|  | // Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/evp.h> | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/nid.h> | 
|  | #include <openssl/rsa.h> | 
|  | #include <openssl/span.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  | #include "../mem_internal.h" | 
|  | #include "../rsa/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct RSA_PKEY_CTX { | 
|  | // Key gen parameters | 
|  | int nbits = 2048; | 
|  | bssl::UniquePtr<BIGNUM> pub_exp; | 
|  | // RSA padding mode | 
|  | int pad_mode = RSA_PKCS1_PADDING; | 
|  | // message digest | 
|  | const EVP_MD *md = nullptr; | 
|  | // message digest for MGF1 | 
|  | const EVP_MD *mgf1md = nullptr; | 
|  | // PSS salt length | 
|  | int saltlen = RSA_PSS_SALTLEN_DIGEST; | 
|  | // restrict_pss_params, if true, indicates that the PSS signing/verifying | 
|  | // parameters are restricted by the key's parameters. |md| and |mgf1md| may | 
|  | // not change, and |saltlen| must be at least |md|'s hash length. | 
|  | bool restrict_pss_params = false; | 
|  | bssl::Array<uint8_t> oaep_label; | 
|  | }; | 
|  |  | 
|  | static bool is_pss_only(const EVP_PKEY_CTX *ctx) { | 
|  | return ctx->pmeth->pkey_id == EVP_PKEY_RSA_PSS; | 
|  | } | 
|  |  | 
|  | static int pkey_rsa_init(EVP_PKEY_CTX *ctx) { | 
|  | RSA_PKEY_CTX *rctx = bssl::New<RSA_PKEY_CTX>(); | 
|  | if (!rctx) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (is_pss_only(ctx)) { | 
|  | rctx->pad_mode = RSA_PKCS1_PSS_PADDING; | 
|  | // Pick up PSS parameters from the key. | 
|  | if (ctx->pkey != nullptr && ctx->pkey->pkey != nullptr) { | 
|  | RSA *rsa = static_cast<RSA *>(ctx->pkey->pkey); | 
|  | const EVP_MD *md = rsa_pss_params_get_md(rsa->pss_params); | 
|  | if (md != nullptr) { | 
|  | rctx->md = rctx->mgf1md = md; | 
|  | // All our supported modes use the digest length as the salt length. | 
|  | rctx->saltlen = EVP_MD_size(rctx->md); | 
|  | rctx->restrict_pss_params = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->data = rctx; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int pkey_rsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { | 
|  | RSA_PKEY_CTX *dctx, *sctx; | 
|  | if (!pkey_rsa_init(dst)) { | 
|  | return 0; | 
|  | } | 
|  | sctx = reinterpret_cast<RSA_PKEY_CTX *>(src->data); | 
|  | dctx = reinterpret_cast<RSA_PKEY_CTX *>(dst->data); | 
|  | dctx->nbits = sctx->nbits; | 
|  | if (sctx->pub_exp) { | 
|  | dctx->pub_exp.reset(BN_dup(sctx->pub_exp.get())); | 
|  | if (!dctx->pub_exp) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | dctx->pad_mode = sctx->pad_mode; | 
|  | dctx->md = sctx->md; | 
|  | dctx->mgf1md = sctx->mgf1md; | 
|  | dctx->saltlen = sctx->saltlen; | 
|  | dctx->restrict_pss_params = sctx->restrict_pss_params; | 
|  | if (!dctx->oaep_label.CopyFrom(sctx->oaep_label)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void pkey_rsa_cleanup(EVP_PKEY_CTX *ctx) { | 
|  | bssl::Delete(reinterpret_cast<RSA_PKEY_CTX *>(ctx->data)); | 
|  | } | 
|  |  | 
|  | static int pkey_rsa_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen, | 
|  | const uint8_t *tbs, size_t tbslen) { | 
|  | RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); | 
|  | RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey); | 
|  | const size_t key_len = EVP_PKEY_size(ctx->pkey.get()); | 
|  |  | 
|  | if (!sig) { | 
|  | *siglen = key_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (*siglen < key_len) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rctx->md) { | 
|  | unsigned out_len; | 
|  | switch (rctx->pad_mode) { | 
|  | case RSA_PKCS1_PADDING: | 
|  | if (!RSA_sign(EVP_MD_type(rctx->md), tbs, tbslen, sig, &out_len, rsa)) { | 
|  | return 0; | 
|  | } | 
|  | *siglen = out_len; | 
|  | return 1; | 
|  |  | 
|  | case RSA_PKCS1_PSS_PADDING: | 
|  | return RSA_sign_pss_mgf1(rsa, siglen, sig, *siglen, tbs, tbslen, | 
|  | rctx->md, rctx->mgf1md, rctx->saltlen); | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return RSA_sign_raw(rsa, siglen, sig, *siglen, tbs, tbslen, rctx->pad_mode); | 
|  | } | 
|  |  | 
|  | static int pkey_rsa_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t siglen, | 
|  | const uint8_t *tbs, size_t tbslen) { | 
|  | RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); | 
|  | RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey); | 
|  |  | 
|  | if (rctx->md) { | 
|  | switch (rctx->pad_mode) { | 
|  | case RSA_PKCS1_PADDING: | 
|  | return RSA_verify(EVP_MD_type(rctx->md), tbs, tbslen, sig, siglen, rsa); | 
|  |  | 
|  | case RSA_PKCS1_PSS_PADDING: | 
|  | return RSA_verify_pss_mgf1(rsa, tbs, tbslen, rctx->md, rctx->mgf1md, | 
|  | rctx->saltlen, sig, siglen); | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t rslen; | 
|  | const size_t key_len = EVP_PKEY_size(ctx->pkey.get()); | 
|  | bssl::Array<uint8_t> tbuf; | 
|  | if (!tbuf.InitForOverwrite(key_len) || | 
|  | !RSA_verify_raw(rsa, &rslen, tbuf.data(), tbuf.size(), sig, siglen, | 
|  | rctx->pad_mode)) { | 
|  | return 0; | 
|  | } | 
|  | if (rslen != tbslen || CRYPTO_memcmp(tbs, tbuf.data(), rslen) != 0) { | 
|  | OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int pkey_rsa_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out, | 
|  | size_t *out_len, const uint8_t *sig, | 
|  | size_t sig_len) { | 
|  | RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); | 
|  | RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey); | 
|  | const size_t key_len = EVP_PKEY_size(ctx->pkey.get()); | 
|  |  | 
|  | if (out == nullptr) { | 
|  | *out_len = key_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (*out_len < key_len) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rctx->md == nullptr) { | 
|  | return RSA_verify_raw(rsa, out_len, out, *out_len, sig, sig_len, | 
|  | rctx->pad_mode); | 
|  | } | 
|  |  | 
|  | if (rctx->pad_mode != RSA_PKCS1_PADDING) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Assemble the encoded hash, using a placeholder hash value. | 
|  | static const uint8_t kDummyHash[EVP_MAX_MD_SIZE] = {0}; | 
|  | const size_t hash_len = EVP_MD_size(rctx->md); | 
|  | uint8_t *asn1_prefix; | 
|  | size_t asn1_prefix_len; | 
|  | int asn1_prefix_allocated; | 
|  | if (!RSA_add_pkcs1_prefix(&asn1_prefix, &asn1_prefix_len, | 
|  | &asn1_prefix_allocated, EVP_MD_type(rctx->md), | 
|  | kDummyHash, hash_len)) { | 
|  | return 0; | 
|  | } | 
|  | bssl::UniquePtr<uint8_t> free_asn1_prefix(asn1_prefix_allocated ? asn1_prefix | 
|  | : nullptr); | 
|  |  | 
|  | bssl::Array<uint8_t> tbuf; | 
|  | size_t rslen; | 
|  | if (!tbuf.InitForOverwrite(key_len) || | 
|  | !RSA_verify_raw(rsa, &rslen, tbuf.data(), tbuf.size(), sig, sig_len, | 
|  | RSA_PKCS1_PADDING) || | 
|  | rslen != asn1_prefix_len || | 
|  | // Compare all but the hash suffix. | 
|  | CRYPTO_memcmp(tbuf.data(), asn1_prefix, asn1_prefix_len - hash_len) != | 
|  | 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (out != nullptr) { | 
|  | OPENSSL_memcpy(out, tbuf.data() + rslen - hash_len, hash_len); | 
|  | } | 
|  | *out_len = hash_len; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int pkey_rsa_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen, | 
|  | const uint8_t *in, size_t inlen) { | 
|  | RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); | 
|  | RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey); | 
|  | const size_t key_len = EVP_PKEY_size(ctx->pkey.get()); | 
|  |  | 
|  | if (!out) { | 
|  | *outlen = key_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (*outlen < key_len) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) { | 
|  | bssl::Array<uint8_t> tbuf; | 
|  | if (!tbuf.InitForOverwrite(key_len) || | 
|  | !RSA_padding_add_PKCS1_OAEP_mgf1( | 
|  | tbuf.data(), tbuf.size(), in, inlen, rctx->oaep_label.data(), | 
|  | rctx->oaep_label.size(), rctx->md, rctx->mgf1md) || | 
|  | !RSA_encrypt(rsa, outlen, out, *outlen, tbuf.data(), tbuf.size(), | 
|  | RSA_NO_PADDING)) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return RSA_encrypt(rsa, outlen, out, *outlen, in, inlen, rctx->pad_mode); | 
|  | } | 
|  |  | 
|  | static int pkey_rsa_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen, | 
|  | const uint8_t *in, size_t inlen) { | 
|  | RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); | 
|  | RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey); | 
|  | const size_t key_len = EVP_PKEY_size(ctx->pkey.get()); | 
|  |  | 
|  | if (!out) { | 
|  | *outlen = key_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (*outlen < key_len) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) { | 
|  | bssl::Array<uint8_t> tbuf; | 
|  | size_t padded_len; | 
|  | if (!tbuf.InitForOverwrite(key_len) || | 
|  | !RSA_decrypt(rsa, &padded_len, tbuf.data(), tbuf.size(), in, inlen, | 
|  | RSA_NO_PADDING) || | 
|  | !RSA_padding_check_PKCS1_OAEP_mgf1(out, outlen, key_len, tbuf.data(), | 
|  | padded_len, rctx->oaep_label.data(), | 
|  | rctx->oaep_label.size(), rctx->md, | 
|  | rctx->mgf1md)) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return RSA_decrypt(rsa, outlen, out, key_len, in, inlen, rctx->pad_mode); | 
|  | } | 
|  |  | 
|  | static int check_padding_md(const EVP_MD *md, int padding) { | 
|  | if (!md) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (padding == RSA_NO_PADDING) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int is_known_padding(int padding_mode) { | 
|  | switch (padding_mode) { | 
|  | case RSA_PKCS1_PADDING: | 
|  | case RSA_NO_PADDING: | 
|  | case RSA_PKCS1_OAEP_PADDING: | 
|  | case RSA_PKCS1_PSS_PADDING: | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int pkey_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { | 
|  | RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); | 
|  | switch (type) { | 
|  | case EVP_PKEY_CTRL_RSA_PADDING: | 
|  | // PSS keys cannot be switched to other padding types. | 
|  | if (is_pss_only(ctx) && p1 != RSA_PKCS1_PSS_PADDING) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE); | 
|  | return 0; | 
|  | } | 
|  | if (!is_known_padding(p1) || !check_padding_md(rctx->md, p1) || | 
|  | (p1 == RSA_PKCS1_PSS_PADDING && | 
|  | 0 == (ctx->operation & (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY))) || | 
|  | (p1 == RSA_PKCS1_OAEP_PADDING && | 
|  | 0 == (ctx->operation & EVP_PKEY_OP_TYPE_CRYPT))) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE); | 
|  | return 0; | 
|  | } | 
|  | if (p1 == RSA_PKCS1_OAEP_PADDING && rctx->md == nullptr) { | 
|  | rctx->md = EVP_sha1(); | 
|  | } | 
|  | rctx->pad_mode = p1; | 
|  | return 1; | 
|  |  | 
|  | case EVP_PKEY_CTRL_GET_RSA_PADDING: | 
|  | *(int *)p2 = rctx->pad_mode; | 
|  | return 1; | 
|  |  | 
|  | case EVP_PKEY_CTRL_RSA_PSS_SALTLEN: | 
|  | case EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN: | 
|  | if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN); | 
|  | return 0; | 
|  | } | 
|  | if (type == EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN) { | 
|  | *(int *)p2 = rctx->saltlen; | 
|  | } else { | 
|  | // Negative salt lengths are special values. | 
|  | if (p1 < 0) { | 
|  | if (p1 != RSA_PSS_SALTLEN_DIGEST && p1 != RSA_PSS_SALTLEN_AUTO) { | 
|  | return 0; | 
|  | } | 
|  | // All our PSS restrictions accept saltlen == hashlen, so allow | 
|  | // |RSA_PSS_SALTLEN_DIGEST|. Reject |RSA_PSS_SALTLEN_AUTO| for | 
|  | // simplicity. | 
|  | if (rctx->restrict_pss_params && p1 != RSA_PSS_SALTLEN_DIGEST) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN); | 
|  | return 0; | 
|  | } | 
|  | } else if (rctx->restrict_pss_params && | 
|  | static_cast<size_t>(p1) < EVP_MD_size(rctx->md)) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN); | 
|  | return 0; | 
|  | } | 
|  | rctx->saltlen = p1; | 
|  | } | 
|  | return 1; | 
|  |  | 
|  | case EVP_PKEY_CTRL_RSA_KEYGEN_BITS: | 
|  | if (p1 < 256) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_KEYBITS); | 
|  | return 0; | 
|  | } | 
|  | rctx->nbits = p1; | 
|  | return 1; | 
|  |  | 
|  | case EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP: | 
|  | if (!p2) { | 
|  | return 0; | 
|  | } | 
|  | rctx->pub_exp.reset(reinterpret_cast<BIGNUM *>(p2)); | 
|  | return 1; | 
|  |  | 
|  | case EVP_PKEY_CTRL_RSA_OAEP_MD: | 
|  | case EVP_PKEY_CTRL_GET_RSA_OAEP_MD: | 
|  | if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); | 
|  | return 0; | 
|  | } | 
|  | if (type == EVP_PKEY_CTRL_GET_RSA_OAEP_MD) { | 
|  | *(const EVP_MD **)p2 = rctx->md; | 
|  | } else { | 
|  | rctx->md = reinterpret_cast<EVP_MD *>(p2); | 
|  | } | 
|  | return 1; | 
|  |  | 
|  | case EVP_PKEY_CTRL_MD: { | 
|  | const EVP_MD *md = reinterpret_cast<EVP_MD *>(p2); | 
|  | if (!check_padding_md(md, rctx->pad_mode)) { | 
|  | return 0; | 
|  | } | 
|  | if (rctx->restrict_pss_params && | 
|  | EVP_MD_type(rctx->md) != EVP_MD_type(md)) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_DIGEST_TYPE); | 
|  | return 0; | 
|  | } | 
|  | rctx->md = md; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | case EVP_PKEY_CTRL_GET_MD: | 
|  | *(const EVP_MD **)p2 = rctx->md; | 
|  | return 1; | 
|  |  | 
|  | case EVP_PKEY_CTRL_RSA_MGF1_MD: | 
|  | case EVP_PKEY_CTRL_GET_RSA_MGF1_MD: | 
|  | if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING && | 
|  | rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_MGF1_MD); | 
|  | return 0; | 
|  | } | 
|  | if (type == EVP_PKEY_CTRL_GET_RSA_MGF1_MD) { | 
|  | if (rctx->mgf1md) { | 
|  | *(const EVP_MD **)p2 = rctx->mgf1md; | 
|  | } else { | 
|  | *(const EVP_MD **)p2 = rctx->md; | 
|  | } | 
|  | } else { | 
|  | const EVP_MD *md = reinterpret_cast<EVP_MD *>(p2); | 
|  | if (rctx->restrict_pss_params && | 
|  | EVP_MD_type(rctx->mgf1md) != EVP_MD_type(md)) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_MGF1_MD); | 
|  | return 0; | 
|  | } | 
|  | rctx->mgf1md = md; | 
|  | } | 
|  | return 1; | 
|  |  | 
|  | case EVP_PKEY_CTRL_RSA_OAEP_LABEL: { | 
|  | if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); | 
|  | return 0; | 
|  | } | 
|  | // |EVP_PKEY_CTRL_RSA_OAEP_LABEL| takes ownership of |label|'s underlying | 
|  | // buffer (via |Reset|), but only on success. | 
|  | auto *label = reinterpret_cast<bssl::Span<uint8_t> *>(p2); | 
|  | rctx->oaep_label.Reset(label->data(), label->size()); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | case EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL: | 
|  | if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); | 
|  | return 0; | 
|  | } | 
|  | *reinterpret_cast<CBS *>(p2) = CBS(rctx->oaep_label); | 
|  | return 1; | 
|  |  | 
|  | default: | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_COMMAND_NOT_SUPPORTED); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int pkey_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { | 
|  | RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); | 
|  | if (!rctx->pub_exp) { | 
|  | rctx->pub_exp.reset(BN_new()); | 
|  | if (!rctx->pub_exp || !BN_set_word(rctx->pub_exp.get(), RSA_F4)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | bssl::UniquePtr<RSA> rsa(RSA_new()); | 
|  | if (!rsa) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!RSA_generate_key_ex(rsa.get(), rctx->nbits, rctx->pub_exp.get(), | 
|  | nullptr)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EVP_PKEY_assign_RSA(pkey, rsa.release()); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | const EVP_PKEY_CTX_METHOD rsa_pkey_meth = { | 
|  | EVP_PKEY_RSA, | 
|  | pkey_rsa_init, | 
|  | pkey_rsa_copy, | 
|  | pkey_rsa_cleanup, | 
|  | pkey_rsa_keygen, | 
|  | pkey_rsa_sign, | 
|  | /*sign_message=*/nullptr, | 
|  | pkey_rsa_verify, | 
|  | /*verify_message=*/nullptr, | 
|  | pkey_rsa_verify_recover, | 
|  | pkey_rsa_encrypt, | 
|  | pkey_rsa_decrypt, | 
|  | /*derive=*/nullptr, | 
|  | /*paramgen=*/nullptr, | 
|  | pkey_rsa_ctrl, | 
|  | }; | 
|  |  | 
|  | const EVP_PKEY_CTX_METHOD rsa_pss_pkey_meth = { | 
|  | EVP_PKEY_RSA_PSS, | 
|  | pkey_rsa_init, | 
|  | pkey_rsa_copy, | 
|  | pkey_rsa_cleanup, | 
|  | // In OpenSSL, |EVP_PKEY_RSA_PSS| supports key generation and fills in PSS | 
|  | // parameters based on a separate set of keygen-targetted setters: | 
|  | // |EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen|, | 
|  | // |EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md|, and | 
|  | // |EVP_PKEY_CTX_rsa_pss_key_digest|. We do not currently implement this | 
|  | // because we only support one parameter set. | 
|  | /*keygen=*/nullptr, | 
|  | pkey_rsa_sign, | 
|  | /*sign_message=*/nullptr, | 
|  | pkey_rsa_verify, | 
|  | /*verify_message=*/nullptr, | 
|  | /*verify_recover=*/nullptr, | 
|  | /*encrypt=*/nullptr, | 
|  | /*decrypt=*/nullptr, | 
|  | /*derive=*/nullptr, | 
|  | /*paramgen=*/nullptr, | 
|  | pkey_rsa_ctrl, | 
|  | }; | 
|  |  | 
|  | static int rsa_or_rsa_pss_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, | 
|  | void *p2) { | 
|  | if (!ctx || !ctx->pmeth || !ctx->pmeth->ctrl) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_COMMAND_NOT_SUPPORTED); | 
|  | return 0; | 
|  | } | 
|  | if (ctx->pmeth->pkey_id != EVP_PKEY_RSA && | 
|  | ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); | 
|  | return 0; | 
|  | } | 
|  | return EVP_PKEY_CTX_ctrl(ctx, /*keytype=*/-1, optype, cmd, p1, p2); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding) { | 
|  | return rsa_or_rsa_pss_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING, padding, | 
|  | nullptr); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *out_padding) { | 
|  | return rsa_or_rsa_pss_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING, 0, | 
|  | out_padding); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { | 
|  | // We currently do not support keygen with |EVP_PKEY_RSA_PSS|. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int salt_len) { | 
|  | // We currently do not support keygen with |EVP_PKEY_RSA_PSS|. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, | 
|  | const EVP_MD *md) { | 
|  | // We currently do not support keygen with |EVP_PKEY_RSA_PSS|. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int salt_len) { | 
|  | return rsa_or_rsa_pss_ctrl(ctx, (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY), | 
|  | EVP_PKEY_CTRL_RSA_PSS_SALTLEN, salt_len, nullptr); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *out_salt_len) { | 
|  | return rsa_or_rsa_pss_ctrl(ctx, (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY), | 
|  | EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, | 
|  | out_salt_len); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits) { | 
|  | return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_KEYGEN, | 
|  | EVP_PKEY_CTRL_RSA_KEYGEN_BITS, bits, nullptr); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *e) { | 
|  | return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_KEYGEN, | 
|  | EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, e); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { | 
|  | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, | 
|  | EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)md); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) { | 
|  | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, | 
|  | EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)out_md); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { | 
|  | return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, | 
|  | EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)md); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) { | 
|  | return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, | 
|  | EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)out_md); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, uint8_t *label, | 
|  | size_t label_len) { | 
|  | bssl::Span span(label, label_len); | 
|  | return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, | 
|  | EVP_PKEY_CTRL_RSA_OAEP_LABEL, 0, &span); | 
|  | } | 
|  |  | 
|  | int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, | 
|  | const uint8_t **out_label) { | 
|  | CBS label; | 
|  | if (!EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, | 
|  | EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL, 0, &label)) { | 
|  | return -1; | 
|  | } | 
|  | if (CBS_len(&label) > INT_MAX) { | 
|  | OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); | 
|  | return -1; | 
|  | } | 
|  | *out_label = CBS_data(&label); | 
|  | return (int)CBS_len(&label); | 
|  | } |