // left in an indeterminate state. We set a poison flag on failure to ensure |
| // callers do not continue to use the object in that case. |
| ctx->poisoned = 1; |
| |
| // Ciphers that use blocks may write up to |bl| extra bytes. Ensure the output |
| // does not overflow |*out_len|. |
| int bl = ctx->cipher->block_size; |
| if (bl > 1 && in_len > INT_MAX - bl) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| int ret = ctx->cipher->cipher(ctx, out, in, in_len); |
| if (ret < 0) { |
| return 0; |
| } else { |
| *out_len = ret; |
| } |
| ctx->poisoned = 0; |
| return 1; |
| } |
| |
| if (in_len <= 0) { |
| *out_len = 0; |
| if (in_len == 0) { |
| ctx->poisoned = 0; |
| return 1; |
| } |
| return 0; |
| } |
| |
| if (ctx->buf_len == 0 && block_remainder(ctx, in_len) == 0) { |
| if (ctx->cipher->cipher(ctx, out, in, in_len)) { |
| *out_len = in_len; |
| ctx->poisoned = 0; |
| return 1; |
| } else { |
| *out_len = 0; |
| return 0; |
| } |
| } |
| |
| int i = ctx->buf_len; |
| assert(bl <= (int)sizeof(ctx->buf)); |
| if (i != 0) { |
| if (bl - i > in_len) { |
| OPENSSL_memcpy(&ctx->buf[i], in, in_len); |
| ctx->buf_len += in_len; |
| *out_len = 0; |
| ctx->poisoned = 0; |
| return 1; |
| } else { |
| int j = bl - i; |
| OPENSSL_memcpy(&ctx->buf[i], in, j); |
| if (!ctx->cipher->cipher(ctx, out, ctx->buf, bl)) { |
| return 0; |
| } |
| in_len -= j; |
| in += j; |
| out += bl; |
| *out_len = bl; |
| } |
| } else { |
| *out_len = 0; |
| } |
| |
| i = block_remainder(ctx, in_len); |
| in_len -= i; |
| if (in_len > 0) { |
| if (!ctx->cipher->cipher(ctx, out, in, in_len)) { |
| return 0; |
| } |
| *out_len += in_len; |
| } |
| |
| if (i != 0) { |
| OPENSSL_memcpy(ctx->buf, &in[in_len], i); |
| } |
| ctx->buf_len = i; |
| ctx->poisoned = 0; |
| return 1; |
| } |
| |
| int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
| int n; |
| unsigned int i, b, bl; |
| |
| if (ctx->poisoned) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| // When EVP_CIPH_FLAG_CUSTOM_CIPHER is set, the return value of |cipher| is |
| // the number of bytes written, or -1 on error. Otherwise the return value |
| // is one on success and zero on error. |
| const int num_bytes = ctx->cipher->cipher(ctx, out, NULL, 0); |
| if (num_bytes < 0) { |
| return 0; |
| } |
| *out_len = num_bytes; |
| goto out; |
| } |
| |
| b = ctx->cipher->block_size; |
| assert(b <= sizeof(ctx->buf)); |
| if (b == 1) { |
| *out_len = 0; |
| goto out; |
| } |
| |
| bl = ctx->buf_len; |
| if (ctx->flags & EVP_CIPH_NO_PADDING) { |
| if (bl) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); |
| return 0; |
| } |
| *out_len = 0; |
| goto out; |
| } |
| |
| n = b - bl; |
| for (i = bl; i < b; i++) { |
| ctx->buf[i] = n; |
| } |
| if (!ctx->cipher->cipher(ctx, out, ctx->buf, b)) { |
| return 0; |
| } |
| *out_len = b; |
| |
| out: |
| EVP_Cipher_verify_service_indicator(ctx); |
| return 1; |
| } |
| |
| int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, |
| const uint8_t *in, int in_len) { |
| if (ctx->poisoned) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| // Ciphers that use blocks may write up to |bl| extra bytes. Ensure the output |
| // does not overflow |*out_len|. |
| unsigned int b = ctx->cipher->block_size; |
| if (b > 1 && in_len > INT_MAX - (int)b) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| int r = ctx->cipher->cipher(ctx, out, in, in_len); |
| if (r < 0) { |
| *out_len = 0; |
| return 0; |
| } else { |
| *out_len = r; |
| } |
| return 1; |
| } |
| |
| if (in_len <= 0) { |
| *out_len = 0; |
| return in_len == 0; |
| } |
| |
| if (ctx->flags & EVP_CIPH_NO_PADDING) { |
| return EVP_EncryptUpdate(ctx, out, out_len, in, in_len); |
| } |
| |
| assert(b <= sizeof(ctx->final)); |
| int fix_len = 0; |
| if (ctx->final_used) { |
| OPENSSL_memcpy(out, ctx->final, b); |
| out += b; |
| fix_len = 1; |
| } |
| |
| if (!EVP_EncryptUpdate(ctx, out, out_len, in, in_len)) { |
| return 0; |
| } |
| |
| // if we have 'decrypted' a multiple of block size, make sure |
| // we have a copy of this last block |
| if (b > 1 && !ctx->buf_len) { |
| *out_len -= b; |
| ctx->final_used = 1; |
| OPENSSL_memcpy(ctx->final, &out[*out_len], b); |
| } else { |
| ctx->final_used = 0; |
| } |
| |
| if (fix_len) { |
| *out_len += b; |
| } |
| |
| return 1; |
| } |
| |
| int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len) { |
| int i, n; |
| unsigned int b; |
| *out_len = 0; |
| |
| if (ctx->poisoned) { |
| OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| i = ctx->cipher->cipher(ctx, out, NULL, 0); |
| if (i < 0) { |
| return 0; |
| } else { |
| *out_len = i; |
| } |
| goto out; |
| } |
| |
| b = ctx->cipher->block_size; |
| if (ctx->flags & EVP_CIPH_NO_PADDING) { |
| if (ctx->buf_len) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); |
| return 0; |
| } |
| *out_len = 0; |
| goto out; |
| } |
| |
| if (b > 1) { |
| if (ctx->buf_len || !ctx->final_used) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_WRONG_FINAL_BLOCK_LENGTH); |
| return 0; |
| } |
| assert(b <= sizeof(ctx->final)); |
| |
| // The following assumes that the ciphertext has been authenticated. |
| // Otherwise it provides a padding oracle. |
| n = ctx->final[b - 1]; |
| if (n == 0 || n > (int)b) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| for (i = 0; i < n; i++) { |
| if (ctx->final[--b] != n) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| } |
| |
| n = ctx->cipher->block_size - n; |
| for (i = 0; i < n; i++) { |
| out[i] = ctx->final[i]; |
| } |
| *out_len = n; |
| } else { |
| *out_len = 0; |
| } |
| |
| out: |
| EVP_Cipher_verify_service_indicator(ctx); |
| return 1; |
| } |
| |
| int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t in_len) { |
| const int ret = ctx->cipher->cipher(ctx, out, in, in_len); |
| |
| // |EVP_CIPH_FLAG_CUSTOM_CIPHER| never sets the FIPS indicator via |
| // |EVP_Cipher| because it's complicated whether the operation has completed |
| // or not. E.g. AES-GCM with a non-NULL |in| argument hasn't completed an |
| // operation. Callers should use the |EVP_AEAD| API or, at least, |
| // |EVP_CipherUpdate| etc. |
| // |
| // This call can't be pushed into |EVP_Cipher_verify_service_indicator| |
| // because whether |ret| indicates success or not depends on whether |
| // |EVP_CIPH_FLAG_CUSTOM_CIPHER| is set. (This unreasonable, but matches |
| // OpenSSL.) |
| if (!(ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) && ret) { |
| EVP_Cipher_verify_service_indicator(ctx); |
| } |
| |
| return ret; |
| } |
| |
| int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len, |
| const uint8_t *in, int in_len) { |
| if (ctx->encrypt) { |
| return EVP_EncryptUpdate(ctx, out, out_len, in, in_len); |
| } else { |
| return EVP_DecryptUpdate(ctx, out, out_len, in, in_len); |
| } |
| } |
| |
| int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
| if (ctx->encrypt) { |
| return EVP_EncryptFinal_ex(ctx, out, out_len); |
| } else { |
| return EVP_DecryptFinal_ex(ctx, out, out_len); |
| } |
| } |
| |
| const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) { |
| return ctx->cipher; |
| } |
| |
| int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) { |
| return ctx->cipher->nid; |
| } |
| |
| int EVP_CIPHER_CTX_encrypting(const EVP_CIPHER_CTX *ctx) { |
| return ctx->encrypt; |
| } |
| |
| unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) { |
| return ctx->cipher->block_size; |
| } |
| |
| unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) { |
| return ctx->key_len; |
| } |
| |
| unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) { |
| if (EVP_CIPHER_mode(ctx->cipher) == EVP_CIPH_GCM_MODE) { |
| int length; |
| int res = EVP_CIPHER_CTX_ctrl((EVP_CIPHER_CTX *)ctx, EVP_CTRL_GET_IVLEN, 0, |
| &length); |
| // EVP_CIPHER_CTX_ctrl returning an error should be impossible under this |
| // circumstance. If it somehow did, fallback to the static cipher iv_len. |
| if (res == 1) { |
| return length; |
| } |
| } |
| return ctx->cipher->iv_len; |
| } |
| |
| void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) { |
| return ctx->app_data; |
| } |
| |
| void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) { |
| ctx->app_data = data; |
| } |
| |
| uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) { |
| return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK; |
| } |
| |
| uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) { |
| return ctx->cipher->flags & EVP_CIPH_MODE_MASK; |
| } |
| |
| int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) { |
| int ret; |
| if (!ctx->cipher) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_CIPHER_SET); |
| return 0; |
| } |
| |
| if (!ctx->cipher->ctrl) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED); |
| return 0; |
| } |
| |
| ret = ctx->cipher->ctrl(ctx, command, arg, ptr); |
| if (ret == -1) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED); |
| return 0; |
| } |
| |
| return ret; |
| } |
| |
| int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) { |
| if (pad) { |
| ctx->flags &= ~EVP_CIPH_NO_PADDING; |
| } else { |
| ctx->flags |= EVP_CIPH_NO_PADDING; |
| } |
| return 1; |
| } |
| |
| int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) { |
| if (c->key_len == key_len) { |
| return 1; |
| } |
| |
| if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) { |
| OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_KEY_LENGTH); |
| return 0; |
| } |
| |
| c->key_len = key_len; |
| return 1; |
| } |
| |
| int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; } |
| |
| unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) { |
| return cipher->block_size; |
| } |
| |
| unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) { |
| return cipher->key_len; |
| } |
| |
| unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) { |
| return cipher->iv_len; |
| } |
| |
| uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) { |
| return cipher->flags & ~EVP_CIPH_MODE_MASK; |
| } |
| |
| uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) { |
| return cipher->flags & EVP_CIPH_MODE_MASK; |
| } |
| |
| int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| const uint8_t *key, const uint8_t *iv, int enc) { |
| if (cipher) { |
| EVP_CIPHER_CTX_init(ctx); |
| } |
| return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc); |
| } |
| |
| int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| const uint8_t *key, const uint8_t *iv) { |
| return EVP_CipherInit(ctx, cipher, key, iv, 1); |
| } |
| |
| int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| const uint8_t *key, const uint8_t *iv) { |
| return EVP_CipherInit(ctx, cipher, key, iv, 0); |
| } |
| |
| int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
| return EVP_CipherFinal_ex(ctx, out, out_len); |
| } |
| |
| int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
| return EVP_EncryptFinal_ex(ctx, out, out_len); |
| } |
| |
| int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) { |
| return EVP_DecryptFinal_ex(ctx, out, out_len); |
| } |
| |
| int EVP_add_cipher_alias(const char *a, const char *b) { |
| return 1; |
| } |
| |
| void EVP_CIPHER_CTX_set_flags(const EVP_CIPHER_CTX *ctx, uint32_t flags) {} |