| /* ==================================================================== |
| * Copyright (c) 2008 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== */ |
| |
| #include <openssl/base.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/mem.h> |
| #include <openssl/cpu.h> |
| |
| #include "internal.h" |
| #include "../../internal.h" |
| |
| |
| #define PACK(s) ((size_t)(s) << (sizeof(size_t) * 8 - 16)) |
| #define REDUCE1BIT(V) \ |
| do { \ |
| if (sizeof(size_t) == 8) { \ |
| uint64_t T = UINT64_C(0xe100000000000000) & (0 - ((V).lo & 1)); \ |
| (V).lo = ((V).hi << 63) | ((V).lo >> 1); \ |
| (V).hi = ((V).hi >> 1) ^ T; \ |
| } else { \ |
| uint32_t T = 0xe1000000U & (0 - (uint32_t)((V).lo & 1)); \ |
| (V).lo = ((V).hi << 63) | ((V).lo >> 1); \ |
| (V).hi = ((V).hi >> 1) ^ ((uint64_t)T << 32); \ |
| } \ |
| } while (0) |
| |
| // kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four |
| // bits of a |size_t|. |
| static const size_t kSizeTWithoutLower4Bits = (size_t) -16; |
| |
| void gcm_init_4bit(u128 Htable[16], const uint64_t H[2]) { |
| u128 V; |
| |
| Htable[0].hi = 0; |
| Htable[0].lo = 0; |
| V.hi = H[0]; |
| V.lo = H[1]; |
| |
| Htable[8] = V; |
| REDUCE1BIT(V); |
| Htable[4] = V; |
| REDUCE1BIT(V); |
| Htable[2] = V; |
| REDUCE1BIT(V); |
| Htable[1] = V; |
| Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; |
| V = Htable[4]; |
| Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; |
| Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; |
| Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; |
| V = Htable[8]; |
| Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; |
| Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; |
| Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; |
| Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; |
| Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; |
| Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; |
| Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; |
| |
| #if defined(GHASH_ASM) && defined(OPENSSL_ARM) |
| for (int j = 0; j < 16; ++j) { |
| V = Htable[j]; |
| Htable[j].hi = V.lo; |
| Htable[j].lo = V.hi; |
| } |
| #endif |
| } |
| |
| #if !defined(GHASH_ASM) || defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE) |
| static const size_t rem_4bit[16] = { |
| PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), |
| PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), |
| PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), |
| PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)}; |
| |
| void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]) { |
| u128 Z; |
| int cnt = 15; |
| size_t rem, nlo, nhi; |
| |
| nlo = ((const uint8_t *)Xi)[15]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| Z.hi = Htable[nlo].hi; |
| Z.lo = Htable[nlo].lo; |
| |
| while (1) { |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) { |
| Z.hi ^= rem_4bit[rem]; |
| } else { |
| Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| } |
| |
| Z.hi ^= Htable[nhi].hi; |
| Z.lo ^= Htable[nhi].lo; |
| |
| if (--cnt < 0) { |
| break; |
| } |
| |
| nlo = ((const uint8_t *)Xi)[cnt]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) { |
| Z.hi ^= rem_4bit[rem]; |
| } else { |
| Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| } |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| } |
| |
| Xi[0] = CRYPTO_bswap8(Z.hi); |
| Xi[1] = CRYPTO_bswap8(Z.lo); |
| } |
| |
| // Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for |
| // details... Compiler-generated code doesn't seem to give any |
| // performance improvement, at least not on x86[_64]. It's here |
| // mostly as reference and a placeholder for possible future |
| // non-trivial optimization[s]... |
| void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) { |
| u128 Z; |
| int cnt; |
| size_t rem, nlo, nhi; |
| |
| do { |
| cnt = 15; |
| nlo = ((const uint8_t *)Xi)[15]; |
| nlo ^= inp[15]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| Z.hi = Htable[nlo].hi; |
| Z.lo = Htable[nlo].lo; |
| |
| while (1) { |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) { |
| Z.hi ^= rem_4bit[rem]; |
| } else { |
| Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| } |
| |
| Z.hi ^= Htable[nhi].hi; |
| Z.lo ^= Htable[nhi].lo; |
| |
| if (--cnt < 0) { |
| break; |
| } |
| |
| nlo = ((const uint8_t *)Xi)[cnt]; |
| nlo ^= inp[cnt]; |
| nhi = nlo >> 4; |
| nlo &= 0xf; |
| |
| rem = (size_t)Z.lo & 0xf; |
| Z.lo = (Z.hi << 60) | (Z.lo >> 4); |
| Z.hi = (Z.hi >> 4); |
| if (sizeof(size_t) == 8) { |
| Z.hi ^= rem_4bit[rem]; |
| } else { |
| Z.hi ^= (uint64_t)rem_4bit[rem] << 32; |
| } |
| |
| Z.hi ^= Htable[nlo].hi; |
| Z.lo ^= Htable[nlo].lo; |
| } |
| |
| Xi[0] = CRYPTO_bswap8(Z.hi); |
| Xi[1] = CRYPTO_bswap8(Z.lo); |
| } while (inp += 16, len -= 16); |
| } |
| #endif // !GHASH_ASM || AARCH64 || PPC64LE |
| |
| #define GCM_MUL(ctx, Xi) gcm_gmult_4bit((ctx)->Xi.u, (ctx)->gcm_key.Htable) |
| #define GHASH(ctx, in, len) \ |
| gcm_ghash_4bit((ctx)->Xi.u, (ctx)->gcm_key.Htable, in, len) |
| // GHASH_CHUNK is "stride parameter" missioned to mitigate cache |
| // trashing effect. In other words idea is to hash data while it's |
| // still in L1 cache after encryption pass... |
| #define GHASH_CHUNK (3 * 1024) |
| |
| #if defined(GHASH_ASM_X86_64) || defined(GHASH_ASM_X86) |
| void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]) { |
| // Run the existing 4-bit version. |
| gcm_init_4bit(Htable, Xi); |
| |
| // First, swap hi and lo. The "4bit" version places hi first. It treats the |
| // two fields separately, so the order does not matter, but ghash-ssse3 reads |
| // the entire state into one 128-bit register. |
| for (int i = 0; i < 16; i++) { |
| uint64_t tmp = Htable[i].hi; |
| Htable[i].hi = Htable[i].lo; |
| Htable[i].lo = tmp; |
| } |
| |
| // Treat |Htable| as a 16x16 byte table and transpose it. Thus, Htable[i] |
| // contains the i'th byte of j*H for all j. |
| uint8_t *Hbytes = (uint8_t *)Htable; |
| for (int i = 0; i < 16; i++) { |
| for (int j = 0; j < i; j++) { |
| uint8_t tmp = Hbytes[16*i + j]; |
| Hbytes[16*i + j] = Hbytes[16*j + i]; |
| Hbytes[16*j + i] = tmp; |
| } |
| } |
| } |
| #endif // GHASH_ASM_X86_64 || GHASH_ASM_X86 |
| |
| #ifdef GCM_FUNCREF_4BIT |
| #undef GCM_MUL |
| #define GCM_MUL(ctx, Xi) (*gcm_gmult_p)((ctx)->Xi.u, (ctx)->gcm_key.Htable) |
| #undef GHASH |
| #define GHASH(ctx, in, len) \ |
| (*gcm_ghash_p)((ctx)->Xi.u, (ctx)->gcm_key.Htable, in, len) |
| #endif // GCM_FUNCREF_4BIT |
| |
| void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, |
| u128 *out_key, u128 out_table[16], int *out_is_avx, |
| const uint8_t gcm_key[16]) { |
| *out_is_avx = 0; |
| |
| union { |
| uint64_t u[2]; |
| uint8_t c[16]; |
| } H; |
| |
| OPENSSL_memcpy(H.c, gcm_key, 16); |
| |
| // H is stored in host byte order |
| H.u[0] = CRYPTO_bswap8(H.u[0]); |
| H.u[1] = CRYPTO_bswap8(H.u[1]); |
| |
| OPENSSL_memcpy(out_key, H.c, 16); |
| |
| #if defined(GHASH_ASM_X86_64) |
| if (crypto_gcm_clmul_enabled()) { |
| if (((OPENSSL_ia32cap_get()[1] >> 22) & 0x41) == 0x41) { // AVX+MOVBE |
| gcm_init_avx(out_table, H.u); |
| *out_mult = gcm_gmult_avx; |
| *out_hash = gcm_ghash_avx; |
| *out_is_avx = 1; |
| return; |
| } |
| gcm_init_clmul(out_table, H.u); |
| *out_mult = gcm_gmult_clmul; |
| *out_hash = gcm_ghash_clmul; |
| return; |
| } |
| if (gcm_ssse3_capable()) { |
| gcm_init_ssse3(out_table, H.u); |
| *out_mult = gcm_gmult_ssse3; |
| *out_hash = gcm_ghash_ssse3; |
| return; |
| } |
| #elif defined(GHASH_ASM_X86) |
| if (crypto_gcm_clmul_enabled()) { |
| gcm_init_clmul(out_table, H.u); |
| *out_mult = gcm_gmult_clmul; |
| *out_hash = gcm_ghash_clmul; |
| return; |
| } |
| if (gcm_ssse3_capable()) { |
| gcm_init_ssse3(out_table, H.u); |
| *out_mult = gcm_gmult_ssse3; |
| *out_hash = gcm_ghash_ssse3; |
| return; |
| } |
| #elif defined(GHASH_ASM_ARM) |
| if (gcm_pmull_capable()) { |
| gcm_init_v8(out_table, H.u); |
| *out_mult = gcm_gmult_v8; |
| *out_hash = gcm_ghash_v8; |
| return; |
| } |
| |
| if (gcm_neon_capable()) { |
| gcm_init_neon(out_table, H.u); |
| *out_mult = gcm_gmult_neon; |
| *out_hash = gcm_ghash_neon; |
| return; |
| } |
| #elif defined(GHASH_ASM_PPC64LE) |
| if (CRYPTO_is_PPC64LE_vcrypto_capable()) { |
| gcm_init_p8(out_table, H.u); |
| *out_mult = gcm_gmult_p8; |
| *out_hash = gcm_ghash_p8; |
| return; |
| } |
| #endif |
| |
| gcm_init_4bit(out_table, H.u); |
| #if defined(GHASH_ASM_X86) |
| *out_mult = gcm_gmult_4bit_mmx; |
| *out_hash = gcm_ghash_4bit_mmx; |
| #else |
| *out_mult = gcm_gmult_4bit; |
| *out_hash = gcm_ghash_4bit; |
| #endif |
| } |
| |
| void CRYPTO_gcm128_init_key(GCM128_KEY *gcm_key, const AES_KEY *aes_key, |
| block128_f block, int block_is_hwaes) { |
| OPENSSL_memset(gcm_key, 0, sizeof(*gcm_key)); |
| gcm_key->block = block; |
| |
| uint8_t ghash_key[16]; |
| OPENSSL_memset(ghash_key, 0, sizeof(ghash_key)); |
| (*block)(ghash_key, ghash_key, aes_key); |
| |
| int is_avx; |
| CRYPTO_ghash_init(&gcm_key->gmult, &gcm_key->ghash, &gcm_key->H, |
| gcm_key->Htable, &is_avx, ghash_key); |
| |
| gcm_key->use_aesni_gcm_crypt = (is_avx && block_is_hwaes) ? 1 : 0; |
| } |
| |
| void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const AES_KEY *key, |
| const uint8_t *iv, size_t len) { |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| ctx->gcm_key.gmult; |
| #endif |
| |
| ctx->Yi.u[0] = 0; |
| ctx->Yi.u[1] = 0; |
| ctx->Xi.u[0] = 0; |
| ctx->Xi.u[1] = 0; |
| ctx->len.u[0] = 0; // AAD length |
| ctx->len.u[1] = 0; // message length |
| ctx->ares = 0; |
| ctx->mres = 0; |
| |
| uint32_t ctr; |
| if (len == 12) { |
| OPENSSL_memcpy(ctx->Yi.c, iv, 12); |
| ctx->Yi.c[15] = 1; |
| ctr = 1; |
| } else { |
| uint64_t len0 = len; |
| |
| while (len >= 16) { |
| for (size_t i = 0; i < 16; ++i) { |
| ctx->Yi.c[i] ^= iv[i]; |
| } |
| GCM_MUL(ctx, Yi); |
| iv += 16; |
| len -= 16; |
| } |
| if (len) { |
| for (size_t i = 0; i < len; ++i) { |
| ctx->Yi.c[i] ^= iv[i]; |
| } |
| GCM_MUL(ctx, Yi); |
| } |
| len0 <<= 3; |
| ctx->Yi.u[1] ^= CRYPTO_bswap8(len0); |
| |
| GCM_MUL(ctx, Yi); |
| ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
| } |
| |
| (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EK0.c, key); |
| ++ctr; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| } |
| |
| int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len) { |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| ctx->gcm_key.gmult; |
| #ifdef GHASH |
| void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) = ctx->gcm_key.ghash; |
| #endif |
| #endif |
| |
| if (ctx->len.u[1]) { |
| return 0; |
| } |
| |
| uint64_t alen = ctx->len.u[0] + len; |
| if (alen > (UINT64_C(1) << 61) || (sizeof(len) == 8 && alen < len)) { |
| return 0; |
| } |
| ctx->len.u[0] = alen; |
| |
| unsigned n = ctx->ares; |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(aad++); |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } else { |
| ctx->ares = n; |
| return 1; |
| } |
| } |
| |
| // Process a whole number of blocks. |
| size_t len_blocks = len & kSizeTWithoutLower4Bits; |
| if (len_blocks != 0) { |
| GHASH(ctx, aad, len_blocks); |
| aad += len_blocks; |
| len -= len_blocks; |
| } |
| |
| // Process the remainder. |
| if (len != 0) { |
| n = (unsigned int)len; |
| for (size_t i = 0; i < len; ++i) { |
| ctx->Xi.c[i] ^= aad[i]; |
| } |
| } |
| |
| ctx->ares = n; |
| return 1; |
| } |
| |
| int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, |
| const uint8_t *in, uint8_t *out, size_t len) { |
| block128_f block = ctx->gcm_key.block; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| ctx->gcm_key.gmult; |
| void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) = ctx->gcm_key.ghash; |
| #endif |
| |
| uint64_t mlen = ctx->len.u[1] + len; |
| if (mlen > ((UINT64_C(1) << 36) - 32) || |
| (sizeof(len) == 8 && mlen < len)) { |
| return 0; |
| } |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| // First call to encrypt finalizes GHASH(AAD) |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| unsigned n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } else { |
| ctx->mres = n; |
| return 1; |
| } |
| } |
| |
| uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
| while (len >= GHASH_CHUNK) { |
| size_t j = GHASH_CHUNK; |
| |
| while (j) { |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
| store_word_le(out + i, |
| load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
| } |
| out += 16; |
| in += 16; |
| j -= 16; |
| } |
| GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); |
| len -= GHASH_CHUNK; |
| } |
| size_t len_blocks = len & kSizeTWithoutLower4Bits; |
| if (len_blocks != 0) { |
| while (len >= 16) { |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
| store_word_le(out + i, |
| load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
| } |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| GHASH(ctx, out - len_blocks, len_blocks); |
| } |
| if (len) { |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| while (len--) { |
| ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 1; |
| } |
| |
| int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const AES_KEY *key, |
| const unsigned char *in, unsigned char *out, |
| size_t len) { |
| block128_f block = ctx->gcm_key.block; |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| ctx->gcm_key.gmult; |
| void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) = ctx->gcm_key.ghash; |
| #endif |
| |
| uint64_t mlen = ctx->len.u[1] + len; |
| if (mlen > ((UINT64_C(1) << 36) - 32) || |
| (sizeof(len) == 8 && mlen < len)) { |
| return 0; |
| } |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| // First call to decrypt finalizes GHASH(AAD) |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| unsigned n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| uint8_t c = *(in++); |
| *(out++) = c ^ ctx->EKi.c[n]; |
| ctx->Xi.c[n] ^= c; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } else { |
| ctx->mres = n; |
| return 1; |
| } |
| } |
| |
| uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
| while (len >= GHASH_CHUNK) { |
| size_t j = GHASH_CHUNK; |
| |
| GHASH(ctx, in, GHASH_CHUNK); |
| while (j) { |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
| store_word_le(out + i, |
| load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
| } |
| out += 16; |
| in += 16; |
| j -= 16; |
| } |
| len -= GHASH_CHUNK; |
| } |
| size_t len_blocks = len & kSizeTWithoutLower4Bits; |
| if (len_blocks != 0) { |
| GHASH(ctx, in, len_blocks); |
| while (len >= 16) { |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| for (size_t i = 0; i < 16; i += sizeof(size_t)) { |
| store_word_le(out + i, |
| load_word_le(in + i) ^ ctx->EKi.t[i / sizeof(size_t)]); |
| } |
| out += 16; |
| in += 16; |
| len -= 16; |
| } |
| } |
| if (len) { |
| (*block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| while (len--) { |
| uint8_t c = in[n]; |
| ctx->Xi.c[n] ^= c; |
| out[n] = c ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 1; |
| } |
| |
| int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, |
| const uint8_t *in, uint8_t *out, size_t len, |
| ctr128_f stream) { |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| ctx->gcm_key.gmult; |
| void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) = ctx->gcm_key.ghash; |
| #endif |
| |
| uint64_t mlen = ctx->len.u[1] + len; |
| if (mlen > ((UINT64_C(1) << 36) - 32) || |
| (sizeof(len) == 8 && mlen < len)) { |
| return 0; |
| } |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| // First call to encrypt finalizes GHASH(AAD) |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| unsigned n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } else { |
| ctx->mres = n; |
| return 1; |
| } |
| } |
| |
| #if defined(AESNI_GCM) |
| if (ctx->gcm_key.use_aesni_gcm_crypt) { |
| // |aesni_gcm_encrypt| may not process all the input given to it. It may |
| // not process *any* of its input if it is deemed too small. |
| size_t bulk = aesni_gcm_encrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); |
| in += bulk; |
| out += bulk; |
| len -= bulk; |
| } |
| #endif |
| |
| uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
| while (len >= GHASH_CHUNK) { |
| (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
| ctr += GHASH_CHUNK / 16; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| GHASH(ctx, out, GHASH_CHUNK); |
| out += GHASH_CHUNK; |
| in += GHASH_CHUNK; |
| len -= GHASH_CHUNK; |
| } |
| size_t len_blocks = len & kSizeTWithoutLower4Bits; |
| if (len_blocks != 0) { |
| size_t j = len_blocks / 16; |
| |
| (*stream)(in, out, j, key, ctx->Yi.c); |
| ctr += (unsigned int)j; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| in += len_blocks; |
| len -= len_blocks; |
| GHASH(ctx, out, len_blocks); |
| out += len_blocks; |
| } |
| if (len) { |
| (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| while (len--) { |
| ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 1; |
| } |
| |
| int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const AES_KEY *key, |
| const uint8_t *in, uint8_t *out, size_t len, |
| ctr128_f stream) { |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| ctx->gcm_key.gmult; |
| void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp, |
| size_t len) = ctx->gcm_key.ghash; |
| #endif |
| |
| uint64_t mlen = ctx->len.u[1] + len; |
| if (mlen > ((UINT64_C(1) << 36) - 32) || |
| (sizeof(len) == 8 && mlen < len)) { |
| return 0; |
| } |
| ctx->len.u[1] = mlen; |
| |
| if (ctx->ares) { |
| // First call to decrypt finalizes GHASH(AAD) |
| GCM_MUL(ctx, Xi); |
| ctx->ares = 0; |
| } |
| |
| unsigned n = ctx->mres; |
| if (n) { |
| while (n && len) { |
| uint8_t c = *(in++); |
| *(out++) = c ^ ctx->EKi.c[n]; |
| ctx->Xi.c[n] ^= c; |
| --len; |
| n = (n + 1) % 16; |
| } |
| if (n == 0) { |
| GCM_MUL(ctx, Xi); |
| } else { |
| ctx->mres = n; |
| return 1; |
| } |
| } |
| |
| #if defined(AESNI_GCM) |
| if (ctx->gcm_key.use_aesni_gcm_crypt) { |
| // |aesni_gcm_decrypt| may not process all the input given to it. It may |
| // not process *any* of its input if it is deemed too small. |
| size_t bulk = aesni_gcm_decrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u); |
| in += bulk; |
| out += bulk; |
| len -= bulk; |
| } |
| #endif |
| |
| uint32_t ctr = CRYPTO_bswap4(ctx->Yi.d[3]); |
| while (len >= GHASH_CHUNK) { |
| GHASH(ctx, in, GHASH_CHUNK); |
| (*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); |
| ctr += GHASH_CHUNK / 16; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| out += GHASH_CHUNK; |
| in += GHASH_CHUNK; |
| len -= GHASH_CHUNK; |
| } |
| size_t len_blocks = len & kSizeTWithoutLower4Bits; |
| if (len_blocks != 0) { |
| size_t j = len_blocks / 16; |
| |
| GHASH(ctx, in, len_blocks); |
| (*stream)(in, out, j, key, ctx->Yi.c); |
| ctr += (unsigned int)j; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| out += len_blocks; |
| in += len_blocks; |
| len -= len_blocks; |
| } |
| if (len) { |
| (*ctx->gcm_key.block)(ctx->Yi.c, ctx->EKi.c, key); |
| ++ctr; |
| ctx->Yi.d[3] = CRYPTO_bswap4(ctr); |
| while (len--) { |
| uint8_t c = in[n]; |
| ctx->Xi.c[n] ^= c; |
| out[n] = c ^ ctx->EKi.c[n]; |
| ++n; |
| } |
| } |
| |
| ctx->mres = n; |
| return 1; |
| } |
| |
| int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len) { |
| #ifdef GCM_FUNCREF_4BIT |
| void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = |
| ctx->gcm_key.gmult; |
| #endif |
| |
| if (ctx->mres || ctx->ares) { |
| GCM_MUL(ctx, Xi); |
| } |
| |
| ctx->Xi.u[0] ^= CRYPTO_bswap8(ctx->len.u[0] << 3); |
| ctx->Xi.u[1] ^= CRYPTO_bswap8(ctx->len.u[1] << 3); |
| GCM_MUL(ctx, Xi); |
| |
| ctx->Xi.u[0] ^= ctx->EK0.u[0]; |
| ctx->Xi.u[1] ^= ctx->EK0.u[1]; |
| |
| if (tag && len <= sizeof(ctx->Xi)) { |
| return CRYPTO_memcmp(ctx->Xi.c, tag, len) == 0; |
| } else { |
| return 0; |
| } |
| } |
| |
| void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { |
| CRYPTO_gcm128_finish(ctx, NULL, 0); |
| OPENSSL_memcpy(tag, ctx->Xi.c, |
| len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); |
| } |
| |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) |
| int crypto_gcm_clmul_enabled(void) { |
| #ifdef GHASH_ASM |
| const uint32_t *ia32cap = OPENSSL_ia32cap_get(); |
| return (ia32cap[0] & (1 << 24)) && // check FXSR bit |
| (ia32cap[1] & (1 << 1)); // check PCLMULQDQ bit |
| #else |
| return 0; |
| #endif |
| } |
| #endif |