|  | // Copyright 2020 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/ec.h> | 
|  |  | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/nid.h> | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "../fipsmodule/bn/internal.h" | 
|  | #include "../fipsmodule/ec/internal.h" | 
|  | #include "../internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | // This file implements hash-to-curve, as described in RFC 9380. | 
|  | // | 
|  | // This hash-to-curve implementation is written generically with the | 
|  | // expectation that we will eventually wish to support other curves. If it | 
|  | // becomes a performance bottleneck, some possible optimizations by | 
|  | // specializing it to the curve: | 
|  | // | 
|  | // - Rather than using a generic |felem_exp|, specialize the exponentation to | 
|  | //   c2 with a faster addition chain. | 
|  | // | 
|  | // - |felem_mul| and |felem_sqr| are indirect calls to generic Montgomery | 
|  | //   code. Given the few curves, we could specialize | 
|  | //   |map_to_curve_simple_swu|. But doing this reasonably without duplicating | 
|  | //   code in C is difficult. (C++ templates would be useful here.) | 
|  | // | 
|  | // - P-521's Z and c2 have small power-of-two absolute values. We could save | 
|  | //   two multiplications in SSWU. (Other curves have reasonable values of Z | 
|  | //   and inconvenient c2.) This is unlikely to be worthwhile without C++ | 
|  | //   templates to make specializing more convenient. | 
|  |  | 
|  | // expand_message_xmd implements the operation described in section 5.3.1 of | 
|  | // RFC 9380. It returns one on success and zero on error. | 
|  | static int expand_message_xmd(const EVP_MD *md, uint8_t *out, size_t out_len, | 
|  | const uint8_t *msg, size_t msg_len, | 
|  | const uint8_t *dst, size_t dst_len) { | 
|  | // See https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/issues/352 | 
|  | if (dst_len == 0) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ret = 0; | 
|  | const size_t block_size = EVP_MD_block_size(md); | 
|  | const size_t md_size = EVP_MD_size(md); | 
|  | EVP_MD_CTX ctx; | 
|  | EVP_MD_CTX_init(&ctx); | 
|  |  | 
|  | { | 
|  | // Long DSTs are hashed down to size. See section 5.3.3. | 
|  | static_assert(EVP_MAX_MD_SIZE < 256, "hashed DST still too large"); | 
|  | uint8_t dst_buf[EVP_MAX_MD_SIZE]; | 
|  | if (dst_len >= 256) { | 
|  | static const char kPrefix[] = "H2C-OVERSIZE-DST-"; | 
|  | if (!EVP_DigestInit_ex(&ctx, md, NULL) || | 
|  | !EVP_DigestUpdate(&ctx, kPrefix, sizeof(kPrefix) - 1) || | 
|  | !EVP_DigestUpdate(&ctx, dst, dst_len) || | 
|  | !EVP_DigestFinal_ex(&ctx, dst_buf, NULL)) { | 
|  | goto err; | 
|  | } | 
|  | dst = dst_buf; | 
|  | dst_len = md_size; | 
|  | } | 
|  | uint8_t dst_len_u8 = (uint8_t)dst_len; | 
|  |  | 
|  | // Compute b_0. | 
|  | static const uint8_t kZeros[EVP_MAX_MD_BLOCK_SIZE] = {0}; | 
|  | // If |out_len| exceeds 16 bits then |i| will wrap below causing an error to | 
|  | // be returned. This depends on the static assert above. | 
|  | uint8_t l_i_b_str_zero[3] = {static_cast<uint8_t>(out_len >> 8), | 
|  | static_cast<uint8_t>(out_len), 0}; | 
|  | uint8_t b_0[EVP_MAX_MD_SIZE]; | 
|  | if (!EVP_DigestInit_ex(&ctx, md, NULL) || | 
|  | !EVP_DigestUpdate(&ctx, kZeros, block_size) || | 
|  | !EVP_DigestUpdate(&ctx, msg, msg_len) || | 
|  | !EVP_DigestUpdate(&ctx, l_i_b_str_zero, sizeof(l_i_b_str_zero)) || | 
|  | !EVP_DigestUpdate(&ctx, dst, dst_len) || | 
|  | !EVP_DigestUpdate(&ctx, &dst_len_u8, 1) || | 
|  | !EVP_DigestFinal_ex(&ctx, b_0, NULL)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | uint8_t b_i[EVP_MAX_MD_SIZE]; | 
|  | uint8_t i = 1; | 
|  | while (out_len > 0) { | 
|  | if (i == 0) { | 
|  | // Input was too large. | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  | if (i > 1) { | 
|  | for (size_t j = 0; j < md_size; j++) { | 
|  | b_i[j] ^= b_0[j]; | 
|  | } | 
|  | } else { | 
|  | OPENSSL_memcpy(b_i, b_0, md_size); | 
|  | } | 
|  |  | 
|  | if (!EVP_DigestInit_ex(&ctx, md, NULL) || | 
|  | !EVP_DigestUpdate(&ctx, b_i, md_size) || | 
|  | !EVP_DigestUpdate(&ctx, &i, 1) || | 
|  | !EVP_DigestUpdate(&ctx, dst, dst_len) || | 
|  | !EVP_DigestUpdate(&ctx, &dst_len_u8, 1) || | 
|  | !EVP_DigestFinal_ex(&ctx, b_i, NULL)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | size_t todo = out_len >= md_size ? md_size : out_len; | 
|  | OPENSSL_memcpy(out, b_i, todo); | 
|  | out += todo; | 
|  | out_len -= todo; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | err: | 
|  | EVP_MD_CTX_cleanup(&ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // num_bytes_to_derive determines the number of bytes to derive when hashing to | 
|  | // a number modulo |modulus|. See the hash_to_field operation defined in | 
|  | // section 5.2 of RFC 9380. | 
|  | static int num_bytes_to_derive(size_t *out, const BIGNUM *modulus, unsigned k) { | 
|  | size_t bits = BN_num_bits(modulus); | 
|  | size_t L = (bits + k + 7) / 8; | 
|  | // We require 2^(8*L) < 2^(2*bits - 2) <= n^2 so to fit in bounds for | 
|  | // |felem_reduce| and |ec_scalar_reduce|. All defined hash-to-curve suites | 
|  | // define |k| to be well under this bound. (|k| is usually around half of | 
|  | // |p_bits|.) | 
|  | if (L * 8 >= 2 * bits - 2 || L > 2 * EC_MAX_BYTES) { | 
|  | assert(0); | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out = L; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // big_endian_to_words decodes |in| as a big-endian integer and writes the | 
|  | // result to |out|. |num_words| must be large enough to contain the output. | 
|  | static void big_endian_to_words(BN_ULONG *out, size_t num_words, | 
|  | const uint8_t *in, size_t len) { | 
|  | assert(len <= num_words * sizeof(BN_ULONG)); | 
|  | // Ensure any excess bytes are zeroed. | 
|  | OPENSSL_memset(out, 0, num_words * sizeof(BN_ULONG)); | 
|  | uint8_t *out_u8 = (uint8_t *)out; | 
|  | for (size_t i = 0; i < len; i++) { | 
|  | out_u8[len - 1 - i] = in[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // hash_to_field implements the operation described in section 5.2 | 
|  | // of RFC 9380, with count = 2. |k| is the security factor. | 
|  | static int hash_to_field2(const EC_GROUP *group, const EVP_MD *md, | 
|  | EC_FELEM *out1, EC_FELEM *out2, const uint8_t *dst, | 
|  | size_t dst_len, unsigned k, const uint8_t *msg, | 
|  | size_t msg_len) { | 
|  | size_t L; | 
|  | uint8_t buf[4 * EC_MAX_BYTES]; | 
|  | if (!num_bytes_to_derive(&L, &group->field.N, k) || | 
|  | !expand_message_xmd(md, buf, 2 * L, msg, msg_len, dst, dst_len)) { | 
|  | return 0; | 
|  | } | 
|  | BN_ULONG words[2 * EC_MAX_WORDS]; | 
|  | size_t num_words = 2 * group->field.N.width; | 
|  | big_endian_to_words(words, num_words, buf, L); | 
|  | group->meth->felem_reduce(group, out1, words, num_words); | 
|  | big_endian_to_words(words, num_words, buf + L, L); | 
|  | group->meth->felem_reduce(group, out2, words, num_words); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // hash_to_scalar behaves like |hash_to_field2| but returns a value modulo the | 
|  | // group order rather than a field element. |k| is the security factor. | 
|  | static int hash_to_scalar(const EC_GROUP *group, const EVP_MD *md, | 
|  | EC_SCALAR *out, const uint8_t *dst, size_t dst_len, | 
|  | unsigned k, const uint8_t *msg, size_t msg_len) { | 
|  | const BIGNUM *order = EC_GROUP_get0_order(group); | 
|  | size_t L; | 
|  | uint8_t buf[EC_MAX_BYTES * 2]; | 
|  | if (!num_bytes_to_derive(&L, order, k) || | 
|  | !expand_message_xmd(md, buf, L, msg, msg_len, dst, dst_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_ULONG words[2 * EC_MAX_WORDS]; | 
|  | size_t num_words = 2 * order->width; | 
|  | big_endian_to_words(words, num_words, buf, L); | 
|  | ec_scalar_reduce(group, out, words, num_words); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline void mul_A(const EC_GROUP *group, EC_FELEM *out, | 
|  | const EC_FELEM *in) { | 
|  | assert(group->a_is_minus3); | 
|  | EC_FELEM tmp; | 
|  | ec_felem_add(group, &tmp, in, in);      // tmp = 2*in | 
|  | ec_felem_add(group, &tmp, &tmp, &tmp);  // tmp = 4*in | 
|  | ec_felem_sub(group, out, in, &tmp);     // out = -3*in | 
|  | } | 
|  |  | 
|  | // sgn0 implements the operation described in section 4.1.2 of RFC 9380. | 
|  | static BN_ULONG sgn0(const EC_GROUP *group, const EC_FELEM *a) { | 
|  | uint8_t buf[EC_MAX_BYTES]; | 
|  | size_t len; | 
|  | ec_felem_to_bytes(group, buf, &len, a); | 
|  | return buf[len - 1] & 1; | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] static int is_3mod4(const EC_GROUP *group) { | 
|  | return group->field.N.width > 0 && (group->field.N.d[0] & 3) == 3; | 
|  | } | 
|  |  | 
|  | // sqrt_ratio_3mod4 implements the operation described in appendix F.2.1.2 | 
|  | // of RFC 9380. | 
|  | static BN_ULONG sqrt_ratio_3mod4(const EC_GROUP *group, const EC_FELEM *Z, | 
|  | const BN_ULONG *c1, size_t num_c1, | 
|  | const EC_FELEM *c2, EC_FELEM *out_y, | 
|  | const EC_FELEM *u, const EC_FELEM *v) { | 
|  | assert(is_3mod4(group)); | 
|  |  | 
|  | void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
|  | const EC_FELEM *b) = group->meth->felem_mul; | 
|  | void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = | 
|  | group->meth->felem_sqr; | 
|  |  | 
|  | EC_FELEM tv1, tv2, tv3, y1, y2; | 
|  | felem_sqr(group, &tv1, v);                             // 1. tv1 = v^2 | 
|  | felem_mul(group, &tv2, u, v);                          // 2. tv2 = u * v | 
|  | felem_mul(group, &tv1, &tv1, &tv2);                    // 3. tv1 = tv1 * tv2 | 
|  | group->meth->felem_exp(group, &y1, &tv1, c1, num_c1);  // 4. y1 = tv1^c1 | 
|  | felem_mul(group, &y1, &y1, &tv2);                      // 5. y1 = y1 * tv2 | 
|  | felem_mul(group, &y2, &y1, c2);                        // 6. y2 = y1 * c2 | 
|  | felem_sqr(group, &tv3, &y1);                           // 7. tv3 = y1^2 | 
|  | felem_mul(group, &tv3, &tv3, v);                       // 8. tv3 = tv3 * v | 
|  |  | 
|  | // 9. isQR = tv3 == u | 
|  | // 10. y = CMOV(y2, y1, isQR) | 
|  | // 11. return (isQR, y) | 
|  | // | 
|  | // Note the specification's CMOV function and our |ec_felem_select| have the | 
|  | // opposite argument order. | 
|  | ec_felem_sub(group, &tv1, &tv3, u); | 
|  | const BN_ULONG isQR = ~ec_felem_non_zero_mask(group, &tv1); | 
|  | ec_felem_select(group, out_y, isQR, &y1, &y2); | 
|  | return isQR; | 
|  | } | 
|  |  | 
|  | // map_to_curve_simple_swu implements the operation described in section 6.6.2 | 
|  | // of RFC 9380, using the straight-line implementation in appendix F.2. | 
|  | static void map_to_curve_simple_swu(const EC_GROUP *group, const EC_FELEM *Z, | 
|  | const BN_ULONG *c1, size_t num_c1, | 
|  | const EC_FELEM *c2, EC_JACOBIAN *out, | 
|  | const EC_FELEM *u) { | 
|  | // This function requires the prime be 3 mod 4, and that A = -3. | 
|  | assert(is_3mod4(group)); | 
|  | assert(group->a_is_minus3); | 
|  |  | 
|  | void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
|  | const EC_FELEM *b) = group->meth->felem_mul; | 
|  | void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = | 
|  | group->meth->felem_sqr; | 
|  |  | 
|  | EC_FELEM tv1, tv2, tv3, tv4, tv5, tv6, x, y, y1; | 
|  | felem_sqr(group, &tv1, u);                             // 1. tv1 = u^2 | 
|  | felem_mul(group, &tv1, Z, &tv1);                       // 2. tv1 = Z * tv1 | 
|  | felem_sqr(group, &tv2, &tv1);                          // 3. tv2 = tv1^2 | 
|  | ec_felem_add(group, &tv2, &tv2, &tv1);                 // 4. tv2 = tv2 + tv1 | 
|  | ec_felem_add(group, &tv3, &tv2, ec_felem_one(group));  // 5. tv3 = tv2 + 1 | 
|  | felem_mul(group, &tv3, &group->b, &tv3);               // 6. tv3 = B * tv3 | 
|  |  | 
|  | // 7. tv4 = CMOV(Z, -tv2, tv2 != 0) | 
|  | const BN_ULONG tv2_non_zero = ec_felem_non_zero_mask(group, &tv2); | 
|  | ec_felem_neg(group, &tv4, &tv2); | 
|  | ec_felem_select(group, &tv4, tv2_non_zero, &tv4, Z); | 
|  |  | 
|  | mul_A(group, &tv4, &tv4);                 // 8. tv4 = A * tv4 | 
|  | felem_sqr(group, &tv2, &tv3);             // 9. tv2 = tv3^2 | 
|  | felem_sqr(group, &tv6, &tv4);             // 10. tv6 = tv4^2 | 
|  | mul_A(group, &tv5, &tv6);                 // 11. tv5 = A * tv6 | 
|  | ec_felem_add(group, &tv2, &tv2, &tv5);    // 12. tv2 = tv2 + tv5 | 
|  | felem_mul(group, &tv2, &tv2, &tv3);       // 13. tv2 = tv2 * tv3 | 
|  | felem_mul(group, &tv6, &tv6, &tv4);       // 14. tv6 = tv6 * tv4 | 
|  | felem_mul(group, &tv5, &group->b, &tv6);  // 15. tv5 = B * tv6 | 
|  | ec_felem_add(group, &tv2, &tv2, &tv5);    // 16. tv2 = tv2 + tv5 | 
|  | felem_mul(group, &x, &tv1, &tv3);         // 17. x = tv1 * tv3 | 
|  |  | 
|  | // 18. (is_gx1_square, y1) = sqrt_ratio(tv2, tv6) | 
|  | const BN_ULONG is_gx1_square = | 
|  | sqrt_ratio_3mod4(group, Z, c1, num_c1, c2, &y1, &tv2, &tv6); | 
|  |  | 
|  | felem_mul(group, &y, &tv1, u);  // 19. y = tv1 * u | 
|  | felem_mul(group, &y, &y, &y1);  // 20. y = y * y1 | 
|  |  | 
|  | // 21. x = CMOV(x, tv3, is_gx1_square) | 
|  | ec_felem_select(group, &x, is_gx1_square, &tv3, &x); | 
|  | // 22. y = CMOV(y, y1, is_gx1_square) | 
|  | ec_felem_select(group, &y, is_gx1_square, &y1, &y); | 
|  |  | 
|  | // 23. e1 = sgn0(u) == sgn0(y) | 
|  | BN_ULONG sgn0_u = sgn0(group, u); | 
|  | BN_ULONG sgn0_y = sgn0(group, &y); | 
|  | BN_ULONG not_e1 = sgn0_u ^ sgn0_y; | 
|  | not_e1 = ((BN_ULONG)0) - not_e1; | 
|  |  | 
|  | // 24. y = CMOV(-y, y, e1) | 
|  | ec_felem_neg(group, &tv1, &y); | 
|  | ec_felem_select(group, &y, not_e1, &tv1, &y); | 
|  |  | 
|  | // 25. x = x / tv4 | 
|  | // | 
|  | // Our output is in projective coordinates, so rather than inverting |tv4| | 
|  | // now, represent (x / tv4, y) as (x * tv4, y * tv4^3, tv4). This is much more | 
|  | // efficient if the caller will do further computation on the output. (If the | 
|  | // caller will immediately convert to affine coordinates, it is slightly less | 
|  | // efficient, but only by a few field multiplications.) | 
|  | felem_mul(group, &out->X, &x, &tv4); | 
|  | felem_mul(group, &out->Y, &y, &tv6); | 
|  | out->Z = tv4; | 
|  | } | 
|  |  | 
|  | static int hash_to_curve(const EC_GROUP *group, const EVP_MD *md, | 
|  | const EC_FELEM *Z, const EC_FELEM *c2, unsigned k, | 
|  | EC_JACOBIAN *out, const uint8_t *dst, size_t dst_len, | 
|  | const uint8_t *msg, size_t msg_len) { | 
|  | EC_FELEM u0, u1; | 
|  | if (!hash_to_field2(group, md, &u0, &u1, dst, dst_len, k, msg, msg_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Compute |c1| = (p - 3) / 4. | 
|  | BN_ULONG c1[EC_MAX_WORDS]; | 
|  | size_t num_c1 = group->field.N.width; | 
|  | if (!bn_copy_words(c1, num_c1, &group->field.N)) { | 
|  | return 0; | 
|  | } | 
|  | bn_rshift_words(c1, c1, /*shift=*/2, /*num=*/num_c1); | 
|  |  | 
|  | EC_JACOBIAN Q0, Q1; | 
|  | map_to_curve_simple_swu(group, Z, c1, num_c1, c2, &Q0, &u0); | 
|  | map_to_curve_simple_swu(group, Z, c1, num_c1, c2, &Q1, &u1); | 
|  |  | 
|  | group->meth->add(group, out, &Q0, &Q1);  // R = Q0 + Q1 | 
|  | // All our curves have cofactor one, so |clear_cofactor| is a no-op. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int felem_from_u8(const EC_GROUP *group, EC_FELEM *out, uint8_t a) { | 
|  | uint8_t bytes[EC_MAX_BYTES] = {0}; | 
|  | size_t len = BN_num_bytes(&group->field.N); | 
|  | bytes[len - 1] = a; | 
|  | return ec_felem_from_bytes(group, out, bytes, len); | 
|  | } | 
|  |  | 
|  | // kP256Sqrt10 is sqrt(10) in P-256's field. It was computed as follows in | 
|  | // python3: | 
|  | // | 
|  | // p =  2**256 - 2**224 + 2**192 + 2**96 - 1 | 
|  | // c2 = pow(10, (p+1)//4, p) | 
|  | // assert pow(c2, 2, p) == 10 | 
|  | // ", ".join("0x%02x" % b for b in c2.to_bytes(256//8, 'big')) | 
|  | static const uint8_t kP256Sqrt10[] = { | 
|  | 0xda, 0x53, 0x8e, 0x3b, 0xe1, 0xd8, 0x9b, 0x99, 0xc9, 0x78, 0xfc, | 
|  | 0x67, 0x51, 0x80, 0xaa, 0xb2, 0x7b, 0x8d, 0x1f, 0xf8, 0x4c, 0x55, | 
|  | 0xd5, 0xb6, 0x2c, 0xcd, 0x34, 0x27, 0xe4, 0x33, 0xc4, 0x7f}; | 
|  |  | 
|  | // kP384Sqrt12 is sqrt(12) in P-384's field. It was computed as follows in | 
|  | // python3: | 
|  | // | 
|  | // p = 2**384 - 2**128 - 2**96 + 2**32 - 1 | 
|  | // c2 = pow(12, (p+1)//4, p) | 
|  | // assert pow(c2, 2, p) == 12 | 
|  | // ", ".join("0x%02x" % b for b in c2.to_bytes(384//8, 'big')) | 
|  | static const uint8_t kP384Sqrt12[] = { | 
|  | 0x2a, 0xcc, 0xb4, 0xa6, 0x56, 0xb0, 0x24, 0x9c, 0x71, 0xf0, 0x50, 0x0e, | 
|  | 0x83, 0xda, 0x2f, 0xdd, 0x7f, 0x98, 0xe3, 0x83, 0xd6, 0x8b, 0x53, 0x87, | 
|  | 0x1f, 0x87, 0x2f, 0xcb, 0x9c, 0xcb, 0x80, 0xc5, 0x3c, 0x0d, 0xe1, 0xf8, | 
|  | 0xa8, 0x0f, 0x7e, 0x19, 0x14, 0xe2, 0xec, 0x69, 0xf5, 0xa6, 0x26, 0xb3}; | 
|  |  | 
|  | int ec_hash_to_curve_p256_xmd_sha256_sswu(const EC_GROUP *group, | 
|  | EC_JACOBIAN *out, const uint8_t *dst, | 
|  | size_t dst_len, const uint8_t *msg, | 
|  | size_t msg_len) { | 
|  | // See section 8.3 of RFC 9380. | 
|  | if (EC_GROUP_get_curve_name(group) != NID_X9_62_prime256v1) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Z = -10, c2 = sqrt(10) | 
|  | EC_FELEM Z, c2; | 
|  | if (!felem_from_u8(group, &Z, 10) || | 
|  | !ec_felem_from_bytes(group, &c2, kP256Sqrt10, sizeof(kP256Sqrt10))) { | 
|  | return 0; | 
|  | } | 
|  | ec_felem_neg(group, &Z, &Z); | 
|  |  | 
|  | return hash_to_curve(group, EVP_sha256(), &Z, &c2, /*k=*/128, out, dst, | 
|  | dst_len, msg, msg_len); | 
|  | } | 
|  |  | 
|  | int EC_hash_to_curve_p256_xmd_sha256_sswu(const EC_GROUP *group, EC_POINT *out, | 
|  | const uint8_t *dst, size_t dst_len, | 
|  | const uint8_t *msg, size_t msg_len) { | 
|  | if (EC_GROUP_cmp(group, out->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | return ec_hash_to_curve_p256_xmd_sha256_sswu(group, &out->raw, dst, dst_len, | 
|  | msg, msg_len); | 
|  | } | 
|  |  | 
|  | int ec_hash_to_curve_p384_xmd_sha384_sswu(const EC_GROUP *group, | 
|  | EC_JACOBIAN *out, const uint8_t *dst, | 
|  | size_t dst_len, const uint8_t *msg, | 
|  | size_t msg_len) { | 
|  | // See section 8.3 of RFC 9380. | 
|  | if (EC_GROUP_get_curve_name(group) != NID_secp384r1) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Z = -12, c2 = sqrt(12) | 
|  | EC_FELEM Z, c2; | 
|  | if (!felem_from_u8(group, &Z, 12) || | 
|  | !ec_felem_from_bytes(group, &c2, kP384Sqrt12, sizeof(kP384Sqrt12))) { | 
|  | return 0; | 
|  | } | 
|  | ec_felem_neg(group, &Z, &Z); | 
|  |  | 
|  | return hash_to_curve(group, EVP_sha384(), &Z, &c2, /*k=*/192, out, dst, | 
|  | dst_len, msg, msg_len); | 
|  | } | 
|  |  | 
|  | int EC_hash_to_curve_p384_xmd_sha384_sswu(const EC_GROUP *group, EC_POINT *out, | 
|  | const uint8_t *dst, size_t dst_len, | 
|  | const uint8_t *msg, size_t msg_len) { | 
|  | if (EC_GROUP_cmp(group, out->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | return ec_hash_to_curve_p384_xmd_sha384_sswu(group, &out->raw, dst, dst_len, | 
|  | msg, msg_len); | 
|  | } | 
|  |  | 
|  | int ec_hash_to_scalar_p384_xmd_sha384(const EC_GROUP *group, EC_SCALAR *out, | 
|  | const uint8_t *dst, size_t dst_len, | 
|  | const uint8_t *msg, size_t msg_len) { | 
|  | if (EC_GROUP_get_curve_name(group) != NID_secp384r1) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return hash_to_scalar(group, EVP_sha384(), out, dst, dst_len, /*k=*/192, msg, | 
|  | msg_len); | 
|  | } | 
|  |  | 
|  | int ec_hash_to_curve_p384_xmd_sha512_sswu_draft07( | 
|  | const EC_GROUP *group, EC_JACOBIAN *out, const uint8_t *dst, size_t dst_len, | 
|  | const uint8_t *msg, size_t msg_len) { | 
|  | // See section 8.3 of draft-irtf-cfrg-hash-to-curve-07. | 
|  | if (EC_GROUP_get_curve_name(group) != NID_secp384r1) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Z = -12, c2 = sqrt(12) | 
|  | EC_FELEM Z, c2; | 
|  | if (!felem_from_u8(group, &Z, 12) || | 
|  | !ec_felem_from_bytes(group, &c2, kP384Sqrt12, sizeof(kP384Sqrt12))) { | 
|  | return 0; | 
|  | } | 
|  | ec_felem_neg(group, &Z, &Z); | 
|  |  | 
|  | return hash_to_curve(group, EVP_sha512(), &Z, &c2, /*k=*/192, out, dst, | 
|  | dst_len, msg, msg_len); | 
|  | } | 
|  |  | 
|  | int ec_hash_to_scalar_p384_xmd_sha512_draft07( | 
|  | const EC_GROUP *group, EC_SCALAR *out, const uint8_t *dst, size_t dst_len, | 
|  | const uint8_t *msg, size_t msg_len) { | 
|  | if (EC_GROUP_get_curve_name(group) != NID_secp384r1) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return hash_to_scalar(group, EVP_sha512(), out, dst, dst_len, /*k=*/192, msg, | 
|  | msg_len); | 
|  | } |