| #ifndef FPX_H_ |
| #define FPX_H_ |
| |
| #include "utils.h" |
| |
| #if defined(__cplusplus) |
| extern "C" { |
| #endif |
| |
| // Modular addition, c = a+b mod p503. |
| void sike_fpadd(const felm_t a, const felm_t b, felm_t c); |
| // Modular subtraction, c = a-b mod p503. |
| void sike_fpsub(const felm_t a, const felm_t b, felm_t c); |
| // Modular division by two, c = a/2 mod p503. |
| void sike_fpdiv2(const felm_t a, felm_t c); |
| // Modular correction to reduce field element a in [0, 2*p503-1] to [0, p503-1]. |
| void sike_fpcorrection(felm_t a); |
| // Multiprecision multiply, c = a*b, where lng(a) = lng(b) = nwords. |
| void sike_mpmul(const felm_t a, const felm_t b, dfelm_t c); |
| // 503-bit Montgomery reduction, c = a mod p |
| void sike_fprdc(const dfelm_t a, felm_t c); |
| // Double 2x503-bit multiprecision subtraction, c = c-a-b |
| void sike_mpdblsubx2_asm(const felm_t a, const felm_t b, felm_t c); |
| // Multiprecision subtraction, c = a-b |
| crypto_word_t sike_mpsubx2_asm(const dfelm_t a, const dfelm_t b, dfelm_t c); |
| // 503-bit multiprecision addition, c = a+b |
| void sike_mpadd_asm(const felm_t a, const felm_t b, felm_t c); |
| // Modular negation, a = -a mod p503. |
| void sike_fpneg(felm_t a); |
| // Copy of a field element, c = a |
| void sike_fpcopy(const felm_t a, felm_t c); |
| // Copy a field element, c = a. |
| void sike_fpzero(felm_t a); |
| // If option = 0xFF...FF x=y; y=x, otherwise swap doesn't happen. Constant time. |
| void sike_cswap_asm(point_proj_t x, point_proj_t y, const crypto_word_t option); |
| // Conversion from Montgomery representation to standard representation, |
| // c = ma*R^(-1) mod p = a mod p, where ma in [0, p-1]. |
| void sike_from_mont(const felm_t ma, felm_t c); |
| // Field multiplication using Montgomery arithmetic, c = a*b*R^-1 mod p503, where R=2^768 |
| void sike_fpmul_mont(const felm_t ma, const felm_t mb, felm_t mc); |
| // GF(p503^2) multiplication using Montgomery arithmetic, c = a*b in GF(p503^2) |
| void sike_fp2mul_mont(const f2elm_t a, const f2elm_t b, f2elm_t c); |
| // GF(p503^2) inversion using Montgomery arithmetic, a = (a0-i*a1)/(a0^2+a1^2) |
| void sike_fp2inv_mont(f2elm_t a); |
| // GF(p^2) squaring using Montgomery arithmetic, c = a^2 in GF(p^2). |
| void sike_fp2sqr_mont(const f2elm_t a, f2elm_t c); |
| // Modular correction, a = a in GF(p^2). |
| void sike_fp2correction(f2elm_t a); |
| |
| #if defined(__cplusplus) |
| } // extern C |
| #endif |
| |
| // GF(p^2) addition, c = a+b in GF(p^2). |
| #define sike_fp2add(a, b, c) \ |
| do { \ |
| sike_fpadd(a->c0, b->c0, c->c0); \ |
| sike_fpadd(a->c1, b->c1, c->c1); \ |
| } while(0) |
| |
| // GF(p^2) subtraction, c = a-b in GF(p^2). |
| #define sike_fp2sub(a,b,c) \ |
| do { \ |
| sike_fpsub(a->c0, b->c0, c->c0); \ |
| sike_fpsub(a->c1, b->c1, c->c1); \ |
| } while(0) |
| |
| // Copy a GF(p^2) element, c = a. |
| #define sike_fp2copy(a, c) \ |
| do { \ |
| sike_fpcopy(a->c0, c->c0); \ |
| sike_fpcopy(a->c1, c->c1); \ |
| } while(0) |
| |
| // GF(p^2) negation, a = -a in GF(p^2). |
| #define sike_fp2neg(a) \ |
| do { \ |
| sike_fpneg(a->c0); \ |
| sike_fpneg(a->c1); \ |
| } while(0) |
| |
| // GF(p^2) division by two, c = a/2 in GF(p^2). |
| #define sike_fp2div2(a, c) \ |
| do { \ |
| sike_fpdiv2(a->c0, c->c0); \ |
| sike_fpdiv2(a->c1, c->c1); \ |
| } while(0) |
| |
| // Modular correction, a = a in GF(p^2). |
| #define sike_fp2correction(a) \ |
| do { \ |
| sike_fpcorrection(a->c0); \ |
| sike_fpcorrection(a->c1); \ |
| } while(0) |
| |
| // Conversion of a GF(p^2) element to Montgomery representation, |
| // mc_i = a_i*R^2*R^(-1) = a_i*R in GF(p^2). |
| #define sike_to_fp2mont(a, mc) \ |
| do { \ |
| sike_fpmul_mont(a->c0, p503.mont_R2, mc->c0); \ |
| sike_fpmul_mont(a->c1, p503.mont_R2, mc->c1); \ |
| } while(0) |
| |
| // Conversion of a GF(p^2) element from Montgomery representation to standard representation, |
| // c_i = ma_i*R^(-1) = a_i in GF(p^2). |
| #define sike_from_fp2mont(ma, c) \ |
| do { \ |
| sike_from_mont(ma->c0, c->c0); \ |
| sike_from_mont(ma->c1, c->c1); \ |
| } while(0) |
| |
| #endif // FPX_H_ |