| /* |
| * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 2015 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| */ |
| |
| #include <limits.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <string> |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/aes.h> |
| #include <openssl/cipher.h> |
| #include <openssl/err.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| #include <openssl/sha.h> |
| #include <openssl/span.h> |
| |
| #include "../test/file_test.h" |
| #include "../test/test_util.h" |
| #include "../test/wycheproof_util.h" |
| #include "./internal.h" |
| |
| |
| static const EVP_CIPHER *GetCipher(const std::string &name) { |
| if (name == "DES-CBC") { |
| return EVP_des_cbc(); |
| } else if (name == "DES-ECB") { |
| return EVP_des_ecb(); |
| } else if (name == "DES-EDE") { |
| return EVP_des_ede(); |
| } else if (name == "DES-EDE3") { |
| return EVP_des_ede3(); |
| } else if (name == "DES-EDE-CBC") { |
| return EVP_des_ede_cbc(); |
| } else if (name == "DES-EDE3-CBC") { |
| return EVP_des_ede3_cbc(); |
| } else if (name == "RC4") { |
| return EVP_rc4(); |
| } else if (name == "AES-128-ECB") { |
| return EVP_aes_128_ecb(); |
| } else if (name == "AES-256-ECB") { |
| return EVP_aes_256_ecb(); |
| } else if (name == "AES-128-CBC") { |
| return EVP_aes_128_cbc(); |
| } else if (name == "AES-128-GCM") { |
| return EVP_aes_128_gcm(); |
| } else if (name == "AES-128-OFB") { |
| return EVP_aes_128_ofb(); |
| } else if (name == "AES-192-CBC") { |
| return EVP_aes_192_cbc(); |
| } else if (name == "AES-192-CTR") { |
| return EVP_aes_192_ctr(); |
| } else if (name == "AES-192-ECB") { |
| return EVP_aes_192_ecb(); |
| } else if (name == "AES-192-GCM") { |
| return EVP_aes_192_gcm(); |
| } else if (name == "AES-192-OFB") { |
| return EVP_aes_192_ofb(); |
| } else if (name == "AES-256-CBC") { |
| return EVP_aes_256_cbc(); |
| } else if (name == "AES-128-CTR") { |
| return EVP_aes_128_ctr(); |
| } else if (name == "AES-256-CTR") { |
| return EVP_aes_256_ctr(); |
| } else if (name == "AES-256-GCM") { |
| return EVP_aes_256_gcm(); |
| } else if (name == "AES-256-OFB") { |
| return EVP_aes_256_ofb(); |
| } |
| return nullptr; |
| } |
| |
| enum class Operation { |
| // kBoth tests both encryption and decryption. |
| kBoth, |
| // kEncrypt tests encryption. The result of encryption should always |
| // successfully decrypt, so this should only be used if the test file has a |
| // matching decrypt-only vector. |
| kEncrypt, |
| // kDecrypt tests decryption. This should only be used if the test file has a |
| // matching encrypt-only input, or if multiple ciphertexts are valid for |
| // a given plaintext and this is a non-canonical ciphertext. |
| kDecrypt, |
| // kInvalidDecrypt tests decryption and expects it to fail, e.g. due to |
| // invalid tag or padding. |
| kInvalidDecrypt, |
| }; |
| |
| static const char *OperationToString(Operation op) { |
| switch (op) { |
| case Operation::kBoth: |
| return "Both"; |
| case Operation::kEncrypt: |
| return "Encrypt"; |
| case Operation::kDecrypt: |
| return "Decrypt"; |
| case Operation::kInvalidDecrypt: |
| return "InvalidDecrypt"; |
| } |
| abort(); |
| } |
| |
| // MaybeCopyCipherContext, if |copy| is true, replaces |*ctx| with a, hopefully |
| // equivalent, copy of it. |
| static bool MaybeCopyCipherContext(bool copy, |
| bssl::UniquePtr<EVP_CIPHER_CTX> *ctx) { |
| if (!copy) { |
| return true; |
| } |
| bssl::UniquePtr<EVP_CIPHER_CTX> ctx2(EVP_CIPHER_CTX_new()); |
| if (!ctx2 || !EVP_CIPHER_CTX_copy(ctx2.get(), ctx->get())) { |
| return false; |
| } |
| *ctx = std::move(ctx2); |
| return true; |
| } |
| |
| static void TestCipherAPI(const EVP_CIPHER *cipher, Operation op, bool padding, |
| bool copy, bool in_place, bool use_evp_cipher, |
| size_t chunk_size, bssl::Span<const uint8_t> key, |
| bssl::Span<const uint8_t> iv, |
| bssl::Span<const uint8_t> plaintext, |
| bssl::Span<const uint8_t> ciphertext, |
| bssl::Span<const uint8_t> aad, |
| bssl::Span<const uint8_t> tag) { |
| bool encrypt = op == Operation::kEncrypt; |
| bool is_custom_cipher = |
| EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_CUSTOM_CIPHER; |
| bssl::Span<const uint8_t> in = encrypt ? plaintext : ciphertext; |
| bssl::Span<const uint8_t> expected = encrypt ? ciphertext : plaintext; |
| bool is_aead = EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE; |
| |
| // Some |EVP_CIPHER|s take a variable-length key, and need to first be |
| // configured with the key length, which requires configuring the cipher. |
| bssl::UniquePtr<EVP_CIPHER_CTX> ctx(EVP_CIPHER_CTX_new()); |
| ASSERT_TRUE(ctx); |
| ASSERT_TRUE(EVP_CipherInit_ex(ctx.get(), cipher, /*engine=*/nullptr, |
| /*key=*/nullptr, /*iv=*/nullptr, |
| encrypt ? 1 : 0)); |
| ASSERT_TRUE(EVP_CIPHER_CTX_set_key_length(ctx.get(), key.size())); |
| if (!padding) { |
| ASSERT_TRUE(EVP_CIPHER_CTX_set_padding(ctx.get(), 0)); |
| } |
| |
| // Configure the key. |
| ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx)); |
| ASSERT_TRUE(EVP_CipherInit_ex(ctx.get(), /*cipher=*/nullptr, |
| /*engine=*/nullptr, key.data(), /*iv=*/nullptr, |
| /*enc=*/-1)); |
| |
| // Configure the IV to run the actual operation. Callers that wish to use a |
| // key for multiple, potentially concurrent, operations will likely copy at |
| // this point. The |EVP_CIPHER_CTX| API uses the same type to represent a |
| // pre-computed key schedule and a streaming operation. |
| ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx)); |
| if (is_aead) { |
| ASSERT_LE(iv.size(), size_t{INT_MAX}); |
| ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_SET_IVLEN, |
| static_cast<int>(iv.size()), 0)); |
| } else { |
| ASSERT_EQ(iv.size(), EVP_CIPHER_CTX_iv_length(ctx.get())); |
| } |
| ASSERT_TRUE(EVP_CipherInit_ex(ctx.get(), /*cipher=*/nullptr, |
| /*engine=*/nullptr, |
| /*key=*/nullptr, iv.data(), /*enc=*/-1)); |
| |
| if (is_aead && !encrypt) { |
| ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_SET_TAG, |
| tag.size(), |
| const_cast<uint8_t *>(tag.data()))); |
| } |
| |
| // Note: the deprecated |EVP_CIPHER|-based AEAD API is sensitive to whether |
| // parameters are NULL, so it is important to skip the |in| and |aad| |
| // |EVP_CipherUpdate| calls when empty. |
| while (!aad.empty()) { |
| size_t todo = |
| chunk_size == 0 ? aad.size() : std::min(aad.size(), chunk_size); |
| if (use_evp_cipher) { |
| // AEADs always use the "custom cipher" return value convention. Passing a |
| // null output pointer triggers the AAD logic. |
| ASSERT_TRUE(is_custom_cipher); |
| ASSERT_EQ(static_cast<int>(todo), |
| EVP_Cipher(ctx.get(), nullptr, aad.data(), todo)); |
| } else { |
| int len; |
| ASSERT_TRUE(EVP_CipherUpdate(ctx.get(), nullptr, &len, aad.data(), todo)); |
| // Although it doesn't output anything, |EVP_CipherUpdate| should claim to |
| // output the input length. |
| EXPECT_EQ(len, static_cast<int>(todo)); |
| } |
| aad = aad.subspan(todo); |
| } |
| |
| // Set up the output buffer. |
| size_t max_out = in.size(); |
| size_t block_size = EVP_CIPHER_CTX_block_size(ctx.get()); |
| if (block_size > 1 && |
| (EVP_CIPHER_CTX_flags(ctx.get()) & EVP_CIPH_NO_PADDING) == 0 && |
| EVP_CIPHER_CTX_encrypting(ctx.get())) { |
| max_out += block_size - (max_out % block_size); |
| } |
| std::vector<uint8_t> result(max_out); |
| if (in_place) { |
| std::copy(in.begin(), in.end(), result.begin()); |
| in = bssl::MakeConstSpan(result).first(in.size()); |
| } |
| |
| size_t total = 0; |
| int len; |
| while (!in.empty()) { |
| size_t todo = chunk_size == 0 ? in.size() : std::min(in.size(), chunk_size); |
| EXPECT_LE(todo, static_cast<size_t>(INT_MAX)); |
| ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx)); |
| if (use_evp_cipher) { |
| // |EVP_Cipher| sometimes returns the number of bytes written, or -1 on |
| // error, and sometimes 1 or 0, implicitly writing |in_len| bytes. |
| if (is_custom_cipher) { |
| len = EVP_Cipher(ctx.get(), result.data() + total, in.data(), todo); |
| } else { |
| ASSERT_EQ( |
| 1, EVP_Cipher(ctx.get(), result.data() + total, in.data(), todo)); |
| len = static_cast<int>(todo); |
| } |
| } else { |
| ASSERT_TRUE(EVP_CipherUpdate(ctx.get(), result.data() + total, &len, |
| in.data(), static_cast<int>(todo))); |
| } |
| ASSERT_GE(len, 0); |
| total += static_cast<size_t>(len); |
| in = in.subspan(todo); |
| } |
| if (op == Operation::kInvalidDecrypt) { |
| if (use_evp_cipher) { |
| // Only the "custom cipher" return value convention can report failures. |
| // Passing all nulls should act like |EVP_CipherFinal_ex|. |
| ASSERT_TRUE(is_custom_cipher); |
| EXPECT_EQ(-1, EVP_Cipher(ctx.get(), nullptr, nullptr, 0)); |
| } else { |
| // Invalid padding and invalid tags all appear as a failed |
| // |EVP_CipherFinal_ex|. |
| EXPECT_FALSE(EVP_CipherFinal_ex(ctx.get(), result.data() + total, &len)); |
| } |
| } else { |
| if (use_evp_cipher) { |
| if (is_custom_cipher) { |
| // Only the "custom cipher" convention has an |EVP_CipherFinal_ex| |
| // equivalent. |
| len = EVP_Cipher(ctx.get(), nullptr, nullptr, 0); |
| } else { |
| len = 0; |
| } |
| } else { |
| ASSERT_TRUE(EVP_CipherFinal_ex(ctx.get(), result.data() + total, &len)); |
| } |
| ASSERT_GE(len, 0); |
| total += static_cast<size_t>(len); |
| result.resize(total); |
| EXPECT_EQ(Bytes(expected), Bytes(result)); |
| if (encrypt && is_aead) { |
| uint8_t rtag[16]; |
| ASSERT_LE(tag.size(), sizeof(rtag)); |
| ASSERT_TRUE(MaybeCopyCipherContext(copy, &ctx)); |
| ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_GET_TAG, |
| tag.size(), rtag)); |
| EXPECT_EQ(Bytes(tag), Bytes(rtag, tag.size())); |
| } |
| } |
| } |
| |
| static void TestLowLevelAPI( |
| const EVP_CIPHER *cipher, Operation op, bool in_place, size_t chunk_size, |
| bssl::Span<const uint8_t> key, bssl::Span<const uint8_t> iv, |
| bssl::Span<const uint8_t> plaintext, bssl::Span<const uint8_t> ciphertext) { |
| bool encrypt = op == Operation::kEncrypt; |
| bssl::Span<const uint8_t> in = encrypt ? plaintext : ciphertext; |
| bssl::Span<const uint8_t> expected = encrypt ? ciphertext : plaintext; |
| int nid = EVP_CIPHER_nid(cipher); |
| bool is_ctr = nid == NID_aes_128_ctr || nid == NID_aes_192_ctr || |
| nid == NID_aes_256_ctr; |
| bool is_cbc = nid == NID_aes_128_cbc || nid == NID_aes_192_cbc || |
| nid == NID_aes_256_cbc; |
| bool is_ofb = nid == NID_aes_128_ofb128 || nid == NID_aes_192_ofb128 || |
| nid == NID_aes_256_ofb128; |
| if (!is_ctr && !is_cbc && !is_ofb) { |
| return; |
| } |
| |
| // Invalid ciphertexts are not possible in any of the ciphers where this API |
| // applies. |
| ASSERT_NE(op, Operation::kInvalidDecrypt); |
| |
| AES_KEY aes; |
| if (encrypt || !is_cbc) { |
| ASSERT_EQ(0, AES_set_encrypt_key(key.data(), key.size() * 8, &aes)); |
| } else { |
| ASSERT_EQ(0, AES_set_decrypt_key(key.data(), key.size() * 8, &aes)); |
| } |
| |
| std::vector<uint8_t> result; |
| if (in_place) { |
| result.assign(in.begin(), in.end()); |
| } else { |
| result.resize(expected.size()); |
| } |
| bssl::Span<uint8_t> out = bssl::MakeSpan(result); |
| // Input and output sizes for all the low-level APIs should match. |
| ASSERT_EQ(in.size(), out.size()); |
| |
| // The low-level APIs all use block-size IVs. |
| ASSERT_EQ(iv.size(), size_t{AES_BLOCK_SIZE}); |
| uint8_t ivec[AES_BLOCK_SIZE]; |
| OPENSSL_memcpy(ivec, iv.data(), iv.size()); |
| |
| if (is_ctr) { |
| unsigned num = 0; |
| uint8_t ecount_buf[AES_BLOCK_SIZE]; |
| if (chunk_size == 0) { |
| AES_ctr128_encrypt(in.data(), out.data(), in.size(), &aes, ivec, |
| ecount_buf, &num); |
| } else { |
| do { |
| size_t todo = std::min(in.size(), chunk_size); |
| AES_ctr128_encrypt(in.data(), out.data(), todo, &aes, ivec, ecount_buf, |
| &num); |
| in = in.subspan(todo); |
| out = out.subspan(todo); |
| } while (!in.empty()); |
| } |
| EXPECT_EQ(Bytes(expected), Bytes(result)); |
| } else if (is_cbc && chunk_size % AES_BLOCK_SIZE == 0) { |
| // Note |AES_cbc_encrypt| requires block-aligned chunks. |
| if (chunk_size == 0) { |
| AES_cbc_encrypt(in.data(), out.data(), in.size(), &aes, ivec, encrypt); |
| } else { |
| do { |
| size_t todo = std::min(in.size(), chunk_size); |
| AES_cbc_encrypt(in.data(), out.data(), todo, &aes, ivec, encrypt); |
| in = in.subspan(todo); |
| out = out.subspan(todo); |
| } while (!in.empty()); |
| } |
| EXPECT_EQ(Bytes(expected), Bytes(result)); |
| } else if (is_ofb) { |
| int num = 0; |
| if (chunk_size == 0) { |
| AES_ofb128_encrypt(in.data(), out.data(), in.size(), &aes, ivec, &num); |
| } else { |
| do { |
| size_t todo = std::min(in.size(), chunk_size); |
| AES_ofb128_encrypt(in.data(), out.data(), todo, &aes, ivec, &num); |
| in = in.subspan(todo); |
| out = out.subspan(todo); |
| } while (!in.empty()); |
| } |
| EXPECT_EQ(Bytes(expected), Bytes(result)); |
| } |
| } |
| |
| static void TestCipher(const EVP_CIPHER *cipher, Operation input_op, |
| bool padding, bssl::Span<const uint8_t> key, |
| bssl::Span<const uint8_t> iv, |
| bssl::Span<const uint8_t> plaintext, |
| bssl::Span<const uint8_t> ciphertext, |
| bssl::Span<const uint8_t> aad, |
| bssl::Span<const uint8_t> tag) { |
| size_t block_size = EVP_CIPHER_block_size(cipher); |
| std::vector<Operation> ops; |
| if (input_op == Operation::kBoth) { |
| ops = {Operation::kEncrypt, Operation::kDecrypt}; |
| } else { |
| ops = {input_op}; |
| } |
| for (Operation op : ops) { |
| SCOPED_TRACE(OperationToString(op)); |
| // Zero indicates a single-shot API. |
| static const size_t kChunkSizes[] = {0, 1, 2, 5, 7, 8, 9, 15, 16, |
| 17, 31, 32, 33, 63, 64, 65, 512}; |
| for (size_t chunk_size : kChunkSizes) { |
| SCOPED_TRACE(chunk_size); |
| if (chunk_size > plaintext.size() && chunk_size > ciphertext.size() && |
| chunk_size > aad.size()) { |
| continue; |
| } |
| for (bool in_place : {false, true}) { |
| SCOPED_TRACE(in_place); |
| for (bool copy : {false, true}) { |
| SCOPED_TRACE(copy); |
| TestCipherAPI(cipher, op, padding, copy, in_place, |
| /*use_evp_cipher=*/false, chunk_size, key, iv, |
| plaintext, ciphertext, aad, tag); |
| if (!padding && chunk_size % block_size == 0) { |
| TestCipherAPI(cipher, op, padding, copy, in_place, |
| /*use_evp_cipher=*/true, chunk_size, key, iv, |
| plaintext, ciphertext, aad, tag); |
| } |
| } |
| if (!padding) { |
| TestLowLevelAPI(cipher, op, in_place, chunk_size, key, iv, plaintext, |
| ciphertext); |
| } |
| } |
| } |
| } |
| } |
| |
| static void CipherFileTest(FileTest *t) { |
| std::string cipher_str; |
| ASSERT_TRUE(t->GetAttribute(&cipher_str, "Cipher")); |
| const EVP_CIPHER *cipher = GetCipher(cipher_str); |
| ASSERT_TRUE(cipher); |
| |
| std::vector<uint8_t> key, iv, plaintext, ciphertext, aad, tag; |
| ASSERT_TRUE(t->GetBytes(&key, "Key")); |
| ASSERT_TRUE(t->GetBytes(&plaintext, "Plaintext")); |
| ASSERT_TRUE(t->GetBytes(&ciphertext, "Ciphertext")); |
| if (EVP_CIPHER_iv_length(cipher) > 0) { |
| ASSERT_TRUE(t->GetBytes(&iv, "IV")); |
| } |
| if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) { |
| ASSERT_TRUE(t->GetBytes(&aad, "AAD")); |
| ASSERT_TRUE(t->GetBytes(&tag, "Tag")); |
| } |
| |
| Operation op = Operation::kBoth; |
| if (t->HasAttribute("Operation")) { |
| const std::string &str = t->GetAttributeOrDie("Operation"); |
| if (str == "Encrypt" || str == "ENCRYPT") { |
| op = Operation::kEncrypt; |
| } else if (str == "Decrypt" || str == "DECRYPT") { |
| op = Operation::kDecrypt; |
| } else if (str == "InvalidDecrypt") { |
| op = Operation::kInvalidDecrypt; |
| } else { |
| FAIL() << "Unknown operation: " << str; |
| } |
| } |
| |
| TestCipher(cipher, op, /*padding=*/false, key, iv, plaintext, ciphertext, aad, |
| tag); |
| } |
| |
| TEST(CipherTest, TestVectors) { |
| FileTestGTest("crypto/cipher_extra/test/cipher_tests.txt", CipherFileTest); |
| } |
| |
| TEST(CipherTest, CAVP_AES_128_CBC) { |
| FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_128_cbc.txt", |
| CipherFileTest); |
| } |
| |
| TEST(CipherTest, CAVP_AES_128_CTR) { |
| FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_128_ctr.txt", |
| CipherFileTest); |
| } |
| |
| TEST(CipherTest, CAVP_AES_192_CBC) { |
| FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_192_cbc.txt", |
| CipherFileTest); |
| } |
| |
| TEST(CipherTest, CAVP_AES_192_CTR) { |
| FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_192_ctr.txt", |
| CipherFileTest); |
| } |
| |
| TEST(CipherTest, CAVP_AES_256_CBC) { |
| FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_256_cbc.txt", |
| CipherFileTest); |
| } |
| |
| TEST(CipherTest, CAVP_AES_256_CTR) { |
| FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_256_ctr.txt", |
| CipherFileTest); |
| } |
| |
| TEST(CipherTest, CAVP_TDES_CBC) { |
| FileTestGTest("crypto/cipher_extra/test/nist_cavp/tdes_cbc.txt", |
| CipherFileTest); |
| } |
| |
| TEST(CipherTest, CAVP_TDES_ECB) { |
| FileTestGTest("crypto/cipher_extra/test/nist_cavp/tdes_ecb.txt", |
| CipherFileTest); |
| } |
| |
| TEST(CipherTest, WycheproofAESCBC) { |
| FileTestGTest("third_party/wycheproof_testvectors/aes_cbc_pkcs5_test.txt", |
| [](FileTest *t) { |
| t->IgnoreInstruction("type"); |
| t->IgnoreInstruction("ivSize"); |
| |
| std::string key_size; |
| ASSERT_TRUE(t->GetInstruction(&key_size, "keySize")); |
| const EVP_CIPHER *cipher; |
| switch (atoi(key_size.c_str())) { |
| case 128: |
| cipher = EVP_aes_128_cbc(); |
| break; |
| case 192: |
| cipher = EVP_aes_192_cbc(); |
| break; |
| case 256: |
| cipher = EVP_aes_256_cbc(); |
| break; |
| default: |
| FAIL() << "Unsupported key size: " << key_size; |
| } |
| |
| std::vector<uint8_t> key, iv, msg, ct; |
| ASSERT_TRUE(t->GetBytes(&key, "key")); |
| ASSERT_TRUE(t->GetBytes(&iv, "iv")); |
| ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
| ASSERT_TRUE(t->GetBytes(&ct, "ct")); |
| WycheproofResult result; |
| ASSERT_TRUE(GetWycheproofResult(t, &result)); |
| TestCipher(cipher, |
| result.IsValid() ? Operation::kBoth |
| : Operation::kInvalidDecrypt, |
| /*padding=*/true, key, iv, msg, ct, /*aad=*/{}, |
| /*tag=*/{}); |
| }); |
| } |
| |
| TEST(CipherTest, SHA1WithSecretSuffix) { |
| uint8_t buf[SHA_CBLOCK * 4]; |
| RAND_bytes(buf, sizeof(buf)); |
| // Hashing should run in time independent of the bytes. |
| CONSTTIME_SECRET(buf, sizeof(buf)); |
| |
| // Exhaustively testing interesting cases in this function is cubic in the |
| // block size, so we test in 3-byte increments. |
| constexpr size_t kSkip = 3; |
| // This value should be less than 8 to test the edge case when the 8-byte |
| // length wraps to the next block. |
| static_assert(kSkip < 8, "kSkip is too large"); |
| |
| // |EVP_sha1_final_with_secret_suffix| is sensitive to the public length of |
| // the partial block previously hashed. In TLS, this is the HMAC prefix, the |
| // header, and the public minimum padding length. |
| for (size_t prefix = 0; prefix < SHA_CBLOCK; prefix += kSkip) { |
| SCOPED_TRACE(prefix); |
| // The first block is treated differently, so we run with up to three |
| // blocks of length variability. |
| for (size_t max_len = 0; max_len < 3 * SHA_CBLOCK; max_len += kSkip) { |
| SCOPED_TRACE(max_len); |
| for (size_t len = 0; len <= max_len; len += kSkip) { |
| SCOPED_TRACE(len); |
| |
| uint8_t expected[SHA_DIGEST_LENGTH]; |
| SHA1(buf, prefix + len, expected); |
| CONSTTIME_DECLASSIFY(expected, sizeof(expected)); |
| |
| // Make a copy of the secret length to avoid interfering with the loop. |
| size_t secret_len = len; |
| CONSTTIME_SECRET(&secret_len, sizeof(secret_len)); |
| |
| SHA_CTX ctx; |
| SHA1_Init(&ctx); |
| SHA1_Update(&ctx, buf, prefix); |
| uint8_t computed[SHA_DIGEST_LENGTH]; |
| ASSERT_TRUE(EVP_sha1_final_with_secret_suffix( |
| &ctx, computed, buf + prefix, secret_len, max_len)); |
| |
| CONSTTIME_DECLASSIFY(computed, sizeof(computed)); |
| EXPECT_EQ(Bytes(expected), Bytes(computed)); |
| } |
| } |
| } |
| } |
| |
| TEST(CipherTest, SHA256WithSecretSuffix) { |
| uint8_t buf[SHA256_CBLOCK * 4]; |
| RAND_bytes(buf, sizeof(buf)); |
| // Hashing should run in time independent of the bytes. |
| CONSTTIME_SECRET(buf, sizeof(buf)); |
| |
| // Exhaustively testing interesting cases in this function is cubic in the |
| // block size, so we test in 3-byte increments. |
| constexpr size_t kSkip = 3; |
| // This value should be less than 8 to test the edge case when the 8-byte |
| // length wraps to the next block. |
| static_assert(kSkip < 8, "kSkip is too large"); |
| |
| // |EVP_sha256_final_with_secret_suffix| is sensitive to the public length of |
| // the partial block previously hashed. In TLS, this is the HMAC prefix, the |
| // header, and the public minimum padding length. |
| for (size_t prefix = 0; prefix < SHA256_CBLOCK; prefix += kSkip) { |
| SCOPED_TRACE(prefix); |
| // The first block is treated differently, so we run with up to three |
| // blocks of length variability. |
| for (size_t max_len = 0; max_len < 3 * SHA256_CBLOCK; max_len += kSkip) { |
| SCOPED_TRACE(max_len); |
| for (size_t len = 0; len <= max_len; len += kSkip) { |
| SCOPED_TRACE(len); |
| |
| uint8_t expected[SHA256_DIGEST_LENGTH]; |
| SHA256(buf, prefix + len, expected); |
| CONSTTIME_DECLASSIFY(expected, sizeof(expected)); |
| |
| // Make a copy of the secret length to avoid interfering with the loop. |
| size_t secret_len = len; |
| CONSTTIME_SECRET(&secret_len, sizeof(secret_len)); |
| |
| SHA256_CTX ctx; |
| SHA256_Init(&ctx); |
| SHA256_Update(&ctx, buf, prefix); |
| uint8_t computed[SHA256_DIGEST_LENGTH]; |
| ASSERT_TRUE(EVP_sha256_final_with_secret_suffix( |
| &ctx, computed, buf + prefix, secret_len, max_len)); |
| |
| CONSTTIME_DECLASSIFY(computed, sizeof(computed)); |
| EXPECT_EQ(Bytes(expected), Bytes(computed)); |
| } |
| } |
| } |
| } |
| |
| TEST(CipherTest, GetCipher) { |
| const EVP_CIPHER *cipher = EVP_get_cipherbynid(NID_aes_128_gcm); |
| ASSERT_TRUE(cipher); |
| EXPECT_EQ(NID_aes_128_gcm, EVP_CIPHER_nid(cipher)); |
| |
| cipher = EVP_get_cipherbyname("aes-128-gcm"); |
| ASSERT_TRUE(cipher); |
| EXPECT_EQ(NID_aes_128_gcm, EVP_CIPHER_nid(cipher)); |
| |
| cipher = EVP_get_cipherbyname("AES-128-GCM"); |
| ASSERT_TRUE(cipher); |
| EXPECT_EQ(NID_aes_128_gcm, EVP_CIPHER_nid(cipher)); |
| |
| // We support a tcpdump-specific alias for 3DES. |
| cipher = EVP_get_cipherbyname("3des"); |
| ASSERT_TRUE(cipher); |
| EXPECT_EQ(NID_des_ede3_cbc, EVP_CIPHER_nid(cipher)); |
| } |